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We study the global stability of a multistrain SIS model with superinfection
and patch structure. We establish an iterative procedure to obtain a sequence
of threshold parameters. By a repeated application of a result by Takeuchi
et al. [Nonlinear Anal Real World Appl. 2006;7:235–247], we show that these
parameters completely determine the global dynamics of the system: for any
number of patches and strains with different infectivities, any subset of the
strains can stably coexist depending on the particular choice of the parameters.

KEYWORDS

global asymptotic stability, multigroup epidemic model, multistrain model, patch model

MSC CLASSIFICATION

92D30; 34D23

1 INTRODUCTION
Several viruses have different genetic variants (subtypes) called strains which may differ in their infectivity and virulence.
Stronger strains might superinfect an individual already infected by another strain, and there can be a coexistence of
different virus strains with different virulence. Nowak1 considered a model to provide an analytical understanding of
the complexities introduced by superinfection. In our earlier work,2 we considered a multistrain SIS model with super
infection with n infectious strains and showed that it is possible to obtain a stable coexistence of any subgroup of the n
strains. We established an iterative method for calculating a sequence of reproduction numbers, which determine the
strains being present in the globally asymptotically stable coexistence equilibrium.

Recently, there has been an increasing interest in the modelling of the spatial spread of infectious diseases (see,
e.g., Arino and Portet,3 Knipl,4 Knipl and Röst,5 Muroya, Kuniya and Enatsu,6 Nakata and Röst7). There are several ways
to model spatial spread: one might use partial differential equations (see, e.g., Peng and Zhao,8 Allen et al.,9 Ge et al.10)
or one may apply ordinary or functional differential equations where individuals can travel between different patches
(countries, regions, cities etc.).

Marvá et al.11 considered a spatially distributed periodic multistrain SIS epidemic model with patches of periodic migra-
tion rates without superinfection. Considering global reproduction numbers in the nonspatialized aggregated system that
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serve to decide the eradication or endemicity of the epidemic in the initial spatially distributed nonautonomous model and
comparing these global reproductive numbers with those corresponding to isolated patches, they showed that adequate
periodic fast migrations can in many cases reverse local endemicity and get global eradication of the epidemic.

Motivated by our earlier work on multistrain models and by the recent results on spatial spread of diseases, we extend
our previous model2 to the general case of p patches. In Section 2, we establish a multistrain SIS model with superinfection
with n infectious strains and patch structure. In Section 3, we establish an iterative procedure to determine the globally
asymptotically stable equilibrium of the multipatch model introduced in Section 2.

2 THE MODEL
We consider a heterogeneous virus population with n virus strains having different infectivities and virulences. We will
assume that superinfection is possible, and more virulent strains outcompete the less virulent ones in an infected indi-
vidual taking over the host completely, that is, we assume that an infected individual is always infected by only one virus
strain. Let n denote the number of strains with different virulences, whereas p stands for the number of patches. On each
patch, the population is divided into n + 1 compartments depending on the presence of any of the virus strains: the sus-
ceptible class of patch 𝓁 is denoted by S𝓁(t) and on each patch 𝓁, there are n infected compartments T𝓁

1 , … ,T𝓁
n where a

larger index corresponds to a compartment of individuals infected by a strain with larger virulence, so for i < j, Tj indi-
viduals superinfect Ti individuals. Let B𝓁 denote the birth rate and b𝓁 the death rate on the 𝓁th patch. We denote by 𝛽𝓁k𝑗
the transmission rate on patch 𝓁 by which the kth strain infects those who are infected by the jth strain. The transmission
rates from susceptibles to strain k on patch 𝓁 will be denoted by 𝛽𝓁kk. Recovery rate on patch 𝓁 among those infected by
the kth strain will be denoted by 𝜃𝓁k . By m𝓁i, we denote the travel rate from patch i to 𝓁, which, on a given patch is equal
for all compartments on that patch. This assumption—which is natural in the case of mild diseases—will be important
in the transformation of variables described in the next section. The parameters B𝓁 , b𝓁

,m𝓁i, 𝓁, i = 1, … , p are assumed
to be nonnegative.

Using these notations, we consider the following multistrain SIS model with superinfection and patch structure:

dS𝓁(t)
dt

= B𝓁 − b𝓁S𝓁(t) − S𝓁(t)
n∑

k=1
𝛽𝓁kkT𝓁

k (t) +
n∑

k=1
𝜃𝓁k T𝓁

k (t) +
p∑

i=1
(1 − 𝛿𝓁i)

{
m𝓁iSi(t) − mi𝓁S𝓁(t)

}
,

dT𝓁
k (t)

dt
= S𝓁(t)𝛽𝓁kkT𝓁

k (t) + T𝓁
k (t)

n∑
𝑗=1

(1 − 𝛿k𝑗)𝛽𝓁k𝑗T
𝓁
𝑗
(t) −

(
b𝓁 + 𝜃𝓁k

)
T𝓁

k (t) +
p∑

i=1
(1 − 𝛿𝓁i)

{
m𝓁iTi

k(t) − mi𝓁T𝓁
k (t)

}
,

k = 1, 2, … ,n, 𝓁 = 1, 2, … , p,

(1)

with initial conditions

S𝓁(0) = 𝜑𝓁
0 , T𝓁

k (0) = 𝜑𝓁
k , k = 1, 2, … ,n, 𝓁 = 1, 2, … , p,(

𝜑1
0, 𝜑

1
1, 𝜑

1
2, … , 𝜑1

n, 𝜑
2
0, 𝜑

2
1, 𝜑

2
2, … , 𝜑2

n, … , 𝜑
p
0, 𝜑

p
1, 𝜑

p
2, … , 𝜑

p
n
)
∈ R

(n+1)p
+ =∶ Γ,

(2)

where 𝛿kj denotes the Kronecker delta such that 𝛿kj = 1 if k = j and 𝛿kj = 0 otherwise, and where

𝛽𝓁k𝑗 = 𝛽𝓁kk, 1 ≤ 𝑗 ≤ k, and

𝛽𝓁k𝑗 = −𝛽𝓁
𝑗𝑗
, k + 1 ≤ 𝑗 ≤ n, k = 1, 2, … ,n, 𝓁 = 1, 2, … , p.

(3)

Note that for n = 2 and p = 1, (1) corresponds to the model by A. Dénes and G. Röst describing the spread of ectopar-
asites and ectoparasite-borne diseases,12,13 whereas for p = 1, it corresponds to the multistrain SIS model by A. Dénes,
Y. Muroya and G. Röst.2

3 MAIN RESULT

Let us introduce the notation

N𝓁
n (t) = S𝓁(t) +

n∑
𝑗=1

T𝓁
𝑗
(t), 𝓁 = 1, 2, … , p. (4)
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Then, by (3), we have 𝛽𝓁k𝑗 = −𝛽𝓁
𝑗k for k ≠ j and hence,

n∑
k=1

T𝓁
k (t)

n∑
𝑗=1

(1 − 𝛿k𝑗)𝛽𝓁k𝑗T
𝓁
𝑗
(t) = 0, 𝓁 = 1, 2, … , p.

Thus, (1) is equivalent to

dT𝓁
k (t)

dt
=

(
N𝓁

n (t) −
n∑

𝑗=1
T𝓁
𝑗
(t)

)
𝛽𝓁kkT𝓁

k (t) + T𝓁
k (t)

n∑
𝑗=1

(1 − 𝛿k𝑗)𝛽𝓁k𝑗T
𝓁
𝑗
(t) −

(
b𝓁 + 𝜃𝓁k

)
T𝓁

k (t)

+
p∑

i=1
(1 − 𝛿𝓁i)

{
m𝓁iTi

k(t) − mi𝓁T𝓁
k (t)

}
, k = 1, 2, … ,n − 1,

(5a)

dT𝓁
n (t)

dt
=

(
N𝓁

n (t) −
n∑

𝑗=1
T𝓁
𝑗
(t)

)
𝛽𝓁nnT𝓁

n (t) + T𝓁
n (t)

n∑
𝑗=1

(1 − 𝛿n𝑗)𝛽𝓁n𝑗T
𝓁
𝑗
(t)

−
(

b𝓁 + 𝜃𝓁n
)

T𝓁
n (t) +

p∑
i=1

(1 − 𝛿𝓁i)
{

m𝓁iTi
n(t) − mi𝓁T𝓁

n (t)
}

= T𝓁
n (t)

(
𝛽𝓁nnN𝓁

n (t) −
n∑

𝑗=1

{
𝛽𝓁nn − (1 − 𝛿n𝑗)𝛽𝓁n𝑗

}
T𝓁
𝑗
(t) −

(
b𝓁 + 𝜃𝓁n

))
+

p∑
i=1

(1 − 𝛿𝓁i)
{

m𝓁iTi
n(t) − mi𝓁T𝓁

n (t)
}
,

= T𝓁
n (t)

(
𝛽𝓁nnN𝓁

n (t) − 𝛽𝓁nnT𝓁
n (t) −

(
b𝓁 + 𝜃𝓁n

))
+

p∑
i=1

(1 − 𝛿𝓁i)
{

m𝓁iTi
n(t) − mi𝓁T𝓁

n (t)
}
,

(5b)

dN𝓁
n (t)

dt
= B𝓁 − b𝓁N𝓁

n (t) +
p∑

i=1
(1 − 𝛿𝓁i)

{
m𝓁iNi

n(t) − mi𝓁N𝓁
n (t)

}
,

𝓁 = 1, 2, … , p.

(5c)

Equations (5b) and (5c) are clearly independent from the rest of the equations. In particular, Equation (5c) are also
independent from Equation (5b). As the coefficient matrix A of the linear system of equations

( B1

⋮
Bp

)
=
⎛⎜⎜⎜⎝

b1 +
∑p

i=1(1 − 𝛿1i)mi1 −m12 … −m1p
−m21 b2 +

∑p
i=1(1 − 𝛿2i)mi2 … −m2p

⋮ ⋮ ⋱ ⋮
−mp1 −mp2 … bp +

∑p
i=1(1 − 𝛿pi)mip

⎞⎟⎟⎟⎠
( N1

n
⋮

Np
n

)

is a strictly diagonally dominant Z-matrix, it is nonsingular, and its inverse is nonnegative (because of the nonnegativity
of the parameters), hence, this algebraic system has a unique, positive solution

( N1∗
n
⋮

Np∗
n

)
= A−1

( B1

⋮
Bp

)
.

Let us define P𝓁(t) ∶= N𝓁
n (t) − N𝓁∗

n , 𝓁 = 1, … , p, then for P′
𝓁(t), we have the equation

d
dt

( P1(t)
⋮

Pp(t)

)
= −A

( P1(t)
⋮

Pp(t)

)
. (6)

From the properties of the matrix −A, applying the Gershgorin circle theorem, we obtain that P𝓁(t) → 0 exponentially
as t → ∞,𝓁 = 1, … , p. Hence, for Equation (5c), there exist positive constants N𝓁∗

n , 𝓁 = 1, 2, … , p such that

lim
t→+∞

N𝓁
n (t) = N𝓁∗

n , 𝓁 = 1, 2, … , p, (7)
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exponentially and (5b) has the following limit system:

dT𝓁
n (t)

dt
= T𝓁

n (t)
(
𝛽𝓁nnN𝓁∗

n −
(

b𝓁 + 𝜃𝓁n
)
− 𝛽𝓁nnT𝓁

n (t)
)
+

p∑
i=1

(1 − 𝛿𝓁i)
{

m𝓁iTi
n(t) − mi𝓁T𝓁

n (t)
}
, 𝓁 = 1, 2, … , p, (8)

which is a p-dimensional Lotka–Volterra system with patch structure, in the form as Equation (2.1) in Takeuchi et al.14

We introduce the notation

m̃ii =
p∑

𝓁=1
(1 − 𝛿i𝓁)mi𝓁 , i = 1, 2, … , p,

and define the connectivity matrix

M =
⎡⎢⎢⎢⎣
−m̃11 m12 … m1p
m21 −m̃22 … m2p
⋮ ⋮ ⋱ ⋮

mp1 mp2 … −m̃pp

⎤⎥⎥⎥⎦ .
Now, we define

c𝓁n = 𝛽𝓁nnN𝓁∗
n − (b𝓁 + 𝜃𝓁n ), 𝓁 = 1, 2, … , p,

and

Mn =
⎡⎢⎢⎢⎣

c1
n − m̃11 m12 … m1p

m21 c2
n − m̃22 … m2p

⋮ ⋮ ⋱ ⋮
mp1 mp2 … cp

n − m̃pp

⎤⎥⎥⎥⎦ .
Let us denote by s(L) the stability modulus of a p × p matrix L, defined by s(L) ∶= max{Re𝜆 ∶ 𝜆 is an eigenvalue of L}. If
L has nonnegative off-diagonal elements and is irreducible, then s(L) is a simple eigenvalue of L with a (componentwise)
positive eigenvector (see, e.g., Theorem A.5 in Smith15).

Proposition 1 (see Theorem 2.1 in Takeuchi et al.14). Suppose that Mn is irreducible. Then, Equation (8) has a positive
equilibrium which is globally asymptotically stable if s(Mn) > 0. If s(Mn) ≤ 0, then 0 is a globally asymptotically stable
equilibrium, and the populations go extinct in every patch.

Note that we may take that the populations go extinct in every patch not only if s(Mn) < 0 but also if s(Mn) = 0 (see
Theorem 2.2 of Faria16).

Let E∗
n = (T1∗

n ,T2∗
n , … ,Tp∗

n ) be the unique equilibrium of (8) which is globally asymptotically stable. Then, E∗
n =

(0, 0, … , 0) if s(Mn) ≤ 0, and E∗
n = (T1∗

n ,T2∗
n , … ,Tp∗

n ) satisfies T𝓁∗
n > 0, 𝓁 = 1, 2, … , p, if s(Mn) > 0. Therefore, in the

first case, the unique equilibrium of (8), is globally asymptotically stable on {(T1
n,T2

n, … ,Tp
n) ∈ R

p
+}, whereas in the sec-

ond case, the unique positive equilibrium E∗
n = (T1∗

n ,T2∗
n , … ,Tp∗

n )with T𝓁∗
n > 0, 𝓁 = 1, 2, … , p is globally asymptotically

stable with respect to {(T1
n,T2

n, … ,Tp
n) ∈ R

p
+} ⧵ {(0, 0, … , 0)}. Let us introduce the notations

N𝓁
n−1(t) = S𝓁(t) +

n−1∑
𝑗=1

T𝓁
𝑗
(t), 𝓁 = 1, 2, … , p,

and

b𝓁
(1) = b𝓁 − 𝛽𝓁knT𝓁∗

n = b𝓁 + 𝛽𝓁nnT𝓁∗
n , k = 1, 2, … ,n − 1, 𝓁 = 1, 2, … , p,
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and

B𝓁
(1) = B𝓁 + 𝜃𝓁n T𝓁∗

n , 𝓁 = 1, 2, … , p,

where (T1∗
n , … ,T1∗

n ) is either equal to (0, … , 0) (if s(Mn) ≤ 0) or it is equal to the unique positive equilibrium of (8) (if
s(Mn) > 0). This way, substituting Ti∗

n , 1 = 1, … , p into the place of Ti
n(t) in (4) and (5), we may consider the following

reduced system of (5) for the global stability of (1):

dT𝓁
k (t)

dt
=

(
N𝓁

n−1(t) −
n−1∑
𝑗=1

T𝓁
𝑗
(t)

)
𝛽𝓁kkT𝓁

k (t) + T𝓁
k (t)

n−1∑
𝑗=1

(1 − 𝛿k𝑗)𝛽𝓁k𝑗T
𝓁
𝑗
(t) −

(
b𝓁
(1) + 𝜃𝓁k

)
T𝓁

k (t)

+
p∑

i=1
(1 − 𝛿𝓁i)

{
m𝓁iTi

k(t) − mi𝓁T𝓁
k (t)

}
, k = 1, 2, … ,n − 2,

(9a)

dT𝓁
n−1(t)
dt

=

(
N𝓁

n−1(t) −
n−1∑
𝑗=1

T𝓁
𝑗
(t)

)
𝛽𝓁n−1,n−1T𝓁

n−1(t) + T𝓁
n−1(t)

n−1∑
𝑗=1

(1 − 𝛿n−1,𝑗)𝛽𝓁n−1,𝑗T
𝓁
𝑗
(t) −

(
b𝓁
(1) + 𝜃𝓁n−1

)
T𝓁

n−1(t)

+
p∑

i=1
(1 − 𝛿𝓁i)

{
m𝓁iTi

n−1(t) − mi𝓁T𝓁
n−1(t)

}
= T𝓁

n−1(t)
(
𝛽𝓁n−1,n−1N𝓁

n−1(t) − 𝛽𝓁n−1,n−1T𝓁
n−1(t) −

(
b𝓁
(1) + 𝜃𝓁n−1

))
+

p∑
i=1

(1 − 𝛿𝓁i)
{

m𝓁iTi
n−1(t) − mi𝓁T𝓁

n−1(t)
}
,

(9b)

dN𝓁
n−1(t)
dt

= B𝓁
(1) − b𝓁

(1)N
𝓁
n−1(t) +

p∑
i=1

(1 − 𝛿𝓁i)
{

m𝓁iNi
n−1(t) − mi𝓁N𝓁

n−1(t)
}
,

𝓁 = 1, 2, … , p.

(9c)

It is easy to see that (9) is of similar structure as (5), but with dimension pn. The positivity of the new parameters fol-
lows from the conditions (3). This means that by repeating the above steps, namely, substituting the limit of the total
populations in the patches and then substituting the limit of the Lotka–Volterra system for the strongest strain, we can
further reduce the dimension by substituting the values of the equilibrium which is globally asymptotically stable, of the
decoupled p dimensional Lotka–Volterra system into the remaining equations.

We proceed repeating the same steps for the newly arising reduced system, decreasing the dimension of our system
in each round of the procedure by p. In each round, for q decreasing from n − 1 to 1, we introduce the respective limits
N𝓁∗

q and T𝓁∗
q , as well as the matrices Mq corresponding to the reduced system in an analogous way as it was presented in

the case of the original system. In the end, we arrive at a p dimensional Lotka–Volterra system, the dynamics of which
can be determined in a similar way as in the above case. This final system will give us an equilibrium value for S1(t) and
(T1

1(t),T1
2(t), … ,T1

p(t)). Thus, by the above discussion, we can reach a conclusion by induction to the global dynamics of
the model (1) and we formulate the following theorem.

Theorem 1. Assume that the connectivity matrix M is irreducible. Then the global dynamics of the multistrain, mul-
tipatch SIS model (1) is completely determined by the threshold parameters (s(M1), s(M2), … , s(Mn)) which can be
obtained iteratively. There exists an equilibrium in Γ which is globally asymptotically stable with respect to the region Γ0,
where Γ0 is the interior of Γ.

Proof of Theorem 1. The main part of the proof consists of the above description of the steps of the procedure. There is
one point left to be shown: we have to prove that in each step, when we substitute the limits N𝓁∗

𝜅 and T𝓁∗
𝜅 , respectively,

into the remaining equations, the dynamics of the resulting system is indeed equivalent to that of the preceding one.
We summarize the steps of the procedure in the following.

1. We obtain N𝓁∗
n (𝓁 = 1, … , p) from the linear system (6).

2. We substitute the limits N𝓁∗
n (𝓁 = 1, … , p) into Equation (5b) to obtain Equation (8).
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3. We obtain the limits T𝓁∗
n (𝓁 = 1, … , p) of the Lotka–Volterra system (8).

4. We create the new variables N𝓁
n−1(t), 𝓁 = 1, … , p and parameters b𝓁

(1),B𝓁
(1), 𝓁 = 1, … , p.

5. We substitute the limits T𝓁∗
n (𝓁 = 1, … , p) into Equation (5a) to obtain the reduced system (9) which has the

same structure as the original one (5).
6. We repeat this cycle n − 1 times, with the indices decreased by 1 every time.

For the validity of Step 3 in the qth cycle, we need to verify that Mn−q is irreducible. Because Mn−q = M +
diag[c1

n−q, … , cp
n−q] and we assumed that M is irreducible, Mn−q is also irreducible.

To obtain that in each case, the limit of the solutions of the resulting system after the substitution will be the same
equilibrium as the limit of the solutions of the original system, we will apply Theorem 4.1 of Hirsch and Smith.17 To
apply this theorem, we recall the quasimonotone condition17 for a differential equation x′(t) = f(t, x(t)): we say that
the time-dependent vector field 𝑓 ∶ J × D → Rn (where J ⊂ R and D ⊂ Rn) satisfies the quasimonotone condition
in D if for all (t, y), (t, z) ∈ J × D, we have

𝑦 ≤ z and 𝑦i = zi implies 𝑓i(t, 𝑦) ≤ 𝑓i(t, z).

According to Theorem 4.1 of Hirsch and Smith,17 if 𝑓, g ∶ J × D → Rn are continuous, Lipschitz on each compact
subset of D, at least one of them satisfies the quasimonotone condition, and f(t, y) ≤ g(t, y) for all (t, y) ∈ J × D, then

𝑦, z ∈ R
n, 𝑦 ≤ z implies x(t; t0, 𝑦) ≤ x(t; t0, z) for all t > t0,

where x(t; t0, y) denotes the solution of x′(t) = f(t, x(t)) started from y at t = t0.
To show that the limits T𝓁∗

𝜅 obtained during the procedure by substituting the limits of (8) into (5a) are the same
as the limit of the variables T𝓁

𝜅 , 𝜅 = 1, … ,n, 𝓁 = 1, … , p in the original system, we will use an induction argument.
It is clear from the above that the claim is true for 𝜅 = n. Let now 1 ≤ r ≤ n − 1 and let us suppose that the claim
holds for all T𝓁

𝜅 (t) for r < 𝜅 ≤ n. The limits T𝓁∗
r are obtained by first substituting the limits T𝓁∗

r+1 into the equations
for T𝓁

𝑗
(t), 1 ≤ j ≤ r and then substituting the limits N𝓁∗

r into the equations for T𝓁
r (t), hence, we have to compare the

limits of the two systems

dT𝓁
r (t)

dt
=
(

N𝓁
r+1(t) − 2T𝓁

r+1(t) − T𝓁
r (t)

)
𝛽𝓁rrT𝓁

r (t) −
(

b𝓁
(n−r+1) + 𝜃𝓁r

)
T𝓁

r (t) +
p∑

i=1
(1 − 𝛿𝓁i)

{
m𝓁iTi

r(t) − mi𝓁T𝓁
r (t)

}
=
(

N𝓁
r (t) − T𝓁

r+1(t) − T𝓁
r (t)

)
𝛽𝓁rrT𝓁

r (t) −
(

b𝓁
(n−r+1) + 𝜃𝓁r

)
T𝓁

r (t) +
p∑

i=1
(1 − 𝛿𝓁i)

{
m𝓁iTi

r(t) − mi𝓁T𝓁
r (t)

} (10)

and
dT𝓁

r (t)
dt

=
(

N𝓁∗
r − T𝓁

r (t)
)
𝛽𝓁rrT𝓁

r (t) −
(

b𝓁
(n−r) + 𝜃𝓁r

)
T𝓁

r (t) +
p∑

𝓁=1
(1 − 𝛿𝓁i)

{
m𝓁iTi

r(t) − mi𝓁T𝓁
r (t)

}
,

𝓁 = 1, 2, … , p.

(11)

We know that N𝓁
r (t) (𝓁 = 1, … , p) converge to N𝓁∗

r (𝓁 = 1, … , p), whereas from the definition of r, we have that
T𝓁

r+1(t) (𝓁 = 1, … , p) converge to T𝓁∗
r+1 (𝓁 = 1, … , p). Then, for any 𝜀 > 0, there exists a t̄ > 0 such that |N𝓁

r (t)−N𝓁∗
r | <

𝜀 and |T𝓁
r+1(t) − T𝓁∗

r+1| < 𝜀 for all t > t̄, 𝓁 = 1, … , p. If we substitute T1∗
r+1 + 𝜀, … ,Tp∗

r+1 + 𝜀,N1∗
r − 𝜀, … ,Np∗

n−q − 𝜀,
resp. T1∗

r+1 − 𝜀, … ,Tp∗
r+1 − 𝜀,N1∗

r + 𝜀, … ,Np∗
n−q + 𝜀 into (10), we obtain two systems of the same structure as (11), and

one of them is a lower, the other is an upper estimate of (10), and each has a globally asymptotically stable equilibrium(
T1

r (𝜀), … ,Tp
r (𝜀)

)
and (T

1
r (𝜀), … ,T

p
r (𝜀)), respctively, because of Proposition 1. It is easy to see that the original system

(10), considered as a nonautonomous system with time-dependent coefficients T1
r+1(t), … ,Tp

r+1(t),N1
r (t), … ,Np

r (t),
satisfies the quasimonotone condition, as well as the systems obtained after the substitution. Hence, we can apply
Theorem 4.1 of Hirsch and Smith17 to obtain that for any solution (T1

r (t), … ,Tp
r (t)) of (10),

T𝓁
r (𝜀) ≤ lim inf

t→∞
T𝓁

r (t) ≤ lim sup
t→∞

T𝓁
r (t) ≤ T

𝓁
r (𝜀), 𝓁 = 1, … , p. (12)
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Solutions of limit Eq. (11) converge to a globally asymptotically stable equilibrium by Proposition 1, and by letting
𝜀 → 0, we find that this limit is the same as that of (10).

As we have assumed that for all larger indices, the limits of the compartments of the original system (5) are equal to
the limits obtained during the procedure, using the equations for T1

r (t), … ,Tp
r (t) after n − r + 1 cycles of the procedure

satisfy the quasimonotone condition and the comparison (12), the limits obtained for these have to coincide with
those of the original system (for r = n, the statement follows directly).

To prove that not only attractivity but also global asymptotic stability holds, we will again use induction. Let E =
(S̄1,T

1
1, … ,T

1
n, … , S̄p,T

p
1, … ,T

p
n) denote the equilibrium obtained at the end of the procedure, where T

𝑗

i = 0 or
T
𝑗

i > 0 depending on the stability moduli (s(M1), s(M2), … , s(Mn)) and let E𝜅 = (S̄1,T
1
1, … ,T

1
𝜅, … , S̄p,T

p
1, … ,T

p
𝜅)

be the equilibrium of the p(𝜅 + 1)-dimensional system

dT𝓁
k (t)

dt
=

(
N𝓁

𝜅 (t) −
𝜅∑

𝑗=1
T𝓁
𝑗
(t)

)
𝛽𝓁kkT𝓁

k (t) + T𝓁
k (t)

𝜅∑
𝑗=1

(1 − 𝛿k𝑗)𝛽𝓁k𝑗T
𝓁
𝑗
(t) −

(
b𝓁
(n−𝜅) + 𝜃𝓁k

)
T𝓁

k (t)

+
p∑

i=1
(1 − 𝛿𝓁i)

{
m𝓁iTi

k(t) − mi𝓁T𝓁
k (t)

}
,

k = 1, 2, … , 𝜅 − 1, 𝓁 = 1, 2, … , p,
(13a)

dT𝓁
𝜅 (t)

dt
= T𝓁

𝜅 (t)
(
𝛽𝓁𝜅,𝜅N𝓁

𝜅 (t) −
(

b𝓁
(n−𝜅) + 𝜃𝓁𝜅

)
− 𝛽𝓁𝜅,𝜅T𝓁

𝜅 (t)
)

+
p∑

i=1
(1 − 𝛿𝓁i)

{
m𝓁iTi

𝜅(t) − mi𝓁T𝓁
𝜅 (t)

}
,

𝓁 = 1, 2, … , p,

(13b)

dN𝓁
𝜅 (t)

dt
= B𝓁

(n−𝜅) − b𝓁
(n−𝜅)N

𝓁
𝜅 (t) +

p∑
i=1

(1 − 𝛿𝓁i)
{

m𝓁iNi
𝜅(t) − mi𝓁N𝓁

𝜅 (t)
}
,

𝓁 = 1, 2, … , p,

(13c)

obtained during the procedure with E𝜅 consisting of the first p(𝜅 + 1) coordinates of E. Let us suppose that E𝜅 is a
stable equilibrium of the p(𝜅 + 1)-dimensional reduced system for some 𝜅 ≤ n. We will show that in each step, E𝜅+1
is a stable equilibrium of the p(𝜅 + 2)-dimensional reduced system

dT𝓁
k (t)

dt
=

(
N𝓁

𝜅+1(t) −
𝜅+1∑
𝑗=1

T𝓁
𝑗
(t)

)
𝛽𝓁kkT𝓁

k (t) + T𝓁
k (t)

𝜅+1∑
𝑗=1

(1 − 𝛿k𝑗)𝛽𝓁k𝑗T
𝓁
𝑗
(t)

−
(

b𝓁
(n−𝜅−1) + 𝜃𝓁k

)
T𝓁

k (t) +
p∑

i=1
(1 − 𝛿𝓁i)

{
m𝓁iTi

k(t) − mi𝓁T𝓁
k (t)

}
,

k = 1, 2, … , 𝜅,

(14a)

dT𝓁
𝜅+1(t)
dt

=

(
N𝓁

𝜅+1(t) −
𝜅+1∑
𝑗=1

T𝓁
𝑗
(t)

)
𝛽𝓁
𝜅+1,𝜅+1T𝓁

𝜅+1(t) + T𝓁
𝜅+1(t)

𝜅+1∑
𝑗=1

(1 − 𝛿𝜅+1,𝑗)𝛽𝓁𝜅+1,𝑗T
𝓁
𝑗
(t)

−
(

b𝓁
(n−𝜅−1) + 𝜃𝓁

𝜅+1

)
T𝓁
𝜅+1(t) +

p∑
i=1

(1 − 𝛿𝓁i)
{

m𝓁iTi
𝜅+1(t) − mi𝓁T𝓁

𝜅+1(t)
}
,

= T𝓁
𝜅+1(t)

(
𝛽𝓁
𝜅+1,𝜅+1N𝓁

𝜅+1(t) − 𝛽𝓁
𝜅+1,𝜅+1T𝓁

𝜅+1(t) −
(

b𝓁
(n−𝜅−1) + 𝜃𝓁

𝜅+1

))
+

p∑
i=1

(1 − 𝛿𝓁i)
{

m𝓁iTi
𝜅+1(t) − mi𝓁T𝓁

𝜅+1(t)
}
,

(14b)

dN𝓁
𝜅+1(t)
dt

= B𝓁
(n−𝜅−1) − b𝓁

(n−𝜅−1)N
𝓁
𝜅+1(t) +

p∑
i=1

(1 − 𝛿𝓁i)
{

m𝓁iNi
𝜅+1(t) − mi𝓁N𝓁

𝜅+1(t)
}
,

𝓁 = 1, 2, … , p.

(14c)
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Suppose this does not hold, that is, E𝜅+1 is unstable. In this case, there exist an 𝜀 > 0 and a sequence {xm} →
E𝜅+1, |xm − E𝜅+1| < 1∕m such that the orbits started from the points of the sequence leave B(E𝜅+1, 𝜀) ∶={

x ∈ R
(𝜅+2)p
+ ∶ |x − E𝜅+1| ≤ 𝜀

}
. By an exit point from B(E𝜅+1, 𝜀), we mean a point x such that |E𝜅+1 − x| = 𝜀 and

for the trajectory through x, there is an open interval J ∋ 0 such that for all t ∈ J, xt ∈ B(E𝜅+1, 𝜀) if t ≤ 0 and
xt ∉ B(E𝜅+1, 𝜀) if t > 0. Let us denote by x𝜀m the first exit point from B(E𝜅+1, 𝜀) of the solution started from xm, reached
at time 𝜏m. There is a convergent subsequence of the sequence x𝜀m (still denoted by x𝜀m) which tends to a point denoted
by x∗𝜀 ∈ S(E𝜅+1, 𝜀) ∶=

{
x ∈ R

(𝜅+2)p
+ ∶ |x − E𝜅+1| = 𝜀

}
. We will show that E𝜅+1 ∈ 𝛼(x∗𝜀 ). For this end, let us consider

the set S
(

E𝜅+1,
𝜀

2

)
. Clearly, all solutions started from the points xm (we drop the first elements of the sequence, if

necessary) will leave the set B
(

E𝜅+1,
𝜀

2

)
. We denote the last exit point of each trajectory from this set before time 𝜏m,

respectively, by x𝜀∕2
m . Also this sequence has a convergent subsequence (still denoted the same way), let us denote its

limit by x∗
𝜀∕2. We will show that the trajectory started from x∗

𝜀∕2 goes through x∗𝜀 . As E𝜅+1 is globally attractive, this tra-

jectory will eventually enter S
(

E𝜅+1,
𝜀

4

)
at some time T > 0. Let us suppose that the trajectory started from x∗

𝜀∕2 does
not go through x∗𝜀 and let us denote by d > 0 the distance of this trajectory from x∗𝜀 . For continuity reasons, there is an
N ∈ N so that for any m > N, |x∗

𝜀∕2t − x𝜀∕2
m t| < max

{
d
2
,
𝜀

8

}
for 0 < t < T. This means that for m large enough, the tra-

jectory started from x𝜀∕2
m will enter again S

(
E𝜅+1,

𝜀

2

)
without getting close to x∗𝜀 which contradicts either x𝜀m being the

first exit point from B(E𝜅+1, 𝜀) or x𝜀∕2
m being the last exit point before 𝜏m from B

(
E𝜅+1,

𝜀

2

)
. Hence, we have shown that

the trajectory started from x∗
𝜀∕2 goes through x∗𝜀 . Proceeding like this (taking neighbourhoods of radius 𝜀∕4, 𝜀∕8 etc.),

we obtain that the backward trajectory of x∗𝜀 enters any small neighbourhood of E𝜅+1. That is, there exists a decreas-
ing sequence tn < 0 such that |xtn − E𝜅+1| < 𝜀

2n
. We have either tn → t* for some t* < 0 or tn → −∞. In the first

case, xtn → xt* = E𝜅+1 which contradicts the fact that E𝜅+1 is an equilibrium. Hence, tn → ∞, and we obtain that
E𝜅+1 ∈ 𝛼(x∗𝜀 ), while it follows from the global attractivity of E𝜅+1 that the 𝜔-limit set of the trajectory is {E𝜅+1}. Let us
denote this trajectory by 𝛾(x∗𝜀 )

We know that Equations (14b) for d
dt

T1
𝜅+1(t), … ,

d
dt

Tp
𝜅+1(t) and (14c) for d

dt
N1

𝜅+1(t), … ,
d
dt

Np
𝜅+1(t) can be decoupled

from the rest of the equations and using the exponential stability of the limits

lim
t→+∞

N𝓁
𝜅+1(t) = N𝓁∗

𝜅+1, 𝓁 = 1, 2, … , p,

and Proposition 1 we obtain that T
1
𝜅+1, … ,T

p
𝜅+1 is a stable equilibrium of the system consisting of the system

dT𝓁
𝜅+1(t)
dt

= T𝓁
𝜅+1(t)

(
𝛽𝓁
𝜅+1,𝜅+1N𝓁∗

𝜅+1 −
(

b𝓁 + 𝜃𝓁
𝜅+1

)
− 𝛽𝓁

𝜅+1,𝜅+1T𝓁
𝜅+1(t)

)
+

p∑
i=1

(1 − 𝛿𝓁i)
{

m𝓁iTi
𝜅+1(t) − mi𝓁T𝓁

𝜅+1(t)
}
, 𝓁 = 1, 2, … , p.

Therefore, the equilibrium E𝜅+1 is stable in the coordinates T1
𝜅+1, … ,Tp

𝜅+1 in the sense that for any 𝜀̃ > 0 there exists

a 𝛿(𝜀̃) > 0 such that for any initial value x with |x − E𝜅+1| < 𝛿, |T𝓁
𝜅+1(t) − T

𝓁
𝜅+1| < 𝜀̃ for all t > 0 and 𝓁 = 1, … , p.

Thus, the trajectory 𝛾(x∗𝜀 ) obtained above lies entirely in the subspace
{

T1
𝜅+1 = T

1
𝜅+1, … ,Tp

𝜅+1 = T
p
𝜅+1

}
. On the other

hand, the current p(𝜅 + 2)-dimensional system coincides with the p(𝜅 + 1)-dimensional system on this subspace.
For the latter system, stability of the equilibrium E𝜅 follows from the induction assumption. However, the existence
of an orbit 𝛾̃ (different from the equilibrium E𝜅+1) whose 𝜔-limit set is {E𝜅+1} and whose 𝛼-limit set contains E𝜅+1
contradicts the stability of the equilibrium E𝜅 . Indeed, let us suppose that E𝜅 is stable and there exists such an orbit
𝛾̃ . The stability of E𝜅 would implies that for any 𝜀̂ > 0, there exists a 𝛿(𝜀̂) such that for any solution started from an
initial value P with |P − E𝜅| < 𝛿, we have |Pt − E𝜅| < 𝜀̂ for all t > 0. Hence, this is also true for 𝜀̂ = |E𝜅 − P̃|∕2 for any
P̃ ∈ 𝛾̃ , which is a contradiction, as a solution started from a point of 𝛾̃ clearly leaves S(E𝜅, 𝜀̂). Hence, no such orbit 𝛾̂
can exist. This implies the global asymptotic stability of the equilibrium of the p(𝜅 + 2)-dimensional system.
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For 𝜅 = 1, the assertion holds trivially, hence, repeating the inductive step we obtain global asymptotic stability of
the equilibrium E.

4 DISCUSSION

Pathogen genetic diversity is a major obstacle to the design of efficient control strategies for a number of different diseases,
including malaria, HIV or TB (Childs et al.18). It makes rather challenging the preparation for seasonal influenza19 and the
management of drug resistance.20 Any model incorporating multiple pathogen strains has to keep track of people infected
with, and immune to different strains, resulting in a high dimensional system. The comprehensive mathematical analysis
of such systems is rather challenging; hence, global analysis is typically restricted to models with two or three strains.
For a class of multistrain models, Dang et al.21 concluded that the competitive exclusion principle holds. A coupling term
between strains promoted coexistence in Meehan et al.22 Furthermore, superinfection has important consequences in
the evolutionary considerations of host-pathogen interactions, allowing the coexistence of many strains, see Chapter 11
in Nowak.1

In this paper, we established an SIS model on several patches for a disease with multiple strains. We assumed that
more virulent strains can superinfect an individual infected by less virulent strains and outcompete them within the host.
We established an iterative procedure which allows us to determine the global dynamics of the system. By applying this
procedure, the dimension of the system is gradually decreased and a sequence of reproduction numbers is determined.
Arriving at the end of the procedure, the globally asymptotically stable equilibrium of the full system is obtained, where
a subset of the strains coexist, depending on the sequence of the reproduction numbers. It is important to note that the
procedure not only reveals which of the several strains will persist but also tells us that (in case of a strongly connected
network of patches) a particular strain will be present in all or none of the patches.

One real life example of such co-existence is described in Anderson and May,23 where the authors analysed the myx-
oma virus infection in Australian rabbit populations and found an equilibrium distribution of virus strains with different
levels of virulence. In our previous work2 and in the present paper, we established the global asymptotic stability of such
equilibrium distributions in an SIS setting with superinfection.
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