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Abstract  49 

The success of cancer immunotherapy is limited by resistance to immune-checkpoint blockade. 50 

We therefore conducted a genetic screen to identify genes that mediated resistance against 51 

cytotoxic T lymphocytes (CTL) in anti-PD-L1 treatment refractory human tumors. Using PD-L1 52 

positive multiple myeloma cells co-cultured with tumor-reactive bone marrow-infiltrating CTL as 53 

a model, we identified calcium/calmodulin-dependent protein kinase 1D (CAMK1D) as a key 54 

modulator of tumor intrinsic immune resistance. CAMK1D was co-expressed with PD-L1 in anti-55 

PD-L1/PD-1 treatment refractory cancer types and correlated with poor prognosis in these tumors. 56 

CAMK1D was activated by CTL through Fas-receptor stimulation, which led to CAMK1D 57 

binding to and phosphorylating caspase -3, -6 and -7, inhibiting their activation and function. 58 

Consistently, CAMK1D mediated immune resistance of murine colorectal cancer cells in vivo. 59 

The pharmacological inhibition of CAMK1D on the other hand, restored the sensitivity towards 60 

Fas-ligand treatment in multiple myeloma and uveal melanoma cells in vitro. Thus, rapid inhibition 61 

of the terminal apoptotic cascade by CAMK1D expressed in anti-PD-L1 refractory tumors via T 62 

cell recognition may have contributed to tumor immune resistance. 63 

 64 
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Introduction 66 

Endogenous T cell responses against tumor antigens occur frequently in a broad variety of cancer 67 

types (1-3). Although these T cell responses correlate to improved patient prognoses (2, 4, 5), they 68 

often do not rescue patients from tumor progression. A major reason, lies in the capacity of tumor 69 

cells to regulate T cell activity through expression of the immune-inhibitory ligand PD-L1. The 70 

latter stimulates the inhibitory receptor PD-1 expressed on effector T cells and reduces T cell 71 

receptor signaling (6). PD-L1 expression in healthy and tumor tissues can be induced by 72 

inflammatory cytokines such as IFN-gamma by effector T cells (7-9) and serves as a mechanism 73 

to prevent autoimmune diseases (10). Consequently, blockade of PD-L1/PD-1 interactions by 74 

therapeutic antibodies has resulted in stunning immune rejection of tumors in many patients (11-75 

14). Still, a significant proportion of cancer patients lack responses to anti-PD-L1/PD-1 therapies 76 

(15-17) possibly due to impaired IFN-gamma responsiveness resulting in reduced PD-L1 77 

expression, severe and irreversible T cell exhaustion, or PD-1-induced blockade of T cell 78 

differentiation (18). However, since functional tumor reactive T cells are found in many patients 79 

refractory to anti-PD-L1/PD-1 treatment (3, 5), these mechanisms may only explain immune 80 

response resistance in a minor fraction of cases. Additional immune regulatory interactions may 81 

impose protection against immune destruction. Several immune inhibitory receptors such as TIM3 82 

or VISTA, triggered by ligands expressed in tumors, are characterized (19, 20), but immune 83 

resistance is likely caused by more than immune regulatory ligands controlling T cell activity such 84 

as tumor cell intrinsic resistance mechanisms. 85 

Multiple myeloma (MM) is a rarely curable B-cell malignancy characterized by the accumulation 86 

of malignant plasma cell clones in the bone marrow (21). In MM, spontaneous cytotoxic T cell 87 

responses against myeloma-associated antigens occur (1). Immune-checkpoint molecules are 88 
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expressed by myeloma cells and induce tumor-related immune suppression (22-24). PD-L1 is 89 

commonly expressed on malignant plasma cells (9) and high expression of PD-L1 associates with 90 

disease progression and is upregulated at relapse or in the refractory stage (25). Nevertheless, 91 

results of a phase I trial with PD-1 blocking antibodies reported no objective responses amongst 92 

the 27 treated MM patients (26). There is thus rationale to assume that other immune-checkpoint 93 

molecules may play a role in tumor escape mechanisms. Various immunotherapeutic treatments 94 

are being tested in MM, including antibodies against CD38 (e.g. daratumumab, isatuximab), 95 

SLAMF7 (elotuzumab), BCMA-CAR-T-based treatments or BCMA-T-cell bispecific antibodies 96 

(27-31). 97 

Here, we performed a systematic search for genes that regulated immune responsiveness in tumor 98 

cells, using MM as anti-PD-L1/PD-1 treatment unresponsive tumor model (26). 99 

In order to identify genes that inhibit tumor immune destruction by CTL, we applied a high-100 

throughput (HTP) genetic screen allowing the silencing of a multitude of genes and subsequently 101 

assessed tumor lysis by patient-derived marrow-infiltrating lymphocytes (MILs). We identified 90 102 

genes that regulated immune responsiveness after cytotoxic T cell attack. Among them, 103 

Calcium/Calmodulin Dependent Protein Kinase 1D (CAMK1D) was co-expressed with PD-L1 104 

and protected against T cell-induced tumor cell killing in MM and other PD-L1 refractory human 105 

cancers.  106 

 107 

Materials and Methods 108 

Experimental model and subject details: Patients, healthy donors, and samples  109 

Patients with previously untreated multiple myeloma (n=332) or monoclonal gammopathy of 110 

unknown significance (MGUS; n=22) at the University Hospitals of Heidelberg and Montpellier 111 
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as well as 10 healthy normal donors were included in this study, which was approved by the ethics 112 

committee (#229/2003 and S-152/2010) after written informed consent. Patients were diagnosed, 113 

staged and response to treatment assessed according to standard criteria (32-34).  114 

Samples: Normal bone marrow plasma cells and myeloma cells from the aforementioned patients 115 

were purified using anti-CD138 microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany #130-116 

051-301) from bone marrow aspirates previously published (35, 36). Peripheral CD27+ memory 117 

B-cells (n=11) were FACS-sorted as described (37). The human myeloma cell lines U266, RPMI-118 

8226, LP-1, OPM-2, SK-MM-2, AMO-1, JJN-3, NCI-H929, KMS-12-BM, KMS-11, KMS-12-119 

PE, KMS-18, MM1.S, JIM3, KARPAS-620, L363 and ANBL6 were purchased from the German 120 

Collection of Microorganisms and Cell Cultures (Braunschweig, Germany) and the American 121 

Type Cell Culture (Wesel, Germany), the XG-lines were generated at INSERM U1040 122 

(Montpellier, France) (38). KMM-1 cells were obtained from the National Institutes of Biomedical 123 

Innovation, Health and Nutrition (Osaka, Japan). Cell line identity was regularly assessed by 124 

DNA-fingerprinting and compared to the initial sample. Cell lines were grown from initial of first 125 

passage aliquots on a regular basis. Mycoplasma-contamination excluded by PCR-based assays, 126 

and EBV-infection status by clinical routine PCR-based diagnostics. If not otherwise stated, cell 127 

lines used for expression profiling were assessed from initial or early passage aliquots. Polyclonal 128 

plasmablastic cells (n=10) were generated as published (36, 39, 40). The human uveal melanoma 129 

cell line Mel270 was established, characterized and provided by Prof. Griewank (University 130 

Hospital Essen) (41). KMM-1-luc cells were generated after transfection with a pEGFP-luc 131 

plasmid (provided by Dr. Rudolf Haase, LMU Munich, Germany) and selected for the G418-132 

resistance gene. Lipofectamine LTX with Plus reagent (Thermo Scientific #15338100) were used 133 

as transfection reagents according to the manufacturer ś instructions. Transfected cells were 134 
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selected for 14 days with G418-containing medium (0.6 mg/mL). KMM-1-luc cells were sorted 135 

twice for the expression of GFP by flow cytometry (with 87% and 100% purity, respectively) and 136 

cultured in the presence of 0.6 mg/mL G418. Cell sorting was conducted in collaboration with the 137 

DKFZ sorting core facility, using the FACSARIA II cell sorter (BD) and data were analyzed using 138 

FlowJo (Tree Star). KMM-1, U266 and Mel270 were cultured under standard conditions in RPMI 139 

media supplemented with 10% fetal calf serum, 100 U/ml penicillin G and 100 µg/ml streptomycin 140 

at 37 °C in a humidified atmosphere under 5% CO2.  141 

 142 

Isolation of peripheral blood mononuclear cells (PBMCs) 143 

PBMCs were isolated from buffy coats of healthy donors via biocoll density gradient 144 

centrifugation (Biochrome). Briefly, buffy coats were diluted 1:10 in RPMI and added to 50 mL 145 

conical centrifuge tubes, containing 15 mL of biocoll solution. Density gradient centrifugation was 146 

performed at 2000 rpm for 20 min at room temperature using low brake. Afterwards, PBMCs were 147 

collected, washed twice with RPMI and frozen in aliquots of 5 x 107 cells per vial using freezing 148 

media A-B (1:1) (Freezing medium A: 60% AB-serum + 40% RPMI; Freezing medium B: 80% 149 

AB-serum + 20% DMSO). 150 

 151 

MILs isolation  152 

Marrow-infiltrating lymphocytes were isolated from the bone marrow of a multiple myeloma 153 

patient. Briefly, T cells were isolated from the negative fraction of CD138-sorted bone marrow 154 

cells using Untouched Human T cells Dynabeads (Invitrogen #11344D) following manufacturer’s 155 

instructions. Cells were stained for anti-CD3 (Pacific Blue™ anti-human CD3 (Clone OKT3), 156 

Biolegend), anti-CD4 (APC/Cy7 mouse anti-human CD4 (Clone RPA-T4), BD Biosciences) and 157 
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anti-CD8 (Pacific Blue™ mouse anti-human CD8 (Clone RPA-T8), BD Biosciences), tested for 158 

HLA-A2 positivity (APC mouse anti-human HLA-A2 Clone BB7.2 (RUO), BD Biosciences) via 159 

flow cytometry and subsequently expanded using the rapid expansion protocol as described below.    160 

 161 

MILs expansion 162 

MILs cultures were ex-vivo expanded using a modified version of the Rapid Expansion Protocol 163 

(REP) (42, 43). 2x106 of freshly isolated MILs were diluted to 6 x105 cell/mL in CLM 164 

supplemented with 3000 U/mL rHuIL2 (Novartis Pharma). Cells were incubated in 25 cm2 tissue 165 

culture flask for 48h at 37°C and 5% CO2. An excess of irradiated allogeneic PBMC from healthy 166 

donors were added as “feeder cells” to support the activation and propagation of T cells early 167 

during the REP (44). Thus, PBMCs from three different buffy coats (at a ratio of 1:1:1) were 168 

irradiated with 60 Gy (Gammacell 1000) and used as feeder cells to support MILs expansion. 169 

2x106 MILs were co-incubated with 2x108 feeder cells (in a ratio 1:100) in 400 mL of MIL 170 

expansion medium (CLM/AIM-V) with 30 ng/mL OKT3 antibody (Thermo Scientific) and 3000 171 

IU/mL IL-2 for 5 days in a G-Rex 100 cell culture flask. Afterwards, 250 mL of supernatant was 172 

replaced with 150 mL of fresh media and IL-2 was replenished to keep the concentration at 3000 173 

IU/mL. On day 7, MILs were divided into three G-Rex 100 flasks in a final volume of 250 mL 174 

medium each and media was again replenished on day 11. On day 14 of the expansion, MILs were 175 

counted and frozen in aliquots of 40x106 cells/mL in freezing media A (60% AB serum and 40% 176 

RPMI1640) and B (80% AB serum and 20% DMSO). 177 

 178 

Generation of flu-antigen specific CD8+ T cells  179 
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For the generation of flu-specific CD8+ T cells (flu TC), PBMCs from HLA-A2 healthy donors 180 

were isolated as described above. Total CD8+ T cells were sorted from PBMCs by magnetic 181 

separation (Miltenyi #130-096-495) (day 0) according to the manufacturer’s instructions and 182 

expanded in the presence of A2-matched flu peptide (GILGFVFTL) for 14 days.  183 

The autologous and peptide-loaded CD8 negative fraction was irradiated with 60 Gray (IBL 437C 184 

Blood Irradiator) and used as feeder cells for 1 week. Afterwards, these cells were substituted with 185 

irradiated (60 Gray; IBL 437C Blood Irradiator) T2 cells and used as fresh feeder cells. On day 1 186 

and day 8, 100 IU/mL IL2 (Novartis Pharma) and 5 ng/μL IL15 (R&D Systems) were added to 187 

the expansion. The percentage of flu-antigen specific T cells was determined by pentamer staining 188 

(GILGFVFTL-APC, ProImmune #P007-0A-E) on day 7 and 14 via flow cytometry analysis 189 

according to the manufacturer’s instructions. After antigen-specific expansion, flu TC were sorted 190 

by FACS and expanded further for 14 days by using the rapid expansion protocol. 191 

 192 

PCR and qPCR 193 

Gene expression was measured using end-point Polymerase Chain Reaction (PCR). Briefly, total 194 

RNA was isolated from cell pellets using the RNeasy Mini kit (Qiagen #74106) according to the 195 

manufacturer’s guidelines. RNA quality and concentration were analyzed using the Scan Drop 196 

(AnalytikJena). 1 μg of RNA was reverse transcribed to complementary DNA (cDNA) using the 197 

QuantiTect reverse transcription kit (Qiagen #205313) according to the manufacturer's protocol. 198 

Synthesized cDNA was amplified using conventional PCR. PCR samples were set up in a 25 μL 199 

volume using 2x MyTaq HS Red Mix (Bioline #BIO-25044), 500 nM of gene-specific primer mix 200 

(supplementary Table 2) and 100 ng of template cDNA. Water was added to the reaction mix 201 

instead of cDNA for contamination controls. The PCR program was set as the following: 95°C for 202 
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3 min, 35 cycles of 3 repetitive steps of denaturation (95°C for 30 s), annealing (60°C for 30 s) 203 

and extension (72°C for 30 s), and a final step at 72°C for 5 min. PCR products were run on a 2% 204 

agarose gel in Tris-acetate-EDTA (TAE) buffer (ThermoFisher Scientific #B49) using a gel 205 

electrophoresis system (Thermo Scientific) and DNA bands were visualized using UV light of 206 

myECL Imager (Thermo Scientific).  207 

Knockdown efficiency of siRNA sequences was measured by quantitative PCR (qPCR). For 208 

qPCR, 10 ng of template cDNA, 2x QuantiFast SYBR Green PCR mix (Qiagen #204056) and 300 209 

nM of gene-specific primer mix (supplementary Table 2) was used per 20 μL reaction and each 210 

sample was prepared in triplicates. Reactions were run using the QuantStudio 3 (Applied 211 

Biosystems). Gene expression was normalized to β-actin and results were shown as fold change. 212 

The analysis was performed using comparative Ct method.  213 

 214 

Gene expression profiling 215 

Gene expression profiling was performed using U133 2.0 plus arrays (Affymetrix, Santa Clara, 216 

CA, USA) as published (35, 45, 46). Expression data are deposited in ArrayExpress under 217 

accession numbers E-MTAB-317. 218 

 219 

Survival and correlation analysis using The Cancer Genome Atlas (TCGA)  220 

Transcriptomic gene expression (RNASeqV2, RSEM) and clinical data from all available tumor 221 

entities was downloaded from TCGA (using getTCGA function of TCGA2STAT (version 1.2) 222 

package for R (47). Log2-normalized expression values for uveal melanoma (TCGA-UVM, 80 223 

patients), ovarian cancer (TCGA-OV, 303 patients), stomach adenocarcinoma (TCGA-STAD) and 224 

stomach and esophageal carcinoma (TCGA-STES, 599 patients) were correlated (Person’s r) using 225 
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the ggpubr package for R. Survival curves were generated using survminer package for R. FAS 226 

expression was cut at the median to generate Fas high and low sets. Similarly, CAMK1D 227 

expression was cut at the median for the Kaplan-Meier survival curves. Significance was 228 

calculated using the log-rank test. 229 

 230 

Reverse siRNA transfection 231 

Gene knockdown in tumor cells was induced using reverse siRNA transfection with Lipofectamine 232 

RNAiMAX (Thermo Scientific #13778-150). Briefly, 200 μL of 250 nM siRNA solution 233 

(supplementary Table 2) was added to each well of a 6-well plate. 4 μl of RNAiMAX transfection 234 

reagent was diluted in 196 μL of RPMI (Sigma-Aldrich) and incubated for 10 min at room 235 

temperature (RT). 400 μL of additional RPMI was added and 600 μL of RNAiMAX mix was given 236 

to the siRNA coated wells and incubated for 30 min at RT. 3,5 x 105 KMM-1 (WT or luc) cells 237 

were resuspended in 1,2 mL of antibiotic-free RPMI culture medium supplemented with 10% FCS, 238 

seeded in the siRNA-RNAiMAX containing wells and incubated for 48 h at 37°C, 5% CO2. Final 239 

siRNA concentration was 25 nM in all cases.  240 

 241 

Phospho-Protein Isolation 242 

To isolate phosphorylated proteins from cells, tumor cells were pelleted at 0.5 x g for 5 min and 243 

washed once with PBS at 4°C. The cell pellets were lysed with one pellet volume of Phosphoplex 244 

Lysis Buffer (Merck Millipore #43-040) containing protease inhibitor cocktail (Cabliochem 245 

#539134, 1:100) and phosphatase inhibitor cocktail (Sigma-Aldrich #P0044, 1:100) at 4 °C for 15 246 

min on a rotator. Samples were centrifuged at 17000 g at 4°C for 15 min. Supernatants containing 247 
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the protein lysates were collected into fresh tubes and quantified using the Pierce BCA Protein 248 

Assay Kit (Thermo Scientific #23225) according to the manufacturer's protocol.  249 

Briefly, supernatants were diluted 1:5 in water and pipetted together with BCA-standards into a 250 

96-well plate. BCA solution A and B were mixed 50:1 and 200 µl of this mix was added to each 251 

well. After 30 min incubation at 37 °C, the absorbance at 562 nm was measured with the TECAN 252 

reader and the protein concentration of the samples was calculated using the standard curve. 253 

Proteins were stored at -20 °C. 254 

 255 

SDS-PAGE 256 

30 μg of protein lysates were denaturated in 4x NuPAGE LDS Sample Buffer (Thermo Scientific 257 

#NP0008) containing 10% ß-mercaptoethanol (Sigma-Aldrich #M6250-100ML) at 70 °C for 10 258 

min. Samples were spun down and separated on NuPAGE 4-12% Bis-Tris Gels (Thermo Scientific 259 

NP0321BOX) along with PageRuler Prestained Protein Ladder (Thermo Scientific #26616) and 260 

run at 115-150 V for 90 min using 1X MES running buffer (Life Technologies #NP0002). 261 

 262 

Semi-Dry Western Blot 263 

Proteins were transferred from the gel to a PVDF membrane (Millipore #ISEQ00010) using a 264 

semi-dry western blot method. Briefly, the PVDF blotting membrane was activated in 100% 265 

methanol (Millipore) for 1 min and afterwards placed in Pierce 1-Step Transfer Buffer (Thermo 266 

Science #84731X5) until use. Blots were assembled from anode to cathode into the Pierce Power 267 

Blot cassette (Thermo Scientific) and run at 24 V for 10 min. Membranes were washed in 1x TBS 268 

and then placed in blocking solution (5% BSA / 0.05% TBST) for 2 h. Primary antibodies (anti-269 

CAMK1D (Abcam #ab172618) 1:20000, anti-caspase-3 (Abcam #ab32351) 1:750, anti-caspase-270 
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6 (Abcam #ab108335) 1:2000, anti-caspase-7 (Thermo Scientific MA5-15159) 1:1000, anti-271 

caspase-3 (phospho S150) (Abcam #ab59425) 1:850, anti-caspase-6 (phospho S257) (Abcam 272 

#ab135543) 1:250 and sodium potassium ATPase (Abcam #ab76020) 1:20000) were diluted in 273 

5% BSA / 0.05% TBST and kept on the membrane overnight at 4 °C on a rotator. Membranes 274 

were then washed three times for 10 min with 1 % BSA / 0.05% TBST. Afterwards, HRP-275 

conjugated secondary antibodies (anti-rabbit 1:4000, Cell Signaling #7074 or anti-mouse 1:4000, 276 

Cell Signaling #7076) were added to 1% BSA/TBST and kept on the membrane at room 277 

temperature for 1h on a shaker. Thereafter, the membranes were washed for 10 min with 1% 278 

BSA/TBST, then TBST and lastly with TBS. The blots were incubated with the Amersham ECL 279 

Western Blotting Detection Reagent (Reagent A and Reagent B, 1:1, GE Healthcare # RPN2109) 280 

for 4 min and the chemiluminescence was detected with myECL Imager (Thermo Scientific). 281 

Images were analyzed using the ImageJ software (Wayane Rasband).  282 

 283 

Co-immunoprecipitation assay 284 

For detection of direct protein-protein interaction, co-immunoprecipitation was performed. 285 

Briefly, 10 M tumor cells were seeded in 10 cm2 petri dishes. The next day, cells were stimulated 286 

for 4 h with 100 ng/ml rHuFasL (Biolegend #589404). Unstimulated cells were used as negative 287 

control. Afterwards, tumor cells were detached, resuspended in ice cold TBS and centrifuged at 288 

400 g for 6 min at 4°C. Supernatant was discarded, cell pellet was resuspended in 1,5 mL TBS and 289 

centrifuged at 500 g for 8 min at 4°C. Cell pellet was lysed with 1,5 mL lysis buffer (50 mM Tris-290 

HCl, 150 mM NaCl, 0,5% NP40 or Triton-X) containing protease inhibitor (Millipore #539134-1 291 

ML) and kept on a rotator for 1 h at 4°C. Afterwards, cells were centrifuged for 20 min at 20000 292 

g at 4°C. Supernatant was collected and centrifuged for further 5 min at 20000 g at 4°C. Protein-293 
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G agarose (Sigma-Aldrich) was washed with 1 mL TBS and centrifuged for 1 min at 12000 g. 1 294 

mL of cell supernatant containing cytoplasmatic proteins was added to 60 μL protein-G agarose 295 

(Sigma-Aldrich #11719416001), incubated with caspase-3 (1:50) (Cell Signaling #9662), caspase-296 

6 (1:50) (Abcam #ab108335) or caspase-7 (1:100) (Cell Signaling #9491) antibodies and incubated 297 

overnight on a rotator at 4°C. 90 μL of cell lysates were frozen at -20°C. The next day, the 298 

immunoprecipitated samples were centrifuged at 12000 g at 4°C for 1 min. Supernatant was 299 

discarded and protein-G agarose was washed three times with lyses buffer and centrifuged at 300 

12000 g at 4°C for 1 min. 2x LDS containing 10% β-mercaptoethanol was added to the 301 

immunoprecipitated samples, while 4x LDS containing 10% β-mercaptoethanol was added to the 302 

lysates. Samples were denaturated for 10 min at 95°C on a thermocycler. Samples were spun down 303 

and separated on NuPAGE 4-12% Bis- Tris Gels (Thermo Scientific #NP0335BOX) along with 304 

PageRuler Prestained Protein Ladder (Thermo Scientific #26616) and run at 115-150 V for 90 305 

min. After electrophoresis, proteins were transferred on a PVDF membrane (Millipore). CAMK1D 306 

antibody (1:10000) was diluted in 5% BSA / 0.05% TBST and kept on the membrane overnight at 307 

4°C on a rotator. Membranes were then washed three times for 10 min with 1% BSA / 0.05% 308 

TBST. Afterwards, HRP-conjugated secondary antibodies (anti-rabbit 1:3000) was added to 1% 309 

BSA / TBST and kept on the membrane at room temperature for 1 h on a shaker. The membrane 310 

was washed. The blot was incubated with the ECL Detection Reagent (Reagent A and Reagent B, 311 

1:1, GE Healthcare) for 4 min and the chemiluminescence was detected with myECL Imager 312 

(Thermo Scientific). Images were analyzed using the ImageJ software (Wayane Rasband).  313 

 314 

Plasmid transfection 315 
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To generate KMM-1-luc cells, 3,5 x 105 KMM-1 WT cells were seeded in a 6 well plate and 316 

incubated at 37°C overnight. 15 μL Lipofectamine LTX reagent were diluted in 150 μL Opti-MEM 317 

medium (Gibco). Simultaneously, 3.5 μg of pEGFP-Luc plasmid was diluted in 175 μL Opti-MEM 318 

medium and 3.5 μL of Plus Reagent was added. 150 μL of diluted DNA was added to 150 μL 319 

diluted Lipofectamine LTX (Life Technologies) reagent and incubated for 5 min at RT. DNA-lipid 320 

complex was then added to the growth medium of the myeloma cells. Cells were incubated at 37°C 321 

for 48 h before investigation of transfection efficacy by flow cytometry. 322 

 323 

Luciferase-based cytotoxicity assay 324 

KMM-1-luc cells were reverse transfected with the desired siRNA sequences (supplementary 325 

Table 2) in white 96-well-plate (Perkin Elmer) and incubated for 48 h at 37°C, 5% CO2. On the 326 

same day of transfection, MILs were thawed and treated with benzonase (100 IU/mL) (Merck). 327 

Cell density was adjusted to 0.6 x 106 cells/mL in CLM supplemented with 3000 IU/mL rhuIL-2 328 

(Novartis) for 48 h. IL-2 was depleted 24 h before the co-culture. Briefly, cells were collected, 329 

centrifuged at 1400 rpm for 10min, and resuspended in CLM at a concentration of 0.6 x 106 330 

cells/mL. Flu TC were thawed 6 h before co-culture. For the cytotoxicity assays, MILs, flu TC, 331 

the supernatant of activated MILs, or rHuFasL were added to transfected tumor cells at desired 332 

E:T ratio/concentration, and incubated for 20 h at 37°C, 5% CO2. For the viability setting, only 333 

CLM was added to the tumor cells. After co-culture, supernatant was removed, remaining tumor 334 

cells were lysed using 40 μL/well of cell lysis buffer for 10 min. After tumor cell lysis, 60 μL/well 335 

of luciferase assay buffer was added and luciferase intensity was measured by using the Spark 336 

20M plate reader (Tecan) with a counting time of 100 msec. Luciferase activities (relative 337 
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luminescence units = RLUs) were either represented as raw luciferase values or as normalized data 338 

to scramble or unstimulated controls. 339 

 340 

Real-time live-cell imaging assay 341 

Target genes in KMM-1 or U266 tumor cells were knocked down with reverse siRNA transfection 342 

for 48 h. The reverse siRNA transfection was performed using transparent 96 well microplates 343 

(TPP). In parallel, MILs were thawed and prepared as previously described in section MILs 344 

expansion. After 48 h, MILs (E:T 10:1) or rHuFasL (100 ng/mL) were added to the target cells in 345 

CLM with YOYO-1 (final concentration 1:5000) and co-cultured at 37°C. For viability controls, 346 

the according amount of CLM with YOYO-1 (final concentration 1:5000) was added. MILs or 347 

rHuFasL-mediated tumor lysis was imaged on the green channel using an IncuCyte ZOOM live 348 

cell imager (ESSEN BioScience) for the indicated time points at a 10x magnification. Data were 349 

analyzed with the Incucyte ZOOM 2016A software by creating a top-hat filter-based mask for the 350 

calculation of the area of YOYO-1 incorporating cells (indicating dead cells). 351 

 352 

ELISA 353 

Tumor cells were transfected with the indicated siRNAs (supplementary Table 2) in a 96-well 354 

plate. Afterwards, T cells were added at the indicated E:T ratio for 20 h and 100 μL of supernatants 355 

were harvested for the detection of IFN-γ (Human IFN-γ ELISA Set; BD OptEIA #555142), IL-2 356 

(Human IL-2 ELISA Set; BD OptEIA #555190), Granzyme B (Human Granzyme B ELISA 357 

development kit; Mabtech #3485-1H-20) and TNF (Human TNF ELISA Set; BD OptEIA 358 

#555212). Experiments were performed according to the manufacturer ś instructions. Polyclonal 359 

stimulation (Dynabeads Human T-Activator CD3/CD28, Invitrogen #11131D) for 20 h was used 360 
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as positive control. Absorbance was measured at λ = 450 nm, taking λ = 570 nm as reference 361 

wavelength using the Spark microplate reader (TECAN).  362 

 363 

Flow cytometry (FACS) 364 

Flow cytometry was used for the detection of proteins expressed on the plasma membrane of tumor 365 

and T cells. Intracellular staining was performed for the detection of caspase-3 (FITC Active 366 

Caspase-3 Apoptosis Kit, BD Bioscience #550480) according to manufacturer’s instruction. 367 

Tumor cells were detached from plates using PBS-EDTA, centrifuged at 500 x g for 5 min and 368 

resuspended in FACS buffer (5 x 105 cells/tube). Live T cell and tumor cells were distinguished 369 

by using Live/Dead Fixable Yellow dead Cell Stain (Thermo Scientific #L34959) according to 370 

manufacturer’s instructions followed by blocking with kiovig (human plasma-derived 371 

immunoglobulin, Baxter, Deerfield, Illinois, USA) at a concentration of 100 µg/mL in FACS 372 

buffer (PBS, 2% FCS) for 15 min in the dark on ice. Samples were washed two times in FACS 373 

buffer and incubated with either fluorophore-conjugated primary antibodies or isotype control 374 

(APC anti-human CD274 (PD-L1) (Clone 29E.2A3), Biolegend #329707; Alexa Fluor 647 Mouse 375 

anti-human CCR9 (Clone 112509  (RUO), BD Biosciences #557975; Brilliant Violet 421 anti-376 

human CD95 (Fas) (Clone DX2), Biolegend #305623; PE anti-human CD95 (Fas) (Clone DX2), 377 

BD Biosciences #555674; APC anti-human CD261 (DR4, TRAIL-R1) (Clone DJR1), Biolegend 378 

# 307207; PE anti-human CD262 (DR5, TRAIL-R2) (Clone DJR2), Biolegend # 307405; Biotin 379 

anti-human CD120a (TNFR1) (Clone W15099A), Biolegend #369908; PE/Cy7 anti-human 380 

CD120b (TNFR2) (Clone 3G7A02), Biolegend #358411; PE/Cy7 anti-human CD279 (PD-1) 381 

Antibody, Biolegend # 329918; APC mouse anti-human CD178 (Clone NOK-1), BD Biosciences 382 

#564262; PE anti-human CD253 (TRAIL) (Clone RIK2), Biolegend #308206; APC anti-human 383 
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TNF-α (Clone Mab11), Biolegend #502912 for 20 min on ice in the dark. Afterwards, cells were 384 

washed twice, they were acquired with the FACS Canto II cell analyzer machine (BD Bioscience) 385 

or FACSLyrics Flow cytometer, and data were analyzed using FlowJo (Tree Star). 386 

 387 

Calcium Imaging 388 

KMM-1 cells grown on coverslips were washed with Ringer solution (118 mM NaCl, 5 mM KCl, 389 

1.2 mM MgCl2, 1.2 mM Na2HPO4, 2 mM NaH2PO4, 1.8 mM CaCl2, 5 mM glucose, 9.1 mM 390 

HEPES, pH 7.4, with NaOH) and loaded with Fura-2-AM ester (Thermo Fisher Scientific, 391 

Waltham, USA) for 45 min. After 15 min, MILs or rHuFasL (50 ng/ml) was added to scr siRNA 392 

transfected cells and recording of the intracellular free Ca2+ was continued for further 30 minutes. 393 

Experiments were performed using a ZEISS live cell imaging setup based on an inverse 394 

microscope (Axio Observer Z.1) equipped with Fluar 40x/1.3 objective lens (ZEISS, Germany). 395 

Fura 2-AM-loaded KMM-1 cells were illuminated with light of 340 nm or 380 nm (BP 340/30 396 

HE, BP 387/15 HE) using a fast wavelength switching and excitation device (Lambda DG-4, Sutter 397 

Instrument), and fluorescence was detected at 510 nm (BP 510/90 HE and FT 409) using an 398 

AxioCam MRm LCD camera (ZEISS). Data were recorded and analyzed with ZEN 2012 software 399 

(ZEISS, Jena, Germany). 400 

 401 

Generation of supernatants of activated MILs 402 

For the generation of the supernatant of polyclonally activated MILs, 1 x 106 MILs were suspended 403 

in 1 mL of CLM collected in a 15 mL tube and stimulated with 25 μL of Dynabeads Human T-404 

Activator CD3/CD28 (Thermo Scientific) for 20 h. Afterwards, only the supernatant (100 µL/well) 405 

of activated T cells was added to knocked down tumor cells and incubated overnight at 37°C, 5% 406 
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CO2. Luciferase-based cytotoxicity assay was performed as described above. Alternatively, MILs 407 

were stimulated with tumor cells at an E:T ratio of 10:1. After 20 h co-culture, plates were 408 

centrifuged at 450 g for 5 min and 100 μL/well of the supernatant was collected for cytokines 409 

detection (ELISA). 410 

 411 

Functional neutralization  412 

For the functional neutralization experiment, anti-FasL (clone NOK-1, Biolegend #306409) or 413 

isotype control (Clone MOPC-21, Biolegend #400153) were pre-incubated with MILs for 1 h at 414 

37°C, 5% CO2. As negative control, antibodies were cultivated in the absence of T cells. 415 

Afterwards, antibody-containing supernatants were used to stimulate KMM-1-luc cells, which 416 

were reverse transfected with the indicated siRNAs (supplementary Table 2). The final 417 

concentration of the neutralizing antibodies was 100 ng/mL for anti-FasL and isotype control. As 418 

positive control recombinant FasL protein (100 ng/ml, Biolegend #589404) was added to the tumor 419 

cells instead of T cells. 20 h after co-culture, luciferase intensity was measured as described above. 420 

 421 

Blocking assays 422 

For the experiments using the anti-Calmodulin (W-7 hydrochloride) (Tocris #0369) inhibitor, 1 x 423 

104 KMM-1-luc (scr or CAMK1D-transfected) cells/well were seeded in white 96 well plates 424 

(Perkin Elmer) in 100 μL of RPMI 10 % FCS. The small molecule inhibitor was added at the 425 

indicated concentrations for 1 h at 37°C, before 100 ng/mL rHuFasL or medium control was added. 426 

DMSO treatment served as negative control. After 20 h stimulation, luciferase-based cytotoxicity 427 

assay was performed. For CAMK1D inhibition, 1 x 104 KMM-1-luc or 1 x 104 Mel270 cells/well 428 

were incubated overnight in a 96 well plate. QPP-A inhibitor (Merck Millipore; CAS 404828-08-429 
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6) was added at the indicated concentrations 1h before rHuFasL stimulation (100 ng/ml) or 430 

medium control. DMSO treatment served as negative control. After 20h stimulation, luciferase-431 

based cytotoxicity assay was performed.  432 

 433 

Luminex assays 434 

Tumor cells were stimulated with rHuFasL (100 ng/mL) for 15 min, 30 min, 1 h, 2 h, 4 h and 8 h. 435 

Unstimulated cells served as controls. For the detection of intracellular phosphorylated analytes, a 436 

general pathway (MILLIPLEX MAP Multi-Pathway Magnetic Bead 9-Plex kit, Merck Millipore 437 

#48-680MAG) was used following manufacturer’s instructions. For the detection of proteins 438 

involved in the activation of apoptosis the MILLIPLEX MAP Early Phase Apoptosis 7-plex-kit 439 

(Merck Millipore #48-669MAG) together with active caspase-3 Magnetic Bead MAPmate (Merck 440 

Millipore #46-604MAG) were used following manufacturer’s instructions. Beads specific for 441 

GAPDH (MILLIPLEX MAP GAPDH Total Magnetic Bead MAPmate) (Merck Millipore #46-442 

667MAG) served as normalization control. 20 μg of protein lysates were used for the detection of 443 

ERK/MAP kinase 1/2 (Thr185/Tyr187), Akt (Ser473), STAT3 (Ser727), JNK (Thr183/Tyr185), 444 

p70 S6 kinase (Thr412), NF-kB (Ser536), STAT5A/B (Tyr694/699), CREB (Ser133), and p38 445 

(Thr180/Tyr182) phosphorylated Akt (Ser473), JNK (Thr183/Tyr185), Bad (Ser112), Bcl-2 446 

(Ser70), p53 (Ser46), cleaved caspase-8 (Asp384), cleaved caspase-9 (Asp315) and active caspase-447 

3 (Asp175). The assay was performed according to the manufacturer ś instructions and samples 448 

were measured using the MAGPIX Luminex instrument (Merck Millipore). 449 

 450 

High-throughput RNAi screening 451 

Primary RNAi screening 452 
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The primary RNAi screening was conducted using a sub-library of the genome-wide siRNA library 453 

siGENOME (Dhamacon, GE healthcare), which comprised 2887 genes (1288 genes for 454 

GPCR/kinase and 1599 genes for custom library). The library was prepared in Prof. Boutros ́s 455 

group (DKFZ, Heidelberg) as described in (48). Each well contained a pool of four non-456 

overlapping siRNAs (SMARTpool) targeting the same gene. This arrayed screening approach was 457 

performed in duplicates and was adopted from Khandelwal et al (49). The siRNA sequences of the 458 

genome-wide library were distributed in the 384-well plates and positive and negative siRNA 459 

controls were added in empty wells. The final concentration of all siRNA sequences was 25 nM. 460 

Reverse transfection was performed as described in section reverse siRNA transfection. The read-461 

out was performed using Mithras LB 940 microplate Reader with a counting time of 100 msec. 40 462 

x 384-well plates were subjected to the luciferase-based screening assay performed on KMM-1-463 

luc cells. 20 x 384-well plates were subjected to the luciferase-independent CellTiter-Glo (CTG) 464 

screening performed on luciferase-negative KMM-1 cells without the addition of MILs in order to 465 

exclude genes affecting cell viability. Briefly, for the read-out, supernatant was removed in each 466 

well containing siRNA-transfected tumor cells and 20 μL of the CTG reagent (pre-diluted 1:4 in 467 

RPMI) were added. After 15 min incubation in the dark, plates were measured using the Mithras 468 

reader as described above.  469 

For the screening analysis, the raw RLUs from the primary screening were processed using the 470 

cellHTS2 package in R/Bioconductor (50). Values from both conditions were quantile normalized 471 

against each other using the aroma.light package in R. Pearson correlation (r2) between the two 472 

replicate values was calculated for each setting. Differential scores (cytotoxicity vs. viability) were 473 

calculated using the LOESS local regression method. To identify candidate hits, the following 474 

thresholds were applied on the z-scores of the samples: for the viability setting, genes showing a z 475 
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> + 2,0 or z < - 2,0 were excluded. For the cytotoxicity setting, CCR9 was used as threshold score. 476 

Additionally, genes having a z-score > + 0,5 or < - 0,5 in the CTG-based viability screening were 477 

filtered out from the candidate list.  478 

 479 

Secondary screening 480 

For the secondary screening, a customized library (G-CUSTOM-223794) containing 128 genes 481 

from the primary screening was distributed in several 96-well plates along with positive and 482 

negative siRNA controls. Reverse transfection was performed. For the cytotoxicity setting MILs 483 

(10:1 ratio) or supernatant of anti-CD3/anti-CD28 magnetic beads activated MILs were added to 484 

knockdown tumor cells (1 x 104 cells/well). Instead, CLM medium was added to the viability 485 

plates. After 20 h, luciferase-based read-out was performed. RLUs were normalized to Mock 486 

control. Cytotoxicity/viability ratios were calculated according to the formula: 487 

Cytotoxicity/viability ratio = (Norm. RLU cytotoxicity setting / Norm. RLU viability setting). The 488 

hit-list was generated by including only hits with improved T cell-mediated cytotoxicity over mock 489 

transfection, (Cytotoxicity/viability ratio < 1). Pearson ́s correlation was calculated with Microsoft 490 

Excel. 491 

 492 

In vivo experiments 493 

Camk1d knockout MC38 murine colorectal cells were generated using the CRISPR/Cas9 494 

technique. In vivo experiments were performed in two cohorts of mice: C57BL6 (n=12) and 495 

NOD/SCID gamma chain (NSG) mice (n=12) were subcutaneously injected with 1 x 105 MC38 496 

Camk1d KO (g3 clone 11) or 1 x 105 MC38 NTS (clone 12) cells each into the right and left flank 497 

of one mouse, respectively. Tumor growth was measured twice a week with a caliper and the 498 
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volume was determined using the following formula: Tumor volume (mm3) = (Width2 x Length) 499 

x (π / 6). Mice were sacrificed when tumors exceeded 1.5cm in diameter.  500 

 501 

Statistics 502 

For statistical analysis, GraphPad Prism software v6.0 (GraphPad Software, La Jolla, CA, USA 503 

was used. If not stated, statistical differences between the control and the test groups were 504 

determined by using two-tailed unpaired Student's t-test. In all statistical tests, a p-value ≤ 0.05 505 

was considered significant with * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001 and **** = p ≤ 0.0001. 506 

 507 

Results  508 

MM cells expressed multiple genes that confer intrinsic resistance towards T cell attack  509 

In order to identify novel genes involved in immune escape mechanisms of PD-L1 unresponsive 510 

cancer cells, a high-throughput (HTP) screening approach (49) was adapted. The HLA-A2 positive 511 

human multiple myeloma (MM) cell line KMM-1, expressing high levels of PD-L1 and lower 512 

levels of CCR9 (49), was used as a tumor model in this study. As a reporter system for tumor cell 513 

survival, we stably transfected KMM-1 cells with e-GFP-firefly luciferase, allowing for 514 

luminescence imaging to detect immune-mediated tumor cell destruction in a HTP format (Figure 515 

1A).  516 

As a source of tumor-reactive T cells we used marrow-infiltrating, PD-1 positive T cells (MILs) 517 

from an HLA-A2-matched patient (Figure 1A and Supplementary Figure S1A). These MILs were 518 

not terminally exhausted as they displayed strong IFN-gamma secretion after polyclonal 519 

stimulation (Figure 1B), which exceeded that of tumor antigen specific CD8+ cytotoxic Survivin 520 

T cells (49). MILs recognized KMM-1 tumor cells, despite high PD-L1 expression (Figure 1B). 521 
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However, their limited killing capacity (Supplementary Figure S1B) suggested the presence of 522 

resistance mechanisms against T cell induced death.  523 

Silencing of firefly-luciferase (siFLuc), ubiquitin C (UBC), a gene essential for cell survival, or 524 

transfection with a mixture of siRNAs inducing cell death (siCD) resulted in strong reduction of 525 

luciferase expression, indicating appropriate gene silencing and sensitivity of the luciferase-based 526 

readout. This was also maintained upon co-culture of siRNA treated KMM-1 cells with MILs 527 

(Figure 1C). 528 

We next studied the effect of PD-L1 and CCR9 on KMM-1 cells (Figure 1D). The knockdown of 529 

PD-L1 did not result in increased KMM-1 killing by MILs, despite high expression of PD-L1 on 530 

the tumors and of PD-1 on the MILs (Figure 1E). In contrast, CCR9 silencing significantly 531 

improved tumor cell rejection (Figure 1E), suggesting that PD-L1 did not play a decisive role in 532 

immune resistance of KMM-1 cells. We therefore used CCR9 as positive control within the screen.  533 

To this end, KMM-1 cells were transfected in a multi-well format with a siRNA library consisting 534 

of a pool of four non-overlapping siRNAs per target per well, targeting a total of 2887 genes 535 

(supplementary Table 1) covering a broad spectrum of all gene families. The screening approach 536 

comprised a viability setup, in which we assessed the intrinsic viability effect of each gene 537 

knockdown, and a cytotoxicity setup, where siRNA transfected tumor cells were co-cultured with 538 

MILs (Supplementary Figure S2). 539 

Negative (scramble siRNA sequences, scr1 and scr2) and positive controls (siRNAs-targeting 540 

luciferase and essential viability genes) were included as a reference to calculate the effect of gene 541 

knockdown on cell viability. Overall, the distribution of values across test replicates and setups 542 

was highly concordant showing no viability or cytotoxicity effect of scr siRNAs but robust signal 543 

reduction after FLuc and UBC knockdown (Figure 2A). Calculated z-scores for the impact on cell 544 
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viability and T cell cytotoxicity (Figure 2B) and for the relative impact on T cell-mediated tumor 545 

cell lysis (Loess score) of each gene, revealed 128 genes whose silencing improved tumor cell 546 

lysis by T cells to a higher degree than CCR9 (Figure 2C). Among them we found several genes 547 

with described immune regulatory function in MM such as CD5 (51), FES (52) and PAK3 (53). 548 

PD-L1 did not have any effect on T cell-mediated killing of MM cells (Figure 2B, C). The 549 

identification of these validated immune-checkpoints in combination with good immune-550 

checkpoint control performance supported the robustness and sensitivity of the screen.  551 

For further validation, we subjected the 128 candidate hits to a secondary screening procedure 552 

using the same setup as for the HTP screen. Silencing of 90 candidates again increased T cell-553 

mediated killing of tumor cells, and only had little effect on intrinsic tumor cell viability, thus 554 

confirming their immune regulatory role in KMM-1 cells (Figure 2D). The highest immune 555 

modulatory effect was elicited by the serine/threonine calcium/calmodulin-dependent protein 556 

kinase 1D (CAMK1D) (Figure 2B-D).  557 

To determine whether the observed tumor cell killing was mediated by cytokines or other soluble 558 

proteins released by activated MILs, an additional setting was included. MILs were polyclonally 559 

stimulated with anti-CD3/anti-CD28 magnetic beads and only their cell culture supernatant was 560 

added to the tumor cells. In this setup, silencing of few genes had an impact on tumor cell lysis 561 

indicating a role in resistance towards T-cell secreted cytotoxic cytokines (Figure 2E). Most of the 562 

identified candidate genes, including CAMK1D, regulated tumor cell killing only upon direct 563 

interaction with T cells. Taken together, these results provided an indication that MM cells express 564 

multiple immune regulatory genes, among them CAMK1D, that confer immune resistance after T 565 

cell engagement.  566 

 567 
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CAMK1D protected PD-L1+ tumor cells against death receptor signaling by cytotoxic T cells 568 

Based on the immune resistance phenotype associated with CAMK1D expression in our screens, 569 

we validated and characterized the immune regulatory role of CAMK1D. We first de-convoluted 570 

the pool of siCAMK1D to exclude potential dominant off-target effects of single siRNAs within 571 

the pool. Three out of four siRNAs (s1, s2 and s3) and the pool of all siRNAs increased T cell-572 

mediated cytotoxicity, whereas no viability impact was detected (Figure 3A). All siRNAs 573 

significantly reduced CAMK1D mRNA and protein expression (Figure 3B, C). In a luciferase-574 

independent assay, employing live cell-imaging, we confirmed an increase MIL-induced apoptosis 575 

of CAMK1D-deficient KMM-1 cells (Figure 3D). This could be inhibited with MHC-I blocking 576 

antibodies, indicating that tumor cell apoptosis was induced by MHC-I-restricted CD8+ MILs in a 577 

T cell receptor-dependent manner (Figure 3E). To corroborate this finding, we pulsed KMM-1 578 

cells with an HLA-A2-restricted influenza (flu) peptide and co-cultured them with PD-1 positive, 579 

flu-peptide-specific CD8+ cytotoxic T cells (flu TC) (Supplementary Figure S3A). Again, 580 

siCAMK1D, but not PD-L1 silencing, resulted in a significant increase of T cell-mediated tumor 581 

cell lysis (Figure 3F and Supplementary Figure S3B). These data demonstrated that CAMK1D 582 

mediated resistance of KMM-1 cells towards antigen-specific T cells, independent of the T cell 583 

source. CAMK1D-mediated immune protection also occurred in the PD-L1+, HLA-A2+ MM cell 584 

line, U266 (Figure 3G-I and Supplementary Figure S3C). We therefore studied CAMK1D 585 

expression in a large cohort of CD138-purfied malignant plasma cells from MM patients with 586 

monoclonal gammopathy of unknown significance (MGUS), human myeloma cell lines (HMCL), 587 

memory B cells (MBC), plasmablasts (PPC) and normal bone marrow plasma cells (BMPC). 588 

CAMK1D expression was highest in MBC, but was also expressed in all MM, MGUS, PPC, and 589 

in 30/32 HMCL samples, with higher expression than normal bone marrow plasma cells (BMPCs) 590 
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(Figure 3J). Thus, these data indicated that CAMK1D was consistently expressed in human 591 

multiple myelomas and conferred resistance against cytotoxic T cell attack. 592 

As classical immune-checkpoint molecules expressed by tumor cells regulate T cell activity mostly 593 

through engagement of inhibitory receptors (54), we wondered whether CAMK1D, being an  594 

intracellular kinase, might indirectly regulate T cell activity. We therefore studied parameters of T 595 

cell effector function upon contact with CAMK1D-proficient or -deficient KMM-1 cells, including 596 

the secretion of INF-γ, Granzyme B, IL-2, or TNF-α. 597 

Although we consistently detected increased T cell-mediated tumor cell killing after CAMK1D 598 

knockdown in KMM-1 cells, functional analysis of T cells did not reveal any increased T cell 599 

function after interaction with CAMK1D-deficient compared to wt tumor cells (Supplementary 600 

Figure S3D). Therefore, we concluded that CAMK1D did not affect type 1 effector T cell function 601 

and hypothesized that it may instead have regulated the sensitivity of tumor cells towards cytotoxic 602 

T cell attack. Thus, we exposed KMM-1 cells to the cytotoxic agents FasL (rHuFasL), TRAIL 603 

(rHuTRAIL) or TNF (rHuTNF) commonly used by T cells to kill their target cells. The respective 604 

cell death-mediating receptors for FasL and TRAIL, Fas, DR4 and DR5 were highly expressed on 605 

KMM-1 cells while the TNF receptors TNFR1 and TNFR2 were not (Figure 4A). Whereas 606 

CAMK1D-proficient KMM-1 cells were resistant against all tested cytotoxic agents, CAMK1D-607 

deficient tumor cells were dramatically reduced after exposure to FasL and TRAIL (Figure 4B). 608 

We also detected FasL on 28.2% and 16.1% of CD4+ and CD8+ MILs, respectively (Figure 4C) 609 

and on 12.7% of flu TC (Supplementary Figure S3E). TRAIL expression was detected only on 610 

12.5% and 5.3% of CD4+ and CD8+ MILs, while membrane bound TNF was hardly detectable 611 

(Figure 4C). Neutralization of FasL by monoclonal antibodies completely abrogated CAMK1D-612 

induced protection against the cytotoxic activity of MILs (Figure 4D). Thus, CAMK1D mediated 613 
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intrinsic tumor resistance against activated T cells by interfering with Fas-mediated death 614 

signaling. In line with this, U266 cells highly expressed Fas (Figure 4E) and were protected by 615 

CAMK1D expression against Fas-mediated cell death similar to KMM-1 cells (Figure 4F).  616 

Since Fas-FasL interactions represent a major cytotoxic mechanism, we tested if CAMK1D 617 

protected also solid tumors against immune rejection. In the human cancer cell lines PANC-1 and 618 

MCF7, Fas expression was low. However, we found high Fas and CAMK1D expression in 619 

Mel270, a PD-L1+ human uveal melanoma (UVM) cell line (Figure 4G, H and Supplementary 620 

Figure S4A). UVM is a highly treatment-refractory and anti-PD-1-resistant subtype of melanoma 621 

(55). Silencing of CAMK1D significantly increased the cytolytic response of Mel270 towards 622 

FasL exposure (Figure 4I), indicating that uveal melanomas exploited CAMK1D for resistance 623 

against T cell-attack. In contrast, CAMK1D silencing in the Fas negative tumor cell lines PANC-624 

1 and MCF-7 did not sensitize these cells towards T cell-killing (Supplementary Figure S4B and 625 

4C). These data provided rationale for CAMK1D inhibition only in the context of Fas-positive 626 

tumors to achieve significant antitumor immune response. We hypothesized that CAMK1D 627 

expression in UVM might protect those tumors with strong Fas expression against immune 628 

rejection. We therefore stratified patients in the TCGA database cohort according to CAMK1D 629 

and Fas. Kaplan-Meier analyses showed that overexpression of CAMK1D in Fas receptorhigh but 630 

not in Fas receptorlow tumors correlated with poor patient prognosis (Figure 4J). This suggested 631 

that CAMK1D exerted a tumor protective effect only in the context of Fas activation during an 632 

immune response. Overexpression of CAMK1D and PD-L1 were tightly co-regulated in uveal 633 

melanomas (Figure 4K). Consequently, our study with PD-L1 expressing yet refractory tumor 634 

models shows that CAMK1D represented another level of immune resistance superseding the PD-635 

L1 axis in mediating immune-suppression.  636 
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Using the TCGA database we studied CAMK1D and PD-L1 co-regulation in other tumor entities 637 

that are largely unresponsive to anti-PD-1 treatment, specifically ovarian, stomach and esophageal 638 

carcinomas (56, 57). As observed in UVM, CAMK1D and PD-L1 were co-expressed and we 639 

detected significant correlations of CAMK1D and Fas receptor expression with poor outcomes 640 

(Supplementary Figure S5A-F). Hence, CAMK1D is co-regulated with PD-L1 and controls tumor 641 

rejection after Fas receptor activation in several anti-PD-1 treatment refractory tumors.  642 

 643 

CAMK1D regulated the activity of effector caspases -3, -6 and -7 after Fas activation 644 

FasL binding to Fas receptor results in complex signaling events leading to a caspase cascade that 645 

initiates apoptosis (58); this binding also stimulates Ca2+ influx into the cytoplasm, which 646 

ultimately triggers CAMK1D activation (59). We speculated that CAMK1D might interfere with 647 

the apoptotic cascade to mediate its tumor protective effect. Thus, we assessed the impact of 648 

CAMK1D expression on tumor cell killing in the absence of effector caspases. Silencing of each 649 

downstream effector caspase -3, -6 and -7 completely abrogated the increased lysis of CAMK1D-650 

deficient tumor cells after FasL exposure (Figure 5A, B). Thus, CAMK1D selectively regulated 651 

cellular sensitivity towards apoptotic cell death. These results demonstrated the necessity of 652 

simultaneous activity of all three effector caspases for efficient induction of apoptotic cell death 653 

after Fas activation.  654 

CAMK1D activation depends on Ca2+/calmodulin (CaM) binding, allowing the CAMK-kinase 655 

(CAMKK) to phosphorylate and fully activate CAMK1D (59, 60). We speculated that FasL-656 

expressing MILs might trigger Ca2+ release and therefore compared intracellular Ca2+ in KMM-1 657 

cells on single cell level after exposure to MILs or rHuFasL. Shortly after treatment both conditions 658 

induced an increase of intracellular Ca2+ (Figure 5C, D). 659 
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W-7 hydrochloride inhibits Ca2+/calmodulin complexes (61) consequently impacting CAMK1D 660 

activation. Treatment with 5µM W-7 hydrochloride was not toxic to KMM-1 cells (Figure 5E) and 661 

sharply recapitulated the effect of CAMK1D silencing on FasL induced tumor cell apoptosis, 662 

suggesting that CAMK1D was the decisive target of calmodulin for mediating FasL resistance 663 

(Figure 5F). Since both CAMK1D silencing and W-7 hydrochloride treatment only incompletely 664 

blocked CAMK1D, we explored whether their combination reduced cell viability after FasL 665 

exposure. This combinatorial treatment resulted in a 3-fold further increase of tumor cell killing 666 

(Figure 5F). To corroborate these findings, we applied CAMK1D-inhibitor (QPP-A) to MM and 667 

UVM cell lines. The additional treatment with rHuFasL induced a significant loss of tumor cell 668 

viability, confirming that CAMK1D played a substantial role in conferring resistance towards 669 

apoptosis (Figure 5G).   670 

These results demonstrated that CAMK1D activation in cancer cells was (i) triggered by CTL via 671 

FasL-induced Ca2+ release and (ii) was required to control Fas-induced tumor cell apoptosis. To 672 

confirm the immune-resistant role of CAMK1D in vivo, we knocked out Camk1d in the murine 673 

colorectal cell line MC38 (Supplementary Figure S6A). In vitro analysis of Camk1d-deficient 674 

tumor cells revealed their increased sensitivity towards FasL as well as TRAIL-mediated apoptosis 675 

(Supplementary Figure S6B). Thus, we injected MC38 -Camk1d KO and -NTS (non-targeting 676 

sequence) cells into the left and right flank of the same mouse of both immunodeficient NSG and 677 

immunocompetent C57BL6 mice. Camk1d KO and NTS tumors developed rapidly in a similar 678 

manner in NSG mice, whereas a significant difference was observed in C57BL6 mice where 679 

Camk1d-deficient tumors were significantly reduced (Figure 5H). These data demonstrated that 680 

the immune system in immunocompetent mice was not able to reduce tumor outgrowth due to 681 

Camk1d expression.  682 
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To elucidate CAMK1D involvement in the Fas-signaling cascade, we studied activation of 683 

caspase-8 and -9, the prototypic initiator caspases of the extrinsic and intrinsic apoptotic pathway, 684 

respectively (62). FasL-induced activation of both caspases was comparably effective in 685 

CAMK1D-proficient and -deficient KMM-1 cells (Figure 6A, B). Consequently, we hypothesized 686 

that CAMK1D regulated the activity of downstream effector caspases. To this end, we first studied 687 

the activation of the central executioner caspase-3. We observed an increase in caspase-3 688 

activation in CAMK1D-deficient KMM-1 cells after FasL treatment (Figure 6C-E). In addition, 689 

we also detected increased cleavage of the effector caspases -6 and -7 in CAMK1D-deficient tumor 690 

cells (Figure 6F and Supplementary Figure S7A). The phosphorylation and activation of the 691 

transcription factor cAMP response element-binding protein (CREB) was increased in CAMK1D-692 

proficient cells, which was responsible for the transcription of the anti-apoptotic molecule Bcl-2 693 

(Supplementary Figure S7B). We also observed that at early time-points (15min, 30min and 1h) 694 

after rHuFasL stimulation, the phosphorylation of Extracellular Signal-regulated Kinases 695 

(ERK1/2) was enhanced in wild-type cells, but not in CAMK1D knockdown cells (Supplementary 696 

Figure S7B). The altered activation of the presented proteins implied that CAMK1D not only 697 

controlled activation and activity of effector caspases but also induced the expression of anti-698 

apoptotic and mitogenic proteins leading to tumor cell resistance towards FasL-positive T cells. 699 

CAMK1D has thus far not been established as a regulator of effector caspase activity. In silico 700 

analysis predicted a binding motif for CAMK1D on caspase-3 and caspase-6 (Supplementary 701 

Figure S7D). Notably, CAMK1D co-immunoprecipitated with caspase-3, caspase-6 and caspase-702 

7 and the interaction increased upon rHuFasL treatment (Figure 6G, H and Supplementary Figure 703 

S7C). A direct CAMK1D/effector caspase interaction could result in stoichiometric inhibition of 704 

caspase cleavage by initiator caspases. Alternatively, the effector caspases may also serve as 705 
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targets of CAMK1D kinase activity. Phosphorylation of inhibitory serine residues impedes 706 

caspases activation, proteolytic activity and ultimately hampers apoptosis induction (63). 707 

The inhibitory phosphorylation sites of caspase-3 (Ser150) and caspase-6 (Ser257) (64, 65) were 708 

located in the kinase-function critical distance of up to 4 amino acids apart from the predicted 709 

binding site for CAMK1D (Supplementary Figure S7D). We therefore wondered whether 710 

CAMK1D was able to phosphorylate Ser150 and Ser257 of caspase-3 and -6, respectively. 711 

CAMK1D deficient KMM-1 cells had reduced phosphorylation of inhibitory serine residues on 712 

both caspase-3 and -6 already at steady–state conditions (Figure 6I-L). In KMM-1 wt cells, 713 

phosphorylation transiently decreased 15min - 30min after FasL treatment (which is attributed to 714 

transient stimulation of phosphatases (66)), but recovered to pre-stimulation expression within 1h 715 

(caspase-3) to 4h (caspase-6). In contrast, caspase-3 and -6 phosphorylation was persistently low 716 

in CAMK1D-deficient KMM-1 cells, resulting in overall much lower caspase inactivation 717 

compared to CAMK1D wt cells. This demonstrated that CAMK1D was required for steady-state 718 

inactivation of effector caspases through phosphorylation and for the rapid restoration of caspase-719 

3 and -6 phosphorylation after FasL stimulation.  720 

CAMK1D, upon its activation through FasL, regulated activation and activity of all effector 721 

caspases after cytotoxic T cell encounter. These results suggested that this effect was at least 722 

partially achieved by the inhibitory phosphorylation of the effector caspases. 723 

 724 

Discussion  725 

Despite noteworthy improvements in the field of immunotherapy, where immune-checkpoint 726 

blockade (ICB) has broad clinical success (11, 13, 14, 67) a significant proportion of cancer 727 

patients do not respond to ICB (15, 16, 68). Unknown immune-checkpoint molecules might be 728 
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employed by tumor cells to escape the antitumor immune response. Here, we used a multiple 729 

myeloma cell line to conduct a systematic search for genes controlling immune rejection in PD-730 

L1 refractory human tumors. Among the identified genes, CAMK1D was chosen for further 731 

validation and mode of action analysis. CAMK1D expression is elevated in invasive carcinomas 732 

compared to carcinoma in situ and overexpression of CAMK1D in non-tumorigenic breast 733 

epithelial cells increased proliferation and epithelial-mesenchymal transition (69). We reported a 734 

different role of CAMK1D in controlling the resistance of PD-L1+ tumor cells against apoptosis 735 

triggered by cytotoxic T cells. Tumor cell killing in CAMK1D-deficient cells was independent of 736 

the T cell source, as both MILs and flu-specific CD8+ 
T cells were able to reproduce the same 737 

effect. Tumor cells can evade the immune system either by intrinsically increasing tumor cell 738 

resistance (70) or by hampering immune cell activation (54). Our data demonstrated that 739 

CAMK1D-deficient tumor cells did not enhance T cell function. On the other hand, CAMK1D 740 

acted as central mediator of intrinsic tumor resistance towards CTL. Cytotoxic T cells eliminate 741 

tumor cells through the extrinsic apoptosis pathway, initiated by death receptors signaling, 742 

activating pro-caspase-8 (58, 71, 72), or by triggering the intrinsic pathway through the release of 743 

cytotoxic granules. This induces mitochondrial damage, apoptosome formation and subsequent 744 

activation of pro-caspase-9 (73). Both initiator caspases activate the common executioner caspases 745 

-3, -6 and -7, which in turn cleave key intracellular substrates including endonucleases, thus 746 

irreversibly triggering the apoptotic cell death (74, 75). We observed that the initiator caspases -8 747 

and -9 were not differentially affected in CAMK1D-proficient and -deficient tumor cells. Caspase-748 

8 is inactivated upon phosphorylation of tyrosine-380, which leads to increased resistance to 749 

CD95-induced apoptosis (76). However, CAMK1D is a serine/threonine protein kinase and in 750 

silico analysis revealed no binding site between CAMK1D and Caspase-8. Co-expression of death 751 
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receptor ligands and cytotoxic granules enabled CTL to simultaneously trigger both apoptosis 752 

pathways, which differed from other common mechanisms of cell apoptosis which generally 753 

trigger either one or the other pathway (77). Therefore, efficient resistance mechanisms against T 754 

cell-induced apoptosis may target the common end route of both pathways. Consequently, 755 

inhibition of effector caspase activity may represent a hallmark of tumor immune resistance.  756 

Caspases can be regulated by post-translational modifications such as phosphorylation and 757 

ubiquitylation that can block caspases activation and activity (63). Indeed, phosphorylation of 758 

caspase-3 by p38 at Ser150, directly inhibits caspase-3, hindering Fas-induced apoptosis in 759 

neutrophils (64). Likewise, in the colon cancer cell line SW480, caspase-6 is inhibited by ARK5-760 

phosphorylation, leading to the evasion of Fas-induced apoptosis (65). Caspase-7 can be inhibited 761 

post-translationally by PAK2-medited phosphorylation at Ser30, Thr173 and Ser239, which 762 

negatively regulates caspase-7 activity (78). We proposed a model where FasL stimulation 763 

increases calcium release from the ER, thereby binding and activating calmodulin, the upstream 764 

activator of CAMK1D. The binding of calmodulin to CAMK1D allows CAMKK to phosphorylate 765 

and fully activate CAMK1D. As a consequence, CAMK1D bound to the effector caspases 766 

inhibiting their activation acting as a direct stoichiometric inhibitor and by phosphorylation 767 

CAMK1D subsequently reduced the activity of the effector caspases. Moreover, activated 768 

CAMK1D translocated into the nucleus where it phosphorylated and activated CREB, leading to 769 

the transcription of Bcl-2. Thus, CAMK1D is an immune-checkpoint molecule that interferes with 770 

tumor cell death, sustaining anti-apoptotic pathways. 771 

As CAMK1D is ubiquitously expressed, the pharmacological inhibition may increase tumor 772 

susceptibility towards T cell attack, but also impair T cell activity. In line with this concern, 773 

blockade of the tyrosine kinase JAK2 sensitized MM tumor cells to NK cell attack (79); however, 774 
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the function of NK and T cells was impaired in human myeloproliferative neoplasms (80-82). 775 

More studies must be conducted to clarify the impact of CAMK1D targeted therapy on T cells. 776 

Nonetheless, CAMK1D remains a potential target for cancer immunotherapy, in particular for 777 

those patients who experience relapse or demonstrate unresponsiveness to conventional therapies.  778 

Our studies confirm the role of CAMK1D in vivo as a novel immune-checkpoint molecule 779 

conferring resistance towards immune attack. It is conceivable that tumor cells exploit Fas 780 

signaling imposed by cytotoxic T cells to activate an apoptosis resistance mechanism targeting the 781 

final effector expression of both intrinsic and extrinsic apoptotic pathways resulting in an increased 782 

resistance to immune cell attack. In T cell-infiltrated tumors, this mechanism may impact the 783 

treatment resistance of tumor cells, as CAMK1D may reduce the efficacy of antitumor treatments 784 

that directly or indirectly exploit the intrinsic apoptotic signaling pathways to trigger cancer cell 785 

death. 786 

787 
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 1023 

 1024 

Figure Legends 1025 

Figure 1. Assessment of immune-checkpoint controls for the HTP-screen. (A) Representative 1026 
FACS data of at least three independent experiments.  Left: Expression of HLA-A2, PD-L1, CCR9 and 1027 
GFP on KMM-1 cells. Right: PD-1 expression on CD4+ and CD8+ MILs. Isotypes are shown in dark 1028 
grey. (B) IFN-γ-ELISA. MILs and Survivin TC clones were used as negative controls. Anti-CD3/anti-1029 
CD28-stimulated T cells were used as positive controls. (C and E) Luciferase-based killing assay of 1030 
siRNA-transfected KMM-1 cells upon MILs co-culture. Statistical significance was calculated 1031 
compared to scr1. (D) qPCR analysis: Knockdown efficiency of CCR9 and PD-L1 in KMM-1 cells. (B, 1032 
C, D, E) Graphs show mean +/- SEM of at least two independent experiments. P-values were calculated 1033 
using unpaired two-tailed student´s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p< 0.0001  1034 

 1035 

Figure 2. Performance of the HTP screen. (A) Dot plots showing technical replicates plotted against each 1036 
other of normalized and scored RLUs of KMM-1 cells transfected with control siRNAs. Luciferase-independent 1037 
(left) and luciferase-based (right) screening assay performed on KMM-1 -wt and -luc cells respectively. Blue 1038 
dots: cytotoxicity setting. Red dots: viability setting. Pearson correlation (r2) between the two replicate values 1039 
was calculated for each setting. (B) Quadrant plot showing z-scores of gene knockdown KMM-1-luc cells after 1040 
co-culture with MILs (cytotoxicity z-score) or culture medium (viability z-score). (C) Gene ranking diagram 1041 
showing differential score between cytotoxicity and viability z-scores using local regression (LOESS) rank. The 1042 
upper panel classifies the potential negative immune modulators with a high loess score. (D, E) Luciferase-based 1043 
secondary screening. Knockdown tumor cells were co-cultured with (D) MILs or (E) supernatant of anti-1044 
CD3/anti-CD28 activated MILs. RLUs were normalized to Mock control. Log2 scale of cytotoxicity/viability 1045 
ratio is depicted. Experiments were performed in duplicates. Mean is shown. 1046 
 1047 

Figure 3. Validation of siCAMK1D effect. (A)  KMM-1-luc cells were transfected using single (s1, 1048 
s2, s3) or pooled siRNAs targeting CAMK1D. Scr and siCCR9 siRNAs were used as negative and 1049 
positive controls respectively. Tumor cell lysis was measured using the luciferase-based cytotoxicity 1050 
assay. Values were normalized to scr in each setting. (B, C) KMM-1 cells were transfected with the 1051 
specified siRNAs sequences and 48h later (B) mRNA expression was determined by qPCR and (C) 1052 
protein expression was measured via western blot. The Sodium-Potassium ATPase was used as 1053 
housekeeping gene. (D) Live cell-imaging analysis. siRNA transfected tumor cells were co-cultured 1054 
with MILs. YOYO-1 dye was added as an indicator of apoptosis (green color). The graph shows the 1055 
green object counted (GCO). The experiment is representative of three independent experiments. Right: 1056 
Representative pictures of scr and siCAMK1D transfected KMM-1 cells stained with YOYO-1 and co-1057 
cultured with MILs. (E) Luciferase-based killing assay for detection of T cell-mediated cytotoxicity in 1058 
the presence of the indicated concentrations of anti-MHC-I antibody (red line) and IgG2a isotype as 1059 
positive control (black line). Anti-MHC-I antibody was added to KMM-1 cells in the absence of T cells 1060 
as negative control (grey line). (F) KMM-1-luc were pulsed with 0,005μg/ml of flu peptide 1h before 1061 
flu TC co-culture or medium control. Tumor lysis was measured by luciferase assay. (G) End-point 1062 
PCR analysis of CAMK1D expression in U266 cells. KMM-1 cells were used as positive control. (H) 1063 
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qPCR analysis of CAMK1D knockdown efficiency in KMM-1 and U266 cells. (I) Live cell-imaging 1064 
analysis. Scr and siCAMK1D transfected U266 tumor cells were co-cultured with MILs. No MILs-1065 
condition served as viability control. Tumor cell death was measured by the addition of YOYO -1. 1066 
Columns show the green object counted (GCO). (J) CAMK1D expression by gene expression profiling 1067 
in human MBC, PPC, BMPC, MGUS, MM and HMCL.*; (p < 0.05). **; (p < 0.01). ***; (p < 0.001). 1068 
(A, B) Graphs show mean +/- SEM. Cumulative data of at least two independent experiments. (D) 1069 
Graph shows mean +/- SEM. P-value was calculated using paired two-tailed student´s t-test. (E) 1070 
Representative data of at least three independent experiments. Graph shows mean +/ - SD. (F, H, I) 1071 
Representative data of at least two independent experiments. Graphs show mean +/- SEM.  P-values 1072 
were calculated using unpaired two-tailed student´s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** 1073 
p< 0.0001 1074 
 1075 

Figure 4. Effect of CAMK1D knockdown in different tumor entities. (A) Representative FACS analysis of 1076 
Fas, DR4, DR5, TNFR1 and TNFR2 expression in KMM-1 cells. Positive tumor cells are marked in orange. 1077 
Isotype is shown in grey. (B) Representative results of siRNA transfected KMM-1-luc cells treated with 1078 
recombinant FasL, TRAIL or TNF. Luciferase activity was measured after 20h of treatment. (C) Representative 1079 
FACS analysis of FasL, TRAIL and TNFa expression on CD4+ and CD8+ MILs. Isotypes are shown in grey. (D) 1080 
Luciferase-based assay: scr or siCAMK1D transfected KMM-1 were co-cultured with MILs in the presence of 1081 
FasL neutralizing (anti-FasL) antibody or isotype control. Loss of luciferase activity was measured. (E) FACS 1082 
analysis of Fas expression (shown in orange) in U266 cells. Isotype is shown in grey. (F) Live cell-imaging 1083 
analysis. siRNA transfected U266 cells were stained with YOYO-1 and treated with rHuFasL. The experiment 1084 
is representative of three independent experiments and shows the green objects counted (GCO). (G) 1085 
Representative FACS analysis of Fas expression in PANC-1, MCF-7, Mel270 and KMM-1 cells. Positive tumor 1086 
cells are marked in orange. Isotype is shown in grey. (H) End-point PCR of CAMK1D in Mel270. KMM-1 cells 1087 
were used as positive control. (I) Live cell-imaging analysis of UVM cells transfected with siCAMK1D or scr 1088 
siRNAs upon exposure to rHuFasL or culture medium as performed in F. The experiment is representative of 1089 
two independent experiments. Values denote mean ± SEM. (J) Kaplan-Meier curves displaying the correlation 1090 
between CAMK1D expression and patients’ survival probability in Fas high and low samples. Results were 1091 
generated using TCGA clinical data. Significance was calculated using the log-rank test. (K) Correlation 1092 
between CAMK1D and PD-L1 in UVM. (B, D, F) Graphs show mean +/- SD. (B, D) P-values were calculated 1093 
using unpaired two-tailed student´s t-test. (F, I) P-value was calculated using paired two-tailed student´s t-test. 1094 
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p< 0.0001 1095 

 1096 

Figure 5. CAMK1D regulation. (A) Caspase-3, -6 and -7 knockdown in KMM-1 cells measured via 1097 
end-point PCR. (B) Effector caspases were knocked down alone or in combination with CAMK1D and 1098 
treated with rHuFasL or culture medium. Representative result of luciferase-based read-out of three 1099 
independent experiments. (C) Intracellular calcium response in KMM-1 cells upon (top) MILs co-1100 
culture and (bottom) rHuFasL treatment. (D) Representative picture of intracellular free Ca2+ 1101 
measurement in KMM-1 scr-transfected cells before (top) and after (bottom) co-culture with MILs or 1102 
treated with rHuFasL. (E) KMM-1 cells were treated with different concentrations of CaM inhibitor 1103 
and tumor cell survival was measured by luciferase activity. (F) scr and siCAMK1D transfected KMM-1104 
1 cells were treated as in E together with rHuFasL. (G) KMM-1 (left) and Mel270 (right) cells were 1105 
treated with the indicated concentration of QPP-A and exposed to rHuFasL or medium. Tumor cell 1106 
survival was measured by luciferase activity. (H) MC38-Camk1d KO and -NTS cells were each 1107 
injected in C57BL6 and NSG mice. Graphs show mean ± SEM and statistical significance was 1108 
calculated using two-way ANOVA Bonferroni post-hoc test. (B) Graphs show mean ± SD. Statistical 1109 
significance was calculated using unpaired, two-tailed Student’s t-test. (E, F, G) Experiments were 1110 
performed in triplicates and representative results of three independent experiments are shown. Graphs 1111 
show mean ± SEM and statistical significance was calculated using unpaired, two-tailed Student’s t-1112 
test. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001.  1113 
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 1114 

Figure 6. Pathways regulated by CAMK1D. (A-C) Luminex assays measuring apoptosis proteins. CAMK1D-1115 
proficient and -deficient cells were stimulated with rHuFasL for the indicated time frames. Protein expression 1116 
was normalized to GAPDH and compared to scr-unstimulated cells. The amount of (A) cleaved caspase-8 (B) 1117 
cleaved caspase-9 and (C) cleaved caspase-3 was measured. Graphs show cumulative data of at least two 1118 
independent experiments. (D) FACS analysis of scr and siCAMK1D transfected KMM-1 cells treated for the 1119 
given time frames with rHuFasL. Gate marks active caspase-3 labeled cells. (E, F) KMM-1 cells were treated 1120 
as in (A-C) and full-length and cleaved (E) caspase-3 and (F) caspase-6 were measured via western blot. The 1121 
Sodium-Potassium ATPase was used as housekeeping gene. Representative results of at least two independent 1122 
experiments. (G, H) Representative blots showing co-immunoprecipitation of CAMK1D with (G) caspase-3 and 1123 
(H) caspase-6 upon 4h rHuFasL stimulation in KMM-1 cells. Unstimulated cells were used as negative control. 1124 
Unstimulated and stimulated cell lysates were used as positive control for CAMK1D detection. (I, J) Western 1125 
blot measuring phosphorylated caspase-3 and caspase-6 upon rHuFasL stimulation. (K, L) Quantification of (K) 1126 
phosphorylated caspase-3 and (L) phosphorylated caspase-6 upon rHuFasL stimulation for the indicated time 1127 
frames. Graphs show cumulative data of four independent experiments. (A, B, K, L) Graphs show mean ± SEM 1128 
(C) Graph shows mean ± SD.  (A, B, C, K, L) Statistical significance was calculated using unpaired, two-tailed 1129 
Student’s t-test. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001.  1130 
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