
A common approximation framework for early work, late
work, and resource leveling problems?

Péter Györgyia, Tamás Kisa,∗

aInstitute for Computer Science and Control, Kende str 13-17, 1111 Budapest, Hungary

Abstract

We study the approximability of four scheduling problems on identical paral-

lel machines. In the late work minimization problem, the jobs have arbitrary

processing times and a common due date, and the objective is to minimize

the late work , defined as the sum of the portion of the jobs done after the

due date. A related problem is the maximization of the early work , defined

as the sum of the portion of the jobs done before the due date. We describe

a polynomial time approximation scheme for the early work maximization

problem, and we extended it to the late work minimization problem after

shifting the objective function by a positive value that depends on the prob-

lem data. We also prove an inapproximability result for the latter problem

if the objective function is shifted by a constant which does not depend on

the input. These results remain valid even if the number of the jobs as-

signed to the same machine is bounded. This leads to an extension of our

approximation scheme to two variants of the resource leveling problem with

unit time jobs, for which no approximation algorithm is known.

Keywords: Scheduling, late work minimization, early work maximization,

resource leveling, approximation algorithms

?This work has been supported by the National Research, Development and Innova-
tion Office – NKFIH, grant no. SNN 129178, and ED 18-2-2018-0006. The research of
Péter Györgyi was supported by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences.
∗Corresponding author
Email addresses: peter.gyorgyi@sztaki.hu (Péter Györgyi), tamas.kis@sztaki.hu

(Tamás Kis)

Preprint submitted to Elsevier September 23, 2020

1. Introduction

Late work minimization, introduced by the pioneering paper of B lażewicz

[1], is an important area of machine scheduling, for an overview see Sterna

[22]. The variant we are going to study in this paper can be briefly stated

as follows. We have identical parallel machines and a set of jobs with arbi-

trary processing times, and a common due date. We seek a schedule which

minimizes the sum of the portion of the jobs done after the due date. A

strongly related problem is the maximization of the early work, where we

have the same data and the objective is to maximize the sum of the portion

of the jobs done before the common due date. However, the list of the re-

sults for maximizing the early work is much shorter than that for the late

work minimization problem, see e.g., Sterna and Czerniachowska [23], Chen

et al. [6].

The applications of the late work optimization criterion range from mod-

eling the loss of information in computational tasks to the measurement of

dissatisfaction of the customers of a manufacturing company. In particular,

B lażewicz [1] studies a parallel processor scheduling problem with preemp-

tive jobs where each job processes some samples of data (or measurement

points), and if the processing completes after the job’s due date, then it

causes a loss of information. A natural objective is to minimize the infor-

mation loss, which is equivalent to the minimization of the total late work.

A small flexible manufacturing system is described in Sterna [21], where the

application of the late work criterion is motivated by the interests of the

customers as well as by that of the owner of the system. The common in-

terest of the customers is to have the portions of their orders finished after

the due date minimized. In turn, for the owner of the system, the amount

of late work is a measure of dissatisfaction of the customers. As for early

work maximization, we can adapt the same examples considering gain and

2

satisfaction instead of loss and dissatisfaction, respectively.

We have three major sources of motivation for studying the approx-

imability of the early work maximization, and the late work minimization

problems:

i) Chen et al. [7] establish the complexity of late work minimization in a

parallel machine environment, and then the authors describe an online

algorithm for the early work maximization problem of competitive ratio
√

2m2−2m+1−1
m−1 , where m is the number of the machines. However, since

the late work can be 0, no approximation or online algorithm is proposed

for the late work objective.

ii) Sterna and Czerniachowska [23] propose a polynomial time approxima-

tion scheme for the early work maximization problem with 2 machines,

and it is not obvious how to get rid of some constant bound on the

number of the machines. Further on, Chen et al. [6] describe a fully

polynomial time approximation scheme for maximizing the early work

on a fixed number of identical parallel machines.

iii) We have observed that some variants of the resource leveling prob-

lem are equivalent to the early work maximization and the late work

minimization problems. Briefly, the resource leveling problems we are

referring to consist of a parallel machine environment and one more re-

newable resource required by a set of unit time jobs having a common

deadline, and one aims at to minimize (maximize) the total resource

usage above (below) a threshold. We are not aware of any published

approximation algorithms for resource leveling problems in a parallel

machine environment, but the results for the early- and late work prob-

lems can be transferred to this important subclass.

In this paper we propose a polynomial time approximation scheme for

the early work maximization problem in an identical parallel machine en-

3

vironment, which we extend to the late work minimization problem in the

same processing environment. By applying a concept of strong equivalence,

we obtain analogous results for the maximization as well as the minimization

variant of the resource leveling with unit time jobs problem on identical par-

allel machines. We emphasize that the number of identical parallel machines

is part of the input for all problems studied, and the processing times of the

jobs are arbitrary positive integer numbers in the early work maximization,

and the late work minimization problems, while we have unit time jobs and

arbitrary resource requirements in the resource leveling problems.

The results of this paper are theoretical in nature, the proposed algo-

rithms are not intended for practical use. However, they provide new insight

that can lead to efficient algorithms, and the technique developed, outlined

in the last section, may be used for deriving approximation algorithms for

other problems as well.

In Section 2 we precisely define the scheduling problems studied in this

paper, and provide the necessary terminology. In Section 3 we summarize

related work from the literature. In Section 4 we prove the equivalence of

the late work minimization problem with the minimization variant of the

resource leveling with unit time jobs problem, and an analogous result for

the early work maximization problem and the maximization variant of the

resource leveling problem. An inapproximability result is stated and proved

for the late work minimization problem in Section 5. In Section 6 we describe

a polynomial time approximation scheme for the early work maximization

problem extended with machine capacity constraints, and in Section 7 we

adapt the results of Section 6 to the late work minimization problem after

shifting the objective function by a problem-data dependent value. By the

results of Section 4, we obtain polynomial time approximation schemes for

the two variants of the resource leveling problem as well. We conclude the

paper in Section 8.

4

2. Problem formulation and terminology

In the late work minimization problem in a parallel machine environ-

ment, there is a set J of n jobs that have to be scheduled on m identical

parallel machines. If it is not noted otherwise, the number of the machines is

part of the input. Each job j ∈ J has a processing time pj and there is a com-

mon due date d. The late work objective Y is to minimize the total amount

of work scheduled after d, see Chen et al. [7]. That is, a schedule S specifies

a machine µj(S) ∈ {1, . . . ,m} and a starting time tj(S) ≥ 0 for each job. S

is feasible if for each pair of distinct jobs j and k such that µj(S) = µk(S),

either tj(S) + pj ≤ tk(S) or tk(S) + pk ≤ tj(S). Throughout the paper we

assume that there are no idle times between the jobs on any machine. The

late work of a schedule S is Y (S) =
∑m

i=1 max{0,
∑

j∈Ji(S) pj − d}, where

Ji(S) = {j ∈ J | µj(S) = i}. Later we will frequently refer to the sum of

the job processing times psum :=
∑

j∈J pj .

We add a further constraint to this problem. We introduce a bound N

on the number of the jobs that can be scheduled on any of the machines.

This is called machine capacity , see e.g. Woeginger [25]. Throughout the

paper we assume that m ·N ≥ n, otherwise there is no feasible solution for

the problem. Note that machine capacity is not a common constraint for

the late work minimization problem, but it will be useful later. However, by

setting N = n, the capacity constraints become void, and we get back the

familiar late work minimization problem.

Since the late work objective can be 0, and deciding whether a feasible

schedule of zero late work exists or not is a strongly NP-hard decision prob-

lem (Chen et al. [7]), no approximation algorithm exists for this objective.

However, by applying a standard trick, we can ensure that the objective

function value is always positive, and approximating it becomes possible.

We introduce a problem instance-dependent positive number T , and when

approximating the optimum late work, we will consider the objective func-

5

tion T + Y .

There is another way to modify the objective function so that it allows us

to achieve approximation results. The early work objective X, introduced

by [3], which measures the total amount of work scheduled on the machines

before d, is closely related to Y by the equation

X(S) = psum − Y (S) for any feasible schedule S. (1)

In the resource leveling problem, we have n jobs with unit processing times

to be scheduled on m identical parallel machines in the time interval [0, C],

where C is a common deadline of all the jobs. Additionally, there is a re-

newable resource along with a soft limit L for the resource usage. Each job

j has some requirement aj ≥ 0 from the resource. All problem data is inte-

gral. A schedule S specifies a machine µj(S) ∈ {1, . . . ,m} and starting time

tj(S) ∈ {0, . . . , C − 1} for each job j. Without loss of generality, m ·C ≥ n,

otherwise no feasible schedule exists. Throughout the paper we assume that

in any schedule, if k < m jobs start at some time point t, then they oc-

cupy the first k machines. The goal is to find a feasible schedule S, where

each job starts in [0, C − 1], and the total resource usage above L is min-

imized, i.e., we have to minimize Ỹ (S) :=
∑C−1

t=0 max{0,
∑

j∈Jt(S) aj − L},

where Jt(S) = {j ∈ J | tj(S) = t}, and
∑

j∈Jt(S) aj is the total resource

usage of those jobs starting at time point t. A closely related problem

is the maximization of the total resource usage below L over the schedul-

ing horizon [0, C], i.e., maximize X̃(S) :=
∑C−1

t=0 min{L,
∑

j∈Jt(S) aj}. Let

asum :=
∑

j∈J aj . The two objective functions are related by the equation

X̃(S) = asum − Ỹ (S) for any feasible schedule S. (2)

Notice the similarity of (1) and (2). As we will see, this is not a coincidence.

Furthermore, since checking whether a feasible schedule S with Ỹ (S) = 0

exists is a strongly NP-hard decision problem (Neumann and Zimmermann

6

[15]), for approximating the optimal solution we will use the objective func-

tion T̃ + Ỹ , where T̃ is an instance-dependent positive number. If m ≥ n,

then we get the project scheduling version of the resource leveling problem,

i.e., there are no machines and arbitrary number of jobs can be started at

the same time.

This paper uses the α|β|γ notation of Graham et al. [11], where α denotes

the machine environment, β the additional constraints, and γ the objective

function. In the α field we use P for arbitrary number of parallel machines

and P2 in case of two machines. In the β field, dj = d indicates that the jobs

have a common due date, while ni ≤ N indicates the capacity constraints

of the machines. The symbols X and Y in the γ field refer to the early

work, and to the late work criterion, respectively, and we use the symbols

X̃ and Ỹ to denote the total resource usage below and above the limit L,

respectively, in case of the resource leveling problem.

In this paper we describe approximation algorithms for the above men-

tioned, and some other combinatorial optimization problems. Our termi-

nology closely follows that of Garey and Johnson [9]. A minimization

(resp. maximization) problem Π is given by a set of instances I, and each in-

stance I ∈ I has a set of solutions SI , and an objective function cI : SI → Q.

Given any instance I, the goal is to find a feasible solution s∗ ∈ SI such that

cI(s∗) = min{cI(s) | s ∈ SI} (cI(s∗) = max{cI(s) | s ∈ SI}). Let OPT (I)

denote the optimum objective function value of problem instance I. A fac-

tor ρ approximation algorithm for a minimization (maximization) problem

Π is a polynomial time algorithm A such that the objective function value,

denoted by A(I), of the solution found by the algorithm A on any problem

instance I ∈ I satisfies A(I) ≤ ρ ·OPT (I) (A(I) ≥ ρ ·OPT (I)). Naturally,

ρ ≥ 1 for minimization problems, and 0 < ρ ≤ 1 for maximization problems.

Furthermore, a polynomial time approximation scheme (PTAS) for Π is a

family of algorithms {Aε}ε>0 such that Aε is a factor 1 + ε approximation

7

algorithm for Π if it is a minimization problem, or a factor 1 − ε approx-

imation algorithm (0 < ε < 1), for Π if it is a maximization problem. In

addition, a fully polynomial time approximation scheme (FPTAS) is like a

PTAS, but the time complexity of each Aε must be polynomial in 1/ε as

well.

Let Π1 and Π2 be two optimization problems. We say that they are

strongly equivalent if there exist bijective functions f and g, where f estab-

lishes a one-to-one correspondence between the instances of Π1 and that of

Π2, whereas g establishes a one-to-one correspondence between the set of

solutions of each instance I of Π1 and that of f(I) of Π2 such that for each

S ∈ SI , cI(S) = cf(I)(g(S)).

3. Previous work

In this section first we overview existing complexity and approximability

results for scheduling problems with the total late work minimization, and

the total early work maximization objective functions, but we abandon exact

and heuristic methods as they are not directly related to our work. Then we

briefly overview what is known about resource leveling in a parallel machine

environment.

The total late work objective function (late work for short) is proposed

by B lażewicz [1], where the complexity of minimizing the total late work in

a parallel machine environment is investigated. For non-preemptive jobs it

is mentioned that minimizing the late work is NP-hard, while for preemp-

tive jobs, a polynomial-time algorithm, based on network flows, is described.

This approach is extended to uniform machines as well. Subsequently, sev-

eral papers have appeared discussing the late work minimization problem

in various processing environments. For the single machine environment,

Potts and Van Wassenhove [17] describe an O(n log n) time algorithm for

the problem with preemptive jobs, where each job has its own due date. Fur-

8

thermore, the non-preemptive variant is shown to be NP-hard, and among

other results, a pseudo-polynomial time algorithm is proposed for finding

optimal solutions. Potts and Van Wassenhove [16] devise a fully polyno-

mial time approximation scheme for the single machine non-preemptive late

work minimization problem, which is extended to the total weighted late

work problem by Kovalyov et al. [13], where the late work of each job is

weighted by a job-specific positive number. For a two-machine flow shop,

B lażewicz et al. [3] prove that the late work minimization problem is NP-

hard even if all the jobs have a common due date, and they also describe

a dynamic programming based exact algorithm. A more complicated dy-

namic program is proposed for the two-machine job shop problem with the

late work criterion by B lażewicz et al. [4]. Late work minimization in an

open shop environment, with preemptive or with non-preemptive jobs, is

studied in B lażewicz et al. [2], where a number of complexity results are

proved. For the parallel machine environment, Chen et al. [7] prove that

deciding whether a schedule with 0 late work exists is a strongly NP-hard

decision problem, while if the number of machines is only 2, then it is binary

NP-hard even if the jobs have a common due date. Furthermore, they de-

scribe an online algorithm for maximizing the early work of jobs that have

to be scheduled in a given order. For several other complexity results not

mentioned here, we refer to [19, 20, 22].

A related problem is the minimization of the total tardiness on identical

parallel machines, when the jobs have a common due date d. Kovalyov and

Werner [14] observe that without modifying the objective function, there

is no hope for any approximation algorithm, like in the case of minimizing

the total late work. Hence, they augment the objective function value by

a positive constant b, and prove that the problem does not admit a factor

(1 + ε) approximation algorithm for any 0 < ε < 1/b unless P = NP. It

follows that in order to have an (F)PTAS, b must depend polynomially on

9

d or the job processing times. They also describe a fully polynomial time

approximation scheme if b = d, and the number of the machines is fixed.

As for the early work, besides the paper of Chen et al. [7], we mention

Sterna and Czerniachowska [23], where a PTAS is proposed for maximizing

the early work in a parallel machine environment with 2 machines, where all

the jobs have a common due date. Chen et al. [6] describe a fully polynomial

time approximation scheme if the number of identical parallel machine is

fixed. They also provide computation results for the previous PTAS as well

as for the FPTAS on problem instances with 2 and 3 machines and up to

65 and 13 jobs, respectively.

Resource leveling is a well studied area of project scheduling, where a

number of exact and heuristic methods are proposed for solving it for various

objective functions and under various assumptions, see e.g., [12, 15, 18, 24].

Drótos and Kis [8] consider a dedicated parallel machine environment, and

propose and exact method for solving resource leveling problems optimally

with hundreds of jobs. In the same paper, some new complexity results are

obtained.

Chen et al. [5] introduce the notion of mirror scheduling problems, which

is a kind of strong equivalence. Two scheduling problems, Π1 and Π2, con-

stitute a pair of mirror scheduling problems if there is a bijective mapping

between their instances, and any solution S1 of any instance I1 of Π1 can be

mapped to a solution S2 of the corresponding instance I2 of Π2 such that

the objective function values of the two schedules are equal, and there is a

mirror time point T and if a machine processes job j at time t in S1, then

the same machine processes j at time T − t in S2.

10

4. Equivalence of the late work minimization problem and the

resource leveling problem

In this section we prove the equivalence of the late work minimization

problem and the resource leveling problem in the sense defined at the end

of Section 2.

Theorem 1. The late work minimization problem P |dj = d, ni ≤ N |Y , and

the resource leveling problem P |pj = 1|Ỹ are equivalent.

Proof. The proof consists of two parts. First, we define a bijective function

between the set of instances of the late work minimization problem and

the set of instances of the resource leveling problem with unit time jobs.

Then, we consider an arbitrary pair of instances of the two problems (the

pair is determined by the previous function) and we define another bijective

function between the schedules of the two instances.

Consider an arbitrary instance I of the late work minimization prob-

lem (m machines, n jobs with processing times pj (j ∈ {1, . . . , n}) and

common due date d, and upper bound N on the number of jobs on each

machine). The corresponding instance of the resource leveling problem has

N machines, n jobs with processing times 1, resource requirements aj := pj

(j = 1, . . . , n), common deadline C := m, and resource limit L := d. Now

we verify that the given mapping between the instances of the two problems

is a bijection. Indeed, the function is injective (different instances of the

late work minimization problem are mapped to different instances of the

resource leveling problem), and surjective (for every instance I ′ of the re-

source leveling problem there is an instance I of the late work minimization

problem such that I is mapped to I ′), thus it is bijective.

Now, we describe a mapping from the set of feasible schedules of any

instance of the late work minimization problem to that of the corresponding

instance of the resource leveling problem. Let instance I of the late work

11

M3 t

M2

M1

d

1 2 3 4

5 6 7

8 9 10 11

N = 4

M ′
4 t

M ′
3

M ′
2

M ′
1

C = 3

1 5 8

2 6 9

3 7 10

4 11

Figure 1: Corresponding schedules for late work minimization problem and resource lev-

eling problem.

minimization problem be fixed and let I ′ be the corresponding instance of

resource leveling problem. Let S be any feasible schedule for the instance

I, our function defines a schedule S′ for I ′ based on S as follows. If a job j

is the `th job scheduled on machine i in S then schedule the corresponding

job of I ′ on machine ` at time tj(S
′) := i− 1, for an illustration, see Fig. 1.

The following series of claims will prove the theorem:

Claim 1. S′ is feasible for I ′.

Proof. Since there are at most N jobs scheduled on a machine in S, thus we

assign each job to one of the N machines of I ′. Furthermore, each job in I ′

has a unit processing time, hence the jobs do not overlap.

Claim 2. The mapping between the schedules for I and that for I ′ is a

bijection.

Proof. It is easy to see that the given mapping of schedules is injective.

Moreover, let S′ be any schedule for I ′. We define S for I such that S is

mapped to S′ as follows. Suppose job j starts on M ′` at time point i− 1 for

some i ∈ {1, . . . , C} in S′, then j is the `th job on µj(S) = i. Since in S′,

there is no idle machine among M ′1, . . . ,M
′
` by definition, S is feasible, and

the value of tj(S) is well defined.

12

Claim 3. If the late work of some schedule S for instance I is Y , then the

objective function value of the corresponding schedule S′ for I ′ is also Y .

Proof. Consider the ith machine Mi (i ∈ {1, . . . ,m}) in S, let Ji denote the

set of jobs scheduled on Mi in S. The late work on Mi is max{0,
∑

j∈Ji pj−

d}, thus Y =
∑m

i=1 max{0,
∑

j∈Ji pj − d}. On the other hand, observe that

the jobs of Ji are mapped to those jobs of the resource leveling problem that

start at time point i− 1 in S′. The total resource requirement of these jobs

exceeds L by max{0,
∑

j∈Ji aj − L}, thus the objective function value of

S′ is
∑C

i=1 max{0,
∑

j∈Ji aj − L} =
∑m

i=1 max{0,
∑

j∈Ji pj − d} = Y , since

L = d, C = m, and pj = aj by the mapping defined above.

The above claims prove the theorem.

By (1) and (2), we have the following:

Corollary 1. The early work maximization problem P |dj = d, ni ≤ N |X,

and the resource leveling problem P |pj = 1|X̃ are equivalent.

5. Inapproximability of P2|dj = d|c′ + Y

In this section we prove that if we simply add a value c′ to Y in the

objective function of the late work minimization problem, where c′ is a fixed

positive number, then it is impossible to get an approximation algorithm of

factor smaller than c′+1
c′ unless P = NP . We will use the following result of

Chen et al. [7]:

Theorem 2 (Theorem 2 in [7]). The problem P2|dj = d|Y is NP-hard. In

particular, it is NP-hard to decide if a feasible schedule of total late work 0

exists.

The following statement and its proof is analogous to that of Theorem

2 of Kovalyov and Werner [14] for the inapproximability of Pm|dj = d|b +

13

∑
Tj .

1

Proposition 1. Let c′ be a positive constant. Then for any 0 < ε < 1/c′,

there is no (1 + ε)-approximation algorithm for P2|dj = d|c′ + Y unless

P = NP .

Proof. Suppose we have a factor 1 + ε approximation algorithm for P2|dj =

d|c′ + Y for some 0 < ε < 1/c′. We show how to apply this approximation

algorithm to decide if for any instance of P2|dj = d|Y a feasible schedule of

total late work 0 exists. However, the latter decision problem is NP-hard by

Theorem 2, which implies our claim.

Consider any instance of P2|dj = d|c′ + Y . If the approximation algo-

rithm returns a solution of value c′, then clearly, there is a schedule of 0

late work. Now suppose the approximation algorithm returns a solution of

value at least c′ + 1 (no value between c′ and c′ + 1 is possible, because

all problem data is integral). Indirectly, assume that there is a schedule of

total late work 0, and hence, the optimum solution value is c′. But then

c′ + 1 ≤ (1 + ε)c′ < c′ + 1 must hold, where the first inequality follows

from the approximation factor and the second form ε < 1/c′. This is a

contradiction, thus all feasible schedules must have total late work at least

1.

6. A PTAS for P |dj = d, ni ≤ N |X

In this section we describe a PTAS for P |dj = d, ni ≤ N |X. Note that

the machine capacity N is a positive integer such that m ·N ≥ n, where n is

the number of the jobs, and m is the number of identical parallel machines.

We will devise two algorithms (both parameterized by ε), and we will run

both of them on the same input, and finally, we will choose the better of the

two schedules obtained as the output of the algorithm. The first family of

1We thank a referee for calling our attention to this paper.

14

algorithms, described in Section 6.1, has an approximation factor of (1−4ε)

if the optimum value is at least ε · m · d. In contrast, the approximation

algorithm presented in Section 6.2 is of factor 1−2ε if the optimum value is

smaller than ε ·m · d. Running both methods on the same input guarantees

an approximation factor of (1− 4ε).

After some preliminary observations, we will describe the two algorithms

along with the proofs of their soundness, and in the end we combine them

to obtain the PTAS.

Throughout this section, S∗ denotes an optimal schedule for an instance

of P |dj = d, ni ≤ N |X.

6.1. Family of algorithms for the case X(S∗) ≥ ε ·m · d

In this section we describe a family of algorithms {Aε | ε > 0}, such

that Aε is a factor (1−4ε) approximation algorithm for the problem P |dj =

d, ni ≤ N |X under the condition X(S∗) ≥ ε ·m · d.

We start by observing that if a job starts after d then we do not have to

deal with its exact starting time and with its machine assignment, because

the total processing time of this job is late work. We can schedule these

jobs from any time point after d on any machine where we do not violate

the machine capacity constraints.

Let ε > 0 be fixed. We divide the set of jobs into three subsets, huge,

big and small. The set of huge jobs is H := {j ∈ J | pj ≥ d}, the set of big

jobs is B := {j ∈ J | ε2d ≤ pj < d}, and the remaining jobs are small .

Proposition 2. If there are at least m huge jobs, then scheduling m, ar-

bitrarily chosen huge jobs on m distinct machines, and the rest of the jobs

arbitrarily, yields an optimal schedule both for the maximum early work and

the minimum late work objectives.

Proof. Let S′ be the schedule constructed as described in the statement of

the proposition. Then X(S′) = m · d, which is the maximum possible early

15

work. By equation (1), S′ has minimum late work as well, thus it is optimal

for both objective functions.

Proposition 3. If |H| ≤ m − 1, then there exists an optimal schedule for

the maximum early work as well as for the minimum late work objectives

such that the huge jobs are scheduled on |H| distinct machines.

Proof. Let S∗ be an optimal schedule for the early work (as well as for the

late work) objective with the maximum number of machines on which a

huge job is scheduled. Indirectly, suppose less than |H| machines process at

least one huge job, hence, there exists a machine M1 processing at least two

huge jobs, say j1 and j2, in this order. Since there are at most m− 1 huge

jobs, there exists a machine M∗ (in fact there are at least two), which does

not process any huge jobs. If less than N jobs are scheduled on M∗, then

move job j2 from M1 to M∗, otherwise swap job j2 with any of the jobs

scheduled on M∗, and let S′ be the resulting schedule. Clearly, the machine

capacities are respected by S′, and both of the machines M∗ and M1 work

in the period [0, d] in S′, while the work assigned to any other machine is the

same in both schedules. Hence, X(S′) ≥ X(S∗). Therefore, S′ is optimal

for the early work objective, and by equation (1), for the late work objective

as well. However, in S′ more machines process at least one huge job than in

S∗, a contradiction.

From now on, we assume that there are at most m−1 huge jobs, and we

fix an optimal schedule S∗ in which the huge jobs are scheduled on distinct

machines.

Our algorithm has three main phases: first, we schedule all of the huge

jobs, and some of the big jobs such that they get a starting time smaller

than d, then we schedule some of the small jobs such that they get a starting

time smaller than d, and finally, we schedule the remaining big and small

jobs, if any, arbitrarily while respecting the machine capacity constraints.

16

For each big job j we round down its processing time pj to the greatest

integer p′j := dε2d(1 + ε)ke by selecting k ∈ Z such that p′j ≤ pj . Since we

have ε2d ≤ pj < d for each big job j, the number of the different p′j values

is bounded by the constant k1 := blog1+ε(1/ε
2)c + 1 that depends on the

fixed ε only. Let B1,B2, . . . ,Bk1 denote the sets of the big jobs with the

same rounded processing times, i.e., Bh := {j ∈ J : p′j = d(1 + ε)h−1 · ε2de}

(Bh = ∅ is possible).

For each machine without a huge job, we guess the number of the big

jobs from each set Bh that start before d. This guess can be described by an

assignment A, which consists of k1 numbers (γ1, γ2, . . . , γk1), where γh de-

scribes the number of the jobs from Bh. A big job assignment (γ1, γ2, . . . , γk1)

is feasible, if it does not violate the constraint on the number of the jobs on

a machine, i.e.,
∑k1

h=1 γh ≤ N , and all the selected jobs can be started before

d. To verify the latter condition, it suffices to schedule the selected jobs in

any order such that the longest job is scheduled last, which ensures that the

last job starts as early as possible. Let k2 be the number of possible big

job assignments. Since the total number of big jobs that may start before d

on a machine is at most b1/ε2c, we have k2 ≤ k
b1/ε2c
1 . Let A1, A2, . . . , Ak2

denote the different feasible big job assignments.

A layout is a k2 tuple (t1, t2, . . . , tk2) that specifies for each feasible as-

signment the number of the machines that uses it. Let γih denote the num-

ber of big jobs from Bh assigned by Ai. A layout is feasible if and only if∑k2
i=1 tiγih ≤ |Bh| for each h = 1, . . . , k1. The number of feasible tuples is

bounded by the number of non-negative, integer solutions of the inequality∑k2
i=1 ti ≤ m−|H|, which is bounded by

(m−|H|+k2
k2

)
, a polynomial in the size

of the input, since k2 is a constant (that depends on ε only). In Algorithm

A, we examine each big job layout and get a complete schedule for each of

them.

Algorithm A

17

1. Determine the set of feasible layouts.

2. For each layout t, perform Steps 3–6.

3. Assign the huge jobs of H to machines M1 . . . ,M|H| arbitrarily, and

big jobs to the remaining m−|H| machines according to t (ti machines

use assignment Ai)

4. On each machine, schedule the assigned jobs from time point 0 on in

arbitrary order.

5. If N ≥ n, then invoke Algorithm B, otherwise invoke Algorithm C to

schedule small jobs.

6. Schedule the remaining jobs (small and big, if any) on the machines

arbitrarily such that no machine receives more than N jobs in total

(including the pre-assigned huge and big jobs).

7. Output SA, which is the best schedule found in Steps 2-6.

Now we turn to AlgorithmsB and C for scheduling small jobs. Algorithm

B is a simple greedy method which works only if there are no machine

capacity constraints, i.e., N ≥ n.

Algorithm B

Input: partial schedule of big jobs

1. For i = 1, . . . ,m do:

2. Schedule a maximal subset of small jobs on machine Mi after the big

jobs without idle time such that no small job finishes after d.

Observe that the above method may assign a lot of small jobs to a

machine, thus it may not yield a feasible schedule if N < n .

Algorithm C is much more complicated. Let J small denote the set of

small jobs, P small
i ≥ 0 the idle time on machine i before d, and nsmall

i the

18

number of the jobs that can be scheduled on machine i after the partial

schedule of big jobs, i.e., nsmall
i is the difference between N and the number

of the big jobs assigned to machine Mi. Note that P small
i = 0 if a huge job

is assigned to machine Mi.

Our goal is to maximize the early work of the small jobs for a fixed

assignment of big and huge jobs. To simplify our problem, we only want

to maximize the total processing time of the small jobs that a machine

completes before d. This may decrease the objective function value of the

final schedule, but we will show that this error is negligible.

We can model the above problem with an integer program. We introduce

n · (m + 1) binary variables xi,j (i = 0, 1, 2, . . . ,m, j = 1, 2, . . . , n), where

x0,j = 1 means that we do not schedule job j to any machine before d, while

in case of 1 ≤ i ≤ m, xi,j = 1 means that job j will be scheduled on machine

i, and will be completed not later than d.

max
m∑
i=1

∑
j∈J small

xi,jpj (3)

s.t.∑
j∈J small

xi,jpj ≤ P small
i , i = 1, . . . ,m, (4)

∑
j∈J small

xi,j ≤ nsmall
i , i = 1, . . . ,m, (5)

m∑
i=0

xi,j = 1, j ∈ J small, (6)

xi,j ∈ {0, 1}, i = 0, . . . ,m, j ∈ J small. (7)

We get the LP-relaxation of the above integer program by replacing xi,j ∈

{0, 1} with xi,j ≥ 0 in the constraints (7).

Algorithm C

Input: partial schedule of big jobs

1. Determine the values P small
i , nsmall

i for i = 1, . . . ,m.

19

2. Solve the LP-relaxation of (3)–(7), and let x̄ be a basic optimal solu-

tion.

3. For i = 1, . . . ,m, if x̄i,j = 1 for a job j, then assign that job to machine

i.

4. For each machine, schedule the assigned jobs right after the big jobs

without idle times in arbitrary order.

Observe that fractional jobs of the optimal LP solution are not assigned

to any machine by Algorithm C, but they will be scheduled by Step 6 of

Algorithm A.

The proofs of the following two claims easily follow from the definitions.

Proposition 4. SA is feasible.

Proposition 5. The time complexity of Algorithm B is polynomially bounded

in the size of the input.

Proposition 6. The time complexity of Algorithm C is polynomially bounded

in the size of the input.

Proof. We can determine a basic solution of a linear program with nm vari-

ables and n + 2m constraints in two steps. First, apply a polynomial time

interior-point algorithm to find a pair of primal-dual optimal solutions, and

then, we can use Megiddo’s method to determine a basic solution x̄ for

the primal program, see e.g., Wright [26]. The other steps of Algorithm C

require linear time.

Proposition 7. The time complexity of Algorithm A is polynomially bounded

in the size of the input.

Proof. Recall that the number of the feasible layouts is polynomial (at most(
m+k2
k2

)
). Each of the Steps 3-6 requires O(nm) time, except Step 5 if it

invokes Algorithm C, but it is also polynomial due to Proposition 6.

20

Without loss of generality, we assume that in S∗ the huge and big jobs

precede the small jobs on each machine, and the big jobs are scheduled in

non-decreasing processing time order on each machine. We introduce an

intermediate schedule Sint: it is the same as S∗ except that the processing

time of each big job is rounded as in Algorithm A. That is, the processing

time of each big job is rounded down to the greatest number of the form

dε2d(1 + ε)ke, (k ∈ Z), and after rounding we re-schedule the jobs on each

machine in the same order as in S∗, but with the decreased processing times

of the big jobs. By considering those big jobs on the machines that start

before d in Sint, we can uniquely identify an assignment of big jobs for each

machine. Therefore, we can determine the layout t∗ of the big jobs that start

before d in Sint. Now we state and prove the main result of this section.

Theorem 3. If X(S∗) ≥ ε · m · d, then Algorithm A is a factor (1 − 4ε)

approximation algorithm for P |dj = d, ni ≤ N |X.

Proof. Recall that Sint is the schedule obtained from S∗ by rounding down

the processing time of each big job, and shifting the jobs to the left, if

necessary, to eliminate any idle times (created by rounding) on the machines.

Since pj/(1+ε) < p′j ≤ pj , we have X(Sint) ≥ X(S∗)/(1+ε) ≥ (1−ε)X(S∗).

Let t∗ be the layout of big jobs corresponding to Sint. Algorithm A will

consider the layout t∗ at some iteration, and let S be the schedule created

from t∗. Since X(SA) ≥ X(S), it suffices to prove that X(S) ≥ (1 −

4ε)X(S∗). To achieve this, we proceed by proving a series of lemmas.

Lemma 1. If N ≥ n and X(S∗) ≥ ε ·m · d, then X(S) ≥ (1− ε)X(S∗).

Proof. If Algorithm B schedules all the small jobs when creating schedule

S, then the only jobs finishing after d can be big and huge jobs. Since the

set of big and huge jobs that start before d in schedule S contains all the big

and huge jobs that start before d in schedule Sint, we get X(S) ≥ X(Sint).

21

If there is at least one small job that remains unscheduled by Algorithm

B, then consider the early work in S. We know that the total processing

time on each machine is at least d(1 − ε2) due the condition of Step 2 of

Algorithm B. Hence, X(S) ≥ md(1 − ε2). Since X(S) ≤ X(S∗) ≤ m · d,

and X(S∗) ≥ ε ·m · d by assumption, we derive

X(S) ≥ (1− ε2)d ·m ≥ (1− ε)X(S∗),

as claimed.

Proposition 8. If N < n, then X(S) ≥ X(Sint)− 3ε2 · d ·m.

Proof. Consider Algorithm C, when it creates S. It solves (3)–(7) and x̄ is

the optimal basic solution that we get from the algorithm. Recall that if

i ≥ 1 then x̄i,j = 1 if and only if job j is assigned to machine i by Algorithm

C. We introduce another integer solution x′ of (3)–(7). Let x′i,j := 1, if a

small job j completes before d on machine i in Sint, otherwise, x′i,j := 0.

Note that x′ is a feasible solution, because Sint is a feasible schedule.

Let v(x) denote the objective function value of a solution x of (3)–(7),

OPTIP the optimum value of (3)–(7) and OPTLP the optimum value of its

linear relaxation. For any feasible solution x of (3)–(7), we have OPTLP ≥

OPTIP ≥ v(x). Let Xsmall
int denote the early work of the small jobs in Sint

and Xsmall
S the same in S. Observe that v(x′), which is the total early work

of the small jobs that complete before d in Sint, is at least Xsmall
int − ε2dm,

because there is at most one small job on each machine that starts before,

and ends after d, and recall that each small job is shorter than ε2d. Then

Xsmall
S ≥ v(bx̄c) ≥ OPTLP − 2ε2dm ≥ OPTIP − 2ε2dm ≥ v(x′)− 2ε2dm

≥ Xsmall
int − 3ε2dm.

The first inequality is trivial, while we have already proved the last three

inequalities. It remained to prove the second inequality, i.e., v(bx̄c) ≥

OPTLP − 2ε2dm. Let e denote the number of the small jobs j with x̄i,j = 1

22

for some i (i = 0, . . . ,m) in Algorithm C, and f := n− e the number of the

’fractionally assigned’ small jobs. Note that for each of these small jobs, we

have i1 6= i2 (0 ≤ i1, i2 ≤ m) such that x̄i1,j , x̄i2,j > 0). Since x̄ is a basic

solution there are at most n + 2m non-zero values among its coordinates.

Hence, we have e + 2f ≤ n + 2m, therefore, we have f ≤ 2m. To sum up,

we have

OPTLP =

m∑
i=1

 ∑
j:x̄i,j=1

pj +
∑

j frac. assigned

x̄i,jpj

 =

v(bx̄c) +
∑

j frac. assigned

pj

m∑
i=1

x̄i,j ≤

v(bx̄c) + 2ε2md,

where the last inequality follows from f ≤ 2m, from pj ≤ ε2d for each small

job j, and from
∑m

i=1 x̄i,j ≤ 1.

Finally, observe that Xsmall
S ≥ Xsmall

int −3ε2dm implies X(S) ≥ X(Sint)−

3ε2dm, since the set of big and huge jobs that start before d in S contains

those of schedule Sint.

Lemma 2. If N < n and X(S∗) ≥ ε ·m · d, then X(S) ≥ (1− 4ε)X(S∗).

Proof. By Proposition 8, X(S) ≥ X(Sint)− 3ε2 · d ·m. Therefore, using the

assumption of the lemma, we derive

X(S) ≥ X(Sint)− 3ε2 · d ·m ≥ X(S∗)(1− ε)− 3εX(S∗) = (1− 4ε)X(S∗).

Now we can finish the proof of Theorem 3. We have proved that Algo-

rithm A creates a feasible schedule SA (Proposition 4) in polynomial time

(Proposition 7) such that X(SA) ≥ (1 − 4ε)X(S∗) (Lemmas 1-2), thus the

theorem is proved.

23

Theorem 3 has a strong assumption, namely, X(S∗) ≥ ε ·m · d. In the

next section, we describe a complementary method, which works if X(S∗) <

ε ·m · d.

6.2. Approximation algorithm for the case X(S∗) < ε ·m · d

We will show that if X(S∗) < ε · m · d, then scheduling the jobs in

longest-processing-time-first order2 by list-scheduling while respecting the

capacity constraints of the machines yields an approximation algorithm both

for minimizing the late work and for maximizing the early work as well.

Recall the list-scheduling method of Graham [10] for scheduling jobs on

parallel machines. It processes the jobs in a given order, and it always

schedules the next job on the least loaded machine. In order to take into

account the capacity constraints of the machines, we will use the following

variant of list-scheduling.

Algorithm LPT

Input: set of jobs, number of machines m, and common machine capacity

N .

1. Let ni := 0, and Li := 0 for i = 1, . . . ,m.

2. Schedule the jobs in longest-processing-time-first order, ties are broken

arbitrarily. When processing the next job j, choose the machine with

minimum Li value among those machines with ni < N , and break

ties arbitrarily. Let i be the index of the machine chosen. Then set

tj(SLPT) = Li, µj(SLPT) := i, Li := Li + pj and ni := ni + 1.

3. Return SLPT .

The schedule SLPT computed by the algorithm satisfies the following prop-

erties.

2the jobs are scheduled in non-increasing processing time order

24

Theorem 4. If X(S∗) < ε·m·d and ε ≤ 1/3, then X(SLPT) ≥ (1−2ε)X(S∗)

and c · psum + Y (SLPT) ≤ (1 + 2ε/c)(c · psum + Y (S∗)).

Proof. First, we prove X(SLPT) ≥ (1− 2ε)X(S∗), and then we derive from

it the second statement of the theorem. Since X(S∗) ≤ ε ·m ·d, there can be

at most m− 1 jobs of processing time at least εd. Since X(SLPT) ≤ X(S∗),

we can also deduce that in SLPT there is a machine on which the total

processing time of the jobs is less than εd.

First suppose that all jobs start before εd in SLPT . Since there are k ≤

m−1 jobs of processing time at least εd, all these long jobs start on distinct

machines in SLPT , since these are the longest k jobs. All the remaining

jobs have a processing time smaller than εd, and they are scheduled on the

remaining m− k machines. Therefore, the work finishes by time 2εd on the

remaining machines. Since ε ≤ 1/3, the jobs, if any, that do not finish before

d in SLPT must be long jobs. Since the long jobs are scheduled on distinct

machines in SLPT , there is no way to decrease the late work of this schedule,

or equivalently, to increase the early work, thus, SLPT must be optimal for

both objectives.

Now suppose there is a job j which starts at or after εd in SLPT . Then

there is a machine M∗ in SLPT with N jobs and the total processing time

of these jobs is smaller than εd, otherwise either job j could be scheduled

on M∗ (which would contradict the rules of the list-scheduling algorithm),

or X(SLPT) ≥ ε ·m · d (which would contradict the assumption X(S∗) <

ε ·m · d, since SLPT is a feasible schedule, and S∗ is an optimal schedule,

thus ε ·m · d ≤ X(SLPT) ≤ X(S∗)).

We claim that on any machine, the total processing time of those jobs

that start at or after εd is at most εd. This is so, because the jobs are

scheduled in non-increasing processing time order, and no machine may

receive more than N jobs. Consequently, if a job is started at or later

than εd on some machine, it has a processing time not greater than the

25

shortest processing time on M∗. Hence, the total processing time of the

jobs scheduled on M∗ is indeed an upper bound on the total processing

time of those jobs started at or later than εd on any single machine.

By our claim, if there are only short jobs (of processing time smaller

than εd) on a machine, then the total work assigned to it by SLPT is at

most 3εd. Hence, all these jobs finish by d, since ε ≤ 1/3. Consequently, if

a job finishes after d in SLPT , then it must be scheduled on a machine with

a long job. Let g be the number of those machines on which some job is

late, i.e., finishes after d in SLPT . Consider any of these g machines. It has

a long job scheduled first, and then some short jobs. The total processing

time of these short jobs is at most εd, since each of them starts after εd.

Hence, the late work can be decreased by at most g · εd by scheduling some

of the short jobs early in a more clever way than in SLPT . Consequently,

X(SLPT) + g · εd ≥ X(S∗).

Now, we bound gd. As we have observed, if a machine has some late

work on it in SLPT , then it has a long job, and some short jobs of total

processing time at most εd. Hence, the length of the long job must be at

least d(1 − ε). Therefore, X(S∗) ≥ gd(1 − ε). Using this observation, we

obtain the first statement:

X(SLPT) ≥ X(S∗)− ε · gd ≥ X(S∗)− εX(S∗)/(1− ε) ≥ X(S∗)(1− 2ε),

where the last inequality follows from ε/(1− ε) ≤ 2ε if 0 < ε ≤ 1/2.

Now we derive the second statement of the theorem. By equation (1),

Y (SLPT) = psum −X(SLPT). Hence, we compute

Y (SLPT) = psum −X(SLPT) ≤ psum −X(S∗)(1− 2ε)

= psum − (psum − Y (S∗))(1− 2ε)

= psum − (psum − 2εpsum − Y (S∗) + 2εY (S∗))

≤ Y (S∗) + 2εpsum.

26

To finish the proof, observe that

c ·psum+Y (SLPT) ≤ c ·psum+Y (S∗)+2εpsum ≤ (1+2ε/c)(c ·psum+Y (S∗)).

6.3. The combined method

In this section we combine the methods of Section 6.1 and Section 6.2

to get a PTAS for P |dj = d, ni ≤ N |X.

Theorem 5. There is a PTAS for P |dj = d, ni ≤ N |X.

Proof. By Theorems 3 and 4, the following algorithm is a PTAS for P |dj =

d, ni ≤ N |X.

Algorithm PTAS

Input: problem instance and parameter 0 < ε ≤ 1/3.

1. Run Algorithm A and let SA be the best schedule found.

2. Run Algorithm LPT , and let SLPT be the schedule obtained.

3. If X(SA) ≥ X(SLPT), then output SA, else output SLPT .

Since the conditions of Theorems 3 and 4 are complementary, it follows

that Algorithm PTAS always outputs a solution of value at least (1 − 4ε)

times the optimum. The time complexity in either case is polynomial in the

size of the input, hence, the algorithm is indeed a PTAS for our scheduling

problem.

The time complexity of the combined method is dominated by that of

Algorithm A, which is polynomial in the size of the input by Proposition 7,

but exponential in 1/ε.

Since our result is valid even if N ≥ n, we have the following corollary:

Corollary 2. There is a PTAS for P |dj = d|X.

27

By Corollary 1, we immediately get an analogous result for the maxi-

mization variant of resource leveling problem:

Corollary 3. There is a PTAS for the resource leveling problem P |pj =

1|X̃.

7. A PTAS for P |dj = d, ni ≤ N |c · psum + Y

In this section we adapt the PTAS of Section 6 to the problem P |dj =

d, ni ≤ N |c · psum + Y . Throughout this section, S∗ denotes an optimal

solution of a problem instance for the late work objective, and by equation

(1) for the early work objective as well.

7.1. The first family of algorithms

In this section we describe a family of algorithms {Aε | ε > 0}, such

that Aε is a factor (1 + c0 · ε) approximation algorithm for the problem

P |dj = d, ni ≤ N |c · psum + Y under the condition X(S∗) ≥ ε ·m · d, where

c0 is a universal constant, independent of ε and the problem instances.

Recall the definition of huge, big and small jobs from Section 6, we use

the same partitioning of the set of jobs in this section as well.

By Propositions 2 and 3, it suffices to consider the case when there are at

most m− 1 huge jobs. However, in this section we round up the processing

time pj of each big job j to the smallest integer of the form bε2d(1 + ε)kc,

where k ∈ Z≥0. Since ε2d ≤ pj < d for each big job, there are at most

k1 := blog1+ε 1/ε2c + 1 distinct rounded processing times of the big jobs.

Let B1,B2, . . . ,Bk1 denote the sets of the big jobs with the same rounded

processing times, i.e., Bh := {j ∈ J : p′j = bε2d · (1 + ε)h−1c} (Bh = ∅ is

possible). We also define the assignments of big jobs to machines and the

layouts in the same way as in Section 6, but using the jobs classes Bh just

defined.

28

Theorem 6. If X(S∗) ≥ ε ·m · d, then Algorithm A is a factor (1 + 4ε/c)

approximation algorithm for P |dj = d, ni ≤ N |c · psum + Y .

Proof. Let Sint be the schedule obtained from S∗ by rounding up the pro-

cessing time of each big job, and shifting the jobs to the right, if nec-

essary, so that the jobs do not overlap on any machine. Let t∗ be the

layout of big jobs corresponding to Sint (defined as in Section 6). Algo-

rithm A will consider the layout t∗ at some iteration, and let S be the

schedule created from t∗. Since Y (SA) ≤ Y (S), it suffices to prove that

c · psum + Y (S) ≤ (1 +O(ε))(c · psum + Y (S∗)), and this is what we accom-

plish subsequently. The claimed approximation factor is proved by a series

of three lemmas.

Lemma 3. c · psum + Y (Sint) ≤ (1 + ε/c)(c · psum + Y (S∗)).

Proof. Observe that the rounding procedure increases the late work by at

most εpsum (recall that psum :=
∑

j∈J pj). Hence, we have

c · psum + Y (Sint) ≤ c · psum + Y (S∗) + εpsum ≤ (1 + ε/c)(c · psum + Y (S∗).

Lemma 4. If N ≥ n and X(S∗) ≥ ε · m · d, then c · psum + Y (S) ≤

(1 + 2ε/c)(c · psum + Y (S∗)).

Proof. If Algorithm B schedules all the small jobs when creating schedule

S, then the only jobs finishing after d can be big and huge jobs. Since the

set of big and huge jobs that start before d in schedule S contains all the big

and huge jobs that start before d in schedule Sint, we get Y (S) ≤ Y (Sint).

If there is at least one small job that remains unscheduled after Step 5

of Algorithm A, then consider the early work in S. We know that the total

processing time on each machine is at least (1 − ε2)d due to the condition

in Step 2 of Algorithm B, thus X(S) ≥ (1 − ε2)d ·m. On the other hand,

29

X(Sint) ≤ d ·m is trivial, thus we have Y (S) ≤ Y (Sint) + ε2d ·m due to (1).

Finally, we have

c · psum + Y (S) ≤ c · psum + Y (Sint) + ε2d ·m

≤ c · psum + Y (Sint) + εX(S∗)

≤ (1 + ε/c)(c · psum + Y (S∗)) + ε(psum − Y (S∗))

≤ (1 + 2ε/c)(c · psum + Y (S∗)),

where the second inequality follows from the assumption X(S∗) ≥ ε ·m · d,

and the third from Lemma 3 and equation (1).

Lemma 5. If N < n and X(S∗) ≥ ε · m · d, then c · psum + Y (S) ≤

(1 + 4ε/c)(c · psum + Y (S∗)).

Proof. By Proposition 8 and equation (1), we have Y (S) ≤ Y (Sint)+3ε2dm.

Therefore,

c · psum + Y (S) ≤ c · psum + Y (Sint) + 3ε2dm

≤ c · psum + Y (Sint) + 3εX(S∗)

≤ (1 + ε/c)(c · psum + Y (S∗)) + 3ε(psum − Y (S∗))

≤ (1 + 4ε/c)(c · psum + Y (S∗)),

where the second inequality follows from the assumption X(S∗) ≥ ε ·m · d,

and the third from Lemma 3 and equation (1).

Now we can finish the proof of Theorem 6. We have proved that Algo-

rithm A creates a feasible schedule SA (Proposition 4) in polynomial time

(Proposition 7) such that c · psum + Y (SA) ≤ (1 + 4ε/c)(c · psum + Y (S∗))

(Lemmas 3, 4, and 5), thus the theorem is proved.

7.2. The combined method

In this section we show how to combine the methods of Section 6.2 and

Section 7.1 to get a PTAS for P |dj = d, ni ≤ N |c · psum + Y .

30

Theorem 7. There is a PTAS for P |dj = d, ni ≤ N |c · psum + Y .

Proof. By Theorems 6 and 4, we propose the following algorithm for P |dj =

d, ni ≤ N |c · psum + Y .

Algorithm PTAS

Input: problem instance and parameter ε ≤ 1/3.

1. Run Algorithm A and let SA be the best schedule found.

2. Run Algorithm LPT , and let SLPT be the schedule obtained.

3. If Y (SA) ≤ Y (SLPT), then output SA, else output SLPT .

Since the conditions of Theorems 6 and 4 are complementary, it follows that

Algorithm PTAS always outputs a solution of value at most (1 + 4ε/c)

times the optimum. The time complexity in either case is polynomial in the

size of the input, hence, the algorithm is indeed a PTAS for our scheduling

problem.

Since our result is valid even if N ≥ n, we have the following corollary:

Corollary 4. There is a PTAS for P |dj = d|c · psum + Y .

Notice that Theorem 1 remains valid if we replace Y by c · psum + Y in

the late work minimization problem and Ỹ by c · asum + Ỹ in the minimiza-

tion variant of the resource leveling problem, thus we get the following by

combining Theorems 1 and 7:

Corollary 5. There is a PTAS for the resource leveling problem P |pj =

1|c · asum + Ỹ .

8. Final remarks

In this paper we have described a common approximation framework for

4 problems which have common roots. On the one hand, we have proposed

31

the first polynomial time approximation scheme for the early work max-

imization problem on identical parallel machines with a common job due

date when the number of the machines is part of the input, which general-

izes the PTAS of Sterna and Czerniachowska [23]. Further on, we extended

this result to the late work minimization problem, and to the maximization

as well as the minimization variant of the resource leveling with unit time

jobs problems. No approximation schemes were known for these problems

before.

In the design of the PTAS for the early work maximization problem, we

had some difficulties in showing the approximation guarantee. The tech-

nique we found may be used for designing (fully) polynomial time approx-

imation schemes for completely different combinatorial optimization prob-

lems as well. We illustrate the main ideas for a maximization problem Π.

Suppose we have devised a family of algorithms {Aε}ε>0 for Π, but we are

able to prove that it is a factor (1− ε) approximation algorithm only under

the hypothesis that OPT (I) ≥ f(I, ε) for a problem instance I, where f is a

function assigning some rational number to I and ε. Then we have to devise

another algorithm, which is also a factor (1−ε) approximation algorithm on

those instances such that OPT (I) < f(I, ε). Now, if we run both methods

on an arbitrary instance I, then at least one of them will return a solution

of value at least (1− ε) times the optimum. Clearly, the combined method

is an (F)PTAS for the problem Π.

There remained a number of open questions. For instance, is there a

simple constant factor approximation algorithm for maximizing the early

work on identical parallel machines with a common job due date, and has a

running time suitable for practical applications? The same question can be

asked for the late work minimization problem with the objective c + Y for

some positive c.

32

Acknowledgments

The authors are grateful to the anonymous referees for constructive com-

ments that helped to improve the presentation.

References

[1] B lażewicz, J. (1984). Scheduling preemptible tasks on parallel processors

with information loss. Technique et Science Informatiques, 3(6):415–420.

[2] B lażewicz, J., Pesch, E., Sterna, M., and Werner, F. (2004). Open shop

scheduling problems with late work criteria. Discrete Applied Mathemat-

ics, 134(1-3):1–24.

[3] B lażewicz, J., Pesch, E., Sterna, M., and Werner, F. (2005). The two-

machine flow-shop problem with weighted late work criterion and common

due date. European Journal of Operational Research, 165(2):408–415.

[4] B lażewicz, J., Pesch, E., Sterna, M., and Werner, F. (2007). A note on

the two machine job shop with the weighted late work criterion. Journal

of Scheduling, 10(2):87–95.

[5] Chen, X., Kovalev, S., Sterna, M., and B lażewicz, J. (2020a). Mirror

scheduling problems with early work and late work criteria. Journal of

Scheduling, in press. https://doi.org/10.1007/s10951-020-00636-9.

[6] Chen, X., Liang, Y., Sterna, M., Wang, W., and B lażewicz, J. (2020b).

Fully polynomial time approximation scheme to maximize early work on

parallel machines with common due date. European Journal of Opera-

tional Research, 284(1):67–74.

[7] Chen, X., Sterna, M., Han, X., and B lażewicz, J. (2016). Scheduling

on parallel identical machines with late work criterion: Offline and online

cases. Journal of Scheduling, 19(6):729–736.

33

[8] Drótos, M. and Kis, T. (2011). Resource leveling in a machine environ-

ment. European Journal of Operational Research, 212(1):12–21.

[9] Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability:

A Guide to the Theory of NP-Completeness. New York, NY: Freeman.

[10] Graham, R. L. (1969). Bounds on multiprocessing timing anomalies.

SIAM Journal on Applied Mathematics, 17(2):416–429.

[11] Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A.

(1979). Optimization and approximation in deterministic sequencing and

scheduling: a survey. Annals of Discrete Mathematics, 5:287–326.

[12] Kis, T. (2005). A branch-and-cut algorithm for scheduling of

projects with variable-intensity activities. Mathematical Programming,

103(3):515–539.

[13] Kovalyov, M. Y., Potts, C. N., and Van Wassenhove, L. N. (1994). A

fully polynomial approximation scheme for scheduling a single machine to

minimize total weighted late work. Mathematics of Operations Research,

19(1):86–93.

[14] Kovalyov, M. Y. and Werner, F. (2002). Approximation schemes for

scheduling jobs with common due date on parallel machines to minimize

total tardiness. Journal of Heuristics, 8(4):415–428.

[15] Neumann, K. and Zimmermann, J. (2000). Procedures for resource

leveling and net present value problems in project scheduling with gen-

eral temporal and resource constraints. European Journal of Operational

Research, 127(2):425–443.

[16] Potts, C. N. and Van Wassenhove, L. N. (1992a). Approximation al-

gorithms for scheduling a single machine to minimize total late work.

Operations Research Letters, 11(5):261–266.

34

[17] Potts, C. N. and Van Wassenhove, L. N. (1992b). Single machine

scheduling to minimize total late work. Operations Research, 40(3):586–

595.

[18] Rieck, J., Zimmermann, J., and Gather, T. (2012). Mixed-integer lin-

ear programming for resource leveling problems. European Journal of

Operational Research, 221(1):27–37.

[19] Sterna, M. (2000). Problems and algorithms in non-classical shop

scheduling. Scientific Publishers, Polish Academy of Sciences.

[20] Sterna, M. (2006). Late work scheduling in shop systems. Dissertation

405. Poznań: Publishing House of Poznań University of Technology.

[21] Sterna, M. (2007). Late work minimization in a small flexible manu-

facturing system. Computers & Industrial Engineering, 52(2):210–228.

[22] Sterna, M. (2011). A survey of scheduling problems with late work

criteria. Omega, 39(2):120–129.

[23] Sterna, M. and Czerniachowska, K. (2017). Polynomial time approxi-

mation scheme for two parallel machines scheduling with a common due

date to maximize early work. Journal of Optimization Theory and Appli-

cations, 174(3):927–944.

[24] Verbeeck, C., Van Peteghem, V., Vanhoucke, M., Vansteenwegen, P.,

and Aghezzaf, E.-H. (2017). A metaheuristic solution approach for the

time-constrained project scheduling problem. OR Spectrum, 39(2):353–

371.

[25] Woeginger, G. J. (2005). A comment on scheduling two parallel ma-

chines with capacity constraints. Discrete Optimization, 2(3):269–272.

[26] Wright, S. J. (1997). Primal-dual interior-point methods, volume 54 of

Other Titles in Applied Mathematics. SIAM, Philadelphia, PA.

35

