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Abstract
The Hybrid CT approach for simulating cyber-physical
systems uses continuous time simulation and provides
wrappers for discrete event components that implement
the required interfaces. Besides the general obstacles of
continuous time simulation, Hybrid CT introduces new
challenges, such as creating wrappers, detecting discrete
events (with minimal latency), and finding the correct bal-
ance between the simulation step sizes required by differ-
ent components.

We propose an adaptive step size controller that uses
high level information of the model and the simulation
(e.g. types of components, critical values of variables) to
adjust the step size based on the possibility of the detection
of a discrete event in the following step. Besides overcom-
ing the challenges of Hybrid CT simulation the component
also improves threshold-crossing detection. The proposed
approach does not require step rejection (rollback), that
discrete event components often fail to support.

In this paper we present the step size controller, demon-
strate its usability on industrial case studies and evaluate
the component both theoretically and based on measure-
ments performed on our implementation that was inte-
grated to the OMSimulator. We show that adaptive step
size control can be used to bridge the gap between contin-
uous time and discrete event simulation.
Keywords: hybrid CT simulation, step size control

1 Introduction
Hybrid systems demonstrate both discrete and continuous
behaviour which makes their simulation challenging. A
possible approach is Hybrid CT that uses continuous time
simulation and provides wrappers for discrete event com-
ponents (as opposed to Hybrid DE simulation where con-
tinuous time components are adjusted so discrete event
simulation can be used).

The OMSimulator developed by the Open Source Mod-
elica Consortium (OSMC) uses Hybrid CT simulation
based on the Functional Mock-up Interface (FMI) stan-
dard (Blochwitz et al., 2012) that defines a centralized ar-
chitecture for simulation, where each component of the
system (the so-called Functional Mock-up Units, FMUs)

is simulated on its own with a master simulator control-
ling the process.

Despite the fact that there are proper approaches to
create FMUs from discrete event components, the co-
simulation of continuous-time and discrete-event blocks is
still in its early phases. From a simulation point of view,
one of the main differences between the two types of com-
ponents is the simulation step size: continuous systems
are simulated by periodically calculating the value of the
variables with relatively large step sizes (measured in sec-
onds) but discrete event-based systems operate irregularly
and their simulation requires smaller steps (measured in
nanoseconds) since discrete events can trigger other dis-
crete events (almost) instantly. It is possible to simulate
continuous-time models with smaller step sizes (in fact,
it yields more accurate results), but it is inefficient (often
preventing industrial application) and mostly unnecessary
as events occur rarely. The sporadic occurrence of discrete
events raises the need for adaptive step size control.

We propose an adaptive step size control approach to
overcome the difficulties of hybrid CT simulation. The
proposed solution requires the user to select the variables
that are used to model event-based behaviour and adjusts
the step size when their values change. Moreover, our
approach can also be used to increase the accuracy of
threshold-crossing detection and location (which is an im-
portant aspect of hybrid simulation) without the need for
rejecting steps (rollbacks).

This paper is organized as follows: section 2 presents
some background knowledge on the challenges of Hy-
brid CT simulation, section 3 lists the related work, sec-
tion 4 presents the proposed step size controller, section 5
demonstrates its applicability, section 6 evaluates its use-
fulness and section 7 concludes the paper.

2 Preliminaries
2.1 Running example: Thermostat
In this paper we use an advanced version of the commonly
used thermostat example to illustrate the presented con-
cepts. The thermostat example describes a room with a
thermostat keeping the temperature near some target tem-
perature (with a given tolerance) that is given by a user



and can change through time. In addition we introduce a
monitoring system to ensure that the thermostat operates
correctly.

The monitoring system consists of three local moni-
tors and each of them is responsible for a component of
the heating system: the heating component, the heat sen-
sor, and the thermostat. The monitoring system is con-
trolled by a central monitor that communicates with the
local monitors via messages to check wether the system
is working correctly. Such a check is performed periodi-
cally every three minutes and each time before turning the
heating on.

In the simulated scenario, the temperature initiates from
20◦C with the target temperature set to 22◦C. Originally
the hysteresis is 3◦C, but set to 2.5◦C after half an hour.
The temperature of the environment is 0◦C – that is, when
the heating system is not activated the temperature of the
room is decreasing towards 0◦C. Initially, the thermostat
is turned off but it is turned on after 10 seconds.

2.2 FMI-based hybrid co-simulation
The FMI standard for co-simulation makes it possible
to simulate a system containing various components de-
scribed by different types of models that require differ-
ent ways of simulation. Co-simulation requires that each
model is encapsulated with an appropriate simulator mak-
ing an FMU which implements an interface through which
the master simulator can control the simulation. In ad-
dition, the FMU also contains an XML-based model de-
scription file, with high level information about the model
and additional information, such as the DefaultExperiment
element that contains the default values of basic simula-
tion parameters (e.g. stop time, relative tolerance, step
size).

The modular architecture of FMI-based simulation
makes it appropriate for hybrid co-simulation where the
two types of components are the discrete event and the
countinuous time components. Additionally, neither the
model nor the simulator internal data need to be accessed,
which makes FMI-based co-simulation industrially appli-
cable.

OMSimulator is an FMI-based simulator for cyber-
physical systems, developed by the OMSC. In order to
simulate, the architecture must be defined (input and out-
put ports must be coupled) and configuration data must
be provided, e.g. simulation step size, tolerance, duration
(the values given by the DefaultExperiment may differ in
each FMUs). After initialization the simulation is per-
formed by alternating two types of steps: in a simulation
step the master simulator instructs all FMUs to perform a
step of the given step size, and in a communication step the
output values of the source components of the connections
are passed as the input values of the corresponding target
components. Simulation terminates after a given duration.

Example In case of the thermostat example, we created
the following FMUs.

• The Thermostat FMU contains a discrete event-
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Figure 1. Thermostat FMU architecture

based model describing the operation of the thermo-
stat. The inputs of the thermostat include the settings
and the current temperature.

• The Room FMU contains a continuous model de-
scribing the characteristics of the physical world, in-
cluding the temperature and the user that provides the
settings of the thermostat. The user operations are
pre-defined and the temperature is calculated based
on the heating.

• The (discrete event-based) models of the each mon-
itors are provided in separate FMUs. The monitors
get the same inputs as the thermostat and check if
the operations of the thermostat are correct.

Accordingly the Thermostat and the Room FMUs are con-
nected, and the monitors are connected to both both of
them are connected to each monitors. The complete archi-
tecture can be seen in Figure 1.

2.3 Simulation challenges
One of the most important requirement of simulation is
accuracy: while it is theoretically impossible to calculate
accurate values, there are many ways to calculate an over-
approximation of the error and to keep it below a given
amount (Viel, 2014; Arnold et al., 2014a,b). The other
important requirement is efficiency and – as usual – the
two requirements contradict.

In case of iterative methods accuracy can be improved
by increasing the number of iterations during a simulation
step. In practice the iterations required to comply with
the desired tolerance can result in an impermissibly large
runtime which makes non-iterative methods favoured in
case of co-simulation.

In case of non-iterative methods efficiency depends on
the number of steps performed (hence, larger step size
yields more efficient simulation) and accuracy depends on
the size of the steps (smaller step size yields more accu-
rate results). As an optimization, master algorithms often
use rollbacks (the rejection of one or more steps) when
the simulation error is above the tolerance and then re-
simulate with smaller step sizes. Rollbacks have other ad-



Figure 2. Simulation error caused by step size

vantages, e.g. in case of the so-called threshold-crossing
detection problem, where it has to be detected (and lo-
cated) when a given variable reaches a certain value.

Introducing discrete event components into a continu-
ous time environment raises a new challenge, as it be-
comes more important to detect events with minimal la-
tency. While this problem can also be solved with roll-
backs (Galtier et al., 2015) many discrete event FMUs can
not handle rollbacks and therefore the only way to ensure
the events are detected in time is to use smaller step sizes
that makes simulation intractably expensive. It is also pos-
sible to attempt to predict events (Guermazi et al., 2016).

Example: In case of the thermostat example the detec-
tion of discrete events becomes important with the moni-
toring system: when the central monitor gathers informa-
tion to check if the thermostat works correctly, messages
are passed between the monitors. This process is fast and
in order to simulate it accurately, the simulation step sizes
have to be small, as a number of discrete events (the mes-
sages) are triggered by each other, therefore at most one of
these events occur in each simulation step. This communi-
cation between the monitors takes place when the heating
has to be turned on as well as every three minutes when the
periodical checks are performed. The former scenario in-
troduces a threshold-crossing detection challenge: it is im-
portant to detect when the temperature exceeds the bounds
of the target interval (initially 19◦C and 25◦C), and the pe-
riodical checks raise the need for event prediction.

In order to demonstrate the importance of keeping the
latency minimal, we have simulated the first time the tem-
perature falls below 19◦C in the thermostat example (ex-
cluding the monitor components) with constant step sizes
of 0.1 s and 0.01 s. The threshold-crossing happens about
344 seconds from initialization. The results are shown in
Figure 2, where the x axis represents the (simulated) time
and the y axis represents the simulated temperature. The
red line denotes the results of simulation with the smaller
step size and blue line corresponds to the larger step size.
Before the threshold-crossing the two simulation produces
similar results – with an exception of an initialization off-
set (explained in subsection 6.2). However, after the tem-
perature decreases below 19◦C the two simulations pro-
duce significantly different results. The reason behind this

is that because of the larger step sizes both the threshold-
crossing and the discrete reactions are detected with la-
tency. Because of this, in case of the smaller step size the
temperature raises over 19◦C in less than a second, while
in case of the other simulation it takes almost five seconds
which is a simulation error caused purely by event detec-
tion latency introduced by the large step sizes.

3 Related work
Discrete components in simulation There is extensive
existing research on introducing discrete event compo-
nents to continuous time environments. In (Guermazi
et al., 2016) the discrete event components are integrated
in the continuous time simulation workflow as a white
box, and the communication intervals are adjusted to de-
tect events based on internal information. In (Galtier et al.,
2015) rollbacks are used: when an event is detected, the
last step is rejected and the simulation step size is adjusted
to the minimum amount to locate it. In (Franke et al.,
2017) discrete time simulation is supported by introduc-
ing clocks and corresponding clocked variables that only
have values when the clock ticks.

Step size control There are many adaptive step size con-
trol approaches for enhancing the performance of the sim-
ulation (Schierz et al., 2012; Viel, 2014), but most of them
rely on internal data and step rejection, with the excep-
tion of (Busch and Schweizer, 2011) that uses a non-
iterative predictor/corrector error estimator. Adaptive step
size control can also be used for threshold-crossing detec-
tion and location (Esposito et al., 2001) .

Since the presented algorithms all focus on finding the
largest possible step size, it is theoretically possible to
combine them.

4 Adaptive step size control
for Hybrid CT simulation

4.1 Overview of the approach
The approach is illustrated in Figure 3.

General idea The step size controller unit is a compo-
nent of the master simulator, invoked immediately before
performing a simulation step, as depicted in Figure 3a.
The size of the next simulation step is calculated based
on a number of influencing factors, such as values of vari-
ables getting near to thresholds, expected occurrence of
events, expected event-responses, etc. These parameters
are pre-defined in a data structure that we call the sen-
sitivity model, that can be considered a configuration pa-
rameter of the simulation. Afterwards, the simulation step
is performed with the calculated step size. The simula-
tion step is followed by a communication step which is
followed by the step size calculation preparing the next
simulation step and so on.

Architecture The step size controller can be a compo-
nent of the master simulator or an additional layer con-
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Figure 3. Overview of approach

trolling it. The required sensitivity model is an input
of the component (or the simulator) – in the current im-
plementation the complete sensitivity model has to be
provided together, altough it would be more practical to
provide the FMU-specific elements individually, encapsu-
lated with the corresponding FMUs (see subsection 6.2).
The architecture can be seen in Figure 3b.

Information to provide In case of FMI-based co-
simulation of a large-scale system integration project, the
FMUs can originate from different stakeholders who may
wish to safeguard their intellectual property. While the
sensitivity model does require some information on the
operation, this information could also be derived by con-
ducting a limited number of preliminary simulation runs
with large (fix) step sizes (see subsection 5.2). Therefore
the sensitivity model is a convenient compromise between
making the models public in order to simulate them accu-
rately and hiding the models and simulate with impracti-
cably small step sizes.

4.2 Sensitivity model
The sensitivity model parametrizes the adaptive step size
control approach. It describes the critical scenarios that
require accurate calculations or detecting discrete events
with low latency – that is, the scenarios where it is impor-
tant to set the step size small.

In case of FMI-based co-simulation the numerical ac-
curacy is ensured by the internal simulators of the FMUs,

but in order to detect a discrete event precisely, the event
has to occur at the last moment of the simulation step, oth-
erwise the event is detected with latency.

4.2.1 Described scenarios

The sensitivity model was created to describe various sce-
narios where the step size need to be adjusted. The data
structure of the proposed sensitivity model can be seen in
Figure 4. The described scenarios can be classified as fol-
lows.

Event reactions Discrete events may trigger other dis-
crete events that have to be simulated with minimal la-
tency. In order to identify these scenarios, a set of event
indicators – i.e. variables where the change of the value
represent an event – have to be declared. During simu-
lation when an event is detected, the step size is set to
minimal, so that the reactions can be simulated accurately.

Example: In order to avoid the latencies during the se-
quences of discrete events during the simulation of the
thermostat, all variables representing messages should be
included in the set of event indicators. However, this so-
lution does not prevent the latency in the detection of the
first message.

Timed events Discrete events may be triggered by the
elapse of time. In order to perform a simulation step so
that the discrete event is simulated without significant la-
tency, they have to be predicted - i.e. the sensitivity model
has to store when to expect an event. A set of variables,
called time indicators can be given that each indicate when
an event will be fired. The values of the variables can be
changed during simulation so periodical events only re-
quire one indicator variable.

Example: It can be predicted when the central moni-
tor initiates the periodical check based on the variable the
component uses for timing the first message.

Threshold-crossing Discrete events may be triggered
by continuous variables crossing a given threshold. In or-
der to facilitate the detection of such scenarios with min-
imal latency the sensitivity model allows the description
of auxiliary threshold intervals for the variable with cor-
responding step sizes. Intuitively, the auxiliary intervals
should describe when the value is close to the threshold
and a corresponding step size should be small enough to
detect it. Accordingly, the step size controller does not
guarantee to precisely detect when a value of a signal gets
inside an interval (hence the interval should be appropri-
ately large) but as soon as it is detected, the step size is
adjusted accordingly. This way if the limits of the aux-
iliary interval are appropriate considering the behaviour
of the system, the threshold-crossing can be detected with
low latency.

Example: In case of the threshold-crossing depicted
in Figure 2 the temperature decreases less than 0.003◦C
in a second, therefore any upper bound over 19.003◦C
and lower bound below 19◦C guarantees that a simulation
with a step size of 1 second will surely include a com-
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munication step where the temperature is in the interval
but more than 19◦C. If the step size corresponding to the
threshold interval is 0.1 second, then by the time the target
threshold-crossing happens the step size will be set to 0.1
second and the threshold-crossing will be detected with a
smaller latency. (Naturally, choosing the appropriate up-
per bound before simulation is more difficult and requires
domain knowledge.)

4.2.2 Dynamic parameters

Parameters of the model (execution of timed events,
thresholds) can be declared both statically and by assign-
ing a variable of the FMU whose value determines the cur-
rent value of the parameter – the latter can be useful e.g.
for declaring the next occurrence of a timed event or when
the important threshold to cross can change through time.

Example: The constant threshold-interval in the previ-
ous example only facilitates the threshold-crossing detec-
tion until the hysteresis changes. In order to create a gen-
eral solution, additional variables have to be introduced
to the model, e.g. instead of the constant upper bound
19.003◦C an additional variable vadd can be used with the
value vadd = vtrg − vhys + 0.01◦C where vtrg is the target
temperature vhys is the hysteresis and the constant was in-
creased to ensure the interval is large enough.

As demonstrated by the example, additional variables
often have to be created in order to describe dynamic pa-
rameters. While it is not always possible to modify the
FMUs since they are generated, but it is always possible
to create an additional FMU with the additional variables
that takes the outputs of other FMUs as inputs.

It is important to mention that the sensitivity model de-
scribes expected scenarios – it does not make a difference
during simulation whether the expected events are actually
detected, which makes it applicable for non-deterministic
models. However, the unnecessary adjustments cause the
simulation to be less efficient than it could be if the sensi-
tivity model was more precise.

4.2.3 Minimal and maximal values

As a reference, the minimum and the maximum value of
the step size has to be declared before the simulation. It
is guaranteed that during simulation the step size will al-
ways be between the minimum and the maximum value
(except for the very last step that may be smaller than the
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Figure 5. Event detection latency example

lower bound). Generally, the main reason for the lower
bound is to avoid Zeno behaviour that could otherwise be
easy to cause (e.g. it is possible to schedule a sequence
of timed events, always with half as much delay as the
last one). However, in case of Hybrid CT simulation the
lower bound is the guaranteed maximal delay of detecting
a timed event, as well as the guaranteed delay between a
sequence of discrete events triggered by each other. The
upper bound becomes significant when there is no discrete
event to expect in the next step – in this case, the step size
is set to the given maximum value.

Example In order to demonstrate the significance of
the minimal step size, consider the periodical check per-
formed by the central monitor. Let us suppose the next
check is scheduled at time stamp t however, because of
an active threshold-interval, the current step size is 0.15 s,
the simulation time after the last step is t −0.05 s and the
minimal possible step size is 0.1 s. Since the size of the
next simulation step has to be at least 0.1 s the the event
will be detected at t +0.05 s. The latency is illustrated in
Figure 5.

The event initiates a sequence of discrete events (re-
sponses) and if the event indicators are defined appropri-
ately in the sensitivity model then the step size stays at
the minimal value during the simulation of the event se-
quence.

4.2.4 IP protection concerns

In an industrial environment it is possible that the model
constitutes confidential intellectual property and using the



step size controller would require disclosing some of the
restricted information in the sensitivity model.

In this case the step size controller has to be used differ-
ently: in order to protect intellectual property, the model
needs to be modified so that the critical scenarios are iden-
tified within the FMU. This can be achieved using an aux-
iliary variable representing the critical scenarios and cre-
ating corresponding threshold intervals in the sensitivity
model.

Example: Suppose there is a critical scenario that must
be simulated precisely. Instead of providing a detailed
sensitivity model, an auxiliary variable v can be used to
identify the scenario – e.g. v = 1 during the scenario
and v = 0 otherwise. The corresponding interval can be
0.5 ≤ v ≤ 1.5 and the corresponding step size can be the
minimal value. This way, when the critical scenario is
detected (within the FMU) v is set to 1 and the step size
controller adjusts the step size to the minimal value.

4.3 Algorithm
In order to calculate the size of the simulation steps, the
latest values of event indicators have to be stored. After
a communication step, the size of the next simulation step
is calculated based on the detected events, the scheduled
timed events and the threshold-crossing intervals. Each
element of the sensitivity model defines an upper bound
on the size of the next step (including the global maximum
step size), therefore the actual value of the next step should
be the minimum of the given upper bounds (unless it is
smaller than the possible minimal value).

An event can be detected by checking if the current
value of the corresponding event indicator differs from its
previous value. When an event is detected the step size has
to be set to the minimal possible value. The stored (previ-
ous) values of event indicators always have to be updated,
but when an event is detected, no additional calculations
are necessary as the step size will certainly be set to the
minimal possible amount.

In case when no event is detected the time indicators
and the threshold intervals have to be checked. If a value
of a time indicator is less than the current simulation time
t, it is irrelevant. The time indicator with the smallest
value tmin > t denotes the next possible timed event. In
order to detect the event precisely the next step can not
exceed the difference tmin − t, except if it is less than the
defined minimum.

The upper bound on the next step based on the thresh-
old intervals can be derived by checking the corresponding
variables – if the value of a variable is within the bounds of
one of its corresponding auxiliary intervals, the next step
can not exceed the corresponding step size described in
the sensitivity model.

Example: Let us demonstrate the simulation using
adaptive step size control on the thermostat model with
the sensitivity model describing the scenarios discussed
before and the minimal step size set to 0.01 s and the max-
imal step size set to 10 seconds. (The bounds of the step

Table 1. Adaptive step sizes of the Thermostat

Start time Scenario Size Steps
0.00 s Default step size 10.00 18

180.00 s Message sequence 0.01 8
180.08 s Default step size 10.00 13
310.08 s Temp. below 19.10◦C 1.00 28
338.08 s Temp. below 19.02◦C 0.10 66
344.68 s Message sequence 0.01 9
344.77 s Temp. below 19.02◦C 0.10 162
350.97 s Temp. below 19.10◦C 1.00 9
359.97 s Timed event at 360 s 0.03 1
360.00 s Message sequence 0.01 8
360.08 s Temp. below 19.10◦C 0.01 15
375.08 s Default step size 10.00 2
395.08 s Simulation ends at 400 s 4.92 1

size are intentionally unrealistic to demonstrate the opera-
tion of the step size control.) The intervals for the thresh-
old crossings are set so that when the difference between
the current threshold is less than 0.1◦C, the step size is set
to 1.0 s and when it is less than 0.02◦C, the step size is set
to 0.1 second. The model is simulated for 400 seconds.
The step sizes are shown in Table 1.

The simulation begins with the maximal step size. The
first periodical check happens to be scheduled exactly at
the end of the 18th step, therefore, the step size does not
have to be adjusted. However, as soon as the first message
is detected, the sequence of discrete events caused by the
messages is simulated with minimal latency.

In case of the checks caused by the temperature de-
creasing below 19◦C, the first discrete event – the state
transition of the thermostat – is detected with (relatively)
high latency: the current step size to the corresponding
interval, namely 0.1 s. After that, the monitors send the
same eight messages which is why there is one more event
in this sequence, than in the ones representing the mes-
sages passed during the timed checks.

In conclusion the simulation takes 340 steps, which is
99% less than what it takes to simulate it with constant
step size of 0.1 s (which would take 40 000 steps) but the
results are more precise.

5 Experimental evaluation

We have integrated the proposed adaptive step size con-
troller component in the OMSimulator1 and run measure-
ments on case studies with constant steps of different step
sizes as well as using adaptive step size control. In or-
der to find out how the step size controller affects per-
formance we measured the runtime and then analysed the
differences between the efficiency and the results of cor-
responding simulations.



Table 2. Simulation performance of the Thermostat example

Size Steps Runtime Min temp Max temp
0.01 300 000 150.94 s 18.9997◦C 24.5000◦C
0.10 30 000 15.32 s 18.9975◦C 24.5004◦C
1.00 3 000 1.49 s 18.9734◦C 24.5047◦C

10.00 300 0.16 s 18.7387◦C 24.5356◦C
* 808 0.46 s 18.9990◦C 24.5005◦C

5.1 Thermostat
The sensitivity model for the Thermostat was presented
in section 4. We performed the simulation with various
constant step sizes as well as with the step size controller.
Each time 3000 seconds were simulated. The results are
shown in Table 2. The columns of the table contain the
step size, the number of steps performed, the runtime of
the simulation, and the minimal and the maximal simu-
lated temperature (respectively). The * in the first cell of
the last row represents that the simulation includes various
step sizes, as chosen by our adaptive algorithm. The simu-
lation with adaptive step size control resulted in 144 steps
of 0.01 s, 282 steps of 0.1 s, 93 steps of 1 s, 275 steps of
10 s and 13 steps of other sizes.

In the simulated scenario, the target temperature is
22◦C with initially 3◦C tolerance (which is why the min-
imal value is just below 19◦C) that is later set to 2.5◦C
by the user (which is why the maximal value is just above
24.5◦C). The results show, that – in case of constant step
sizes – an order of magnitude difference in the step sizes
yields an order of magnitude difference between the ex-
pected and the simulated extreme values. However, in
case of adaptive step size control, the difference is almost
as small as in case of the 0.01 s steps while the simulation
was almost as fast as in case of the 10 s steps.

5.2 Sherpa Automotive demonstrator
The Sherpa Automotive demonstrator is one of the indus-
trial models in the OpenCPS project2 that served as a basis
for required improvements of the simulator.

The case study contains the models representing the
mobility aspects of the system presented in (Mokukcu
et al., 2017). The physical aspects of a hybrid electric
vehicle are simulated to determine the amount of energy
required for the vehicle to move with the required speed.
The simulated scenario is 1200 time units and the default
step size is 0.01. We have performed the simulation with
constant step sizes of 0.1 and 0.01. The simulated speed
of the vehicle is depicted in Figure 6. Up to 800 time units
the results are similar: the largest difference between the
result of the simulation with the small (red) and the large
(blue) step size is less than 0.55. The biggest differences

1https://github.com/OpenModelica/OMSimulator
2ITEA3, OpenCPS: Open Cyber-Physical System Model-Driven

Certified Development http://www.opencps.eu

appear near to the local minimum and local maximum val-
ues. In the remaining part of the simulation the differences
are much larger (14.0) and additional high frequency sine
components appear. The unstable oscillating waveforms
show that a step size of 0.1 is too large for accurate simu-
lation.

The goal of adaptive step size control is to improve sim-
ulation performance by using larger step sizes where it
does not affect precision. After studying the results we
have created a simple sensitivity model: braking is con-
sidered a discrete event, therefore the the signal represent-
ing the brake position is used as an event indicator, and in
order to avoid the additional sine components, threshold
intervals are used on the variable representing the target
speed.

We run the simulation, with 0.1 as maximal and 0.01
as minimal step size three times with the event indicator
and the intervals individually and combined. The results
can be seen in Figure 7. The runtimes and an evaluation
of all performed simulations are shown in Table 3. The
Diff column of the table denotes the maximum difference
between the simulated speed of the vehicle and the speed
simulated by the default simulation and Diff2 denotes the
maximal difference in the first 800 s of simulation time.

Using the brake as event indicators causes a runtime al-
most 90% smaller than that of the original simulation with
step size 0.01 while reducing the error of the large step
size simulation: in the first part the difference remained
under 0.55 and the unstable oscillations of the results dis-
appear decreasing the biggest difference to 2.8. However,
some additional low frequency sine waveforms can still be
seen.

Using the intervals (without event indicators) causes a
runtime 40% smaller than the simulation with the small
step sizes and reduces the error of the simulation with the
large step sizes: in the first part the difference is less than
0.55 and the obscure parts of the result disappear decreas-
ing the maximum of the difference to 0.7. However, one
additional sine waveform remains.

Using both elements of the sensitivity model combines
the advantages in accuracy as the results of the simulation
are almost the same as that of the simulation with the small
step size. However, the resulting runtime is larger than
that of the simpler sensitivity models (though not as large
as the runtime with a fixed small step size), since in each
step the step size is the minimum of those in the previous
cases.

The results show, that using the brake as event indicator
increased the performance drastically while only introduc-
ing small simulation errors. The case study also demon-
strated that intervals can be used to identify the critical
scenarios.



Figure 6. Simulation results of automotive case study

Table 3. Simulation performance of the automotive case study

Events Intervals Small steps Large steps Total steps Runtime Diff Diff2 Remark
120 000 0 120 000 31.27 s – – Default simulation

0 12 000 12 000 3.59 s 14.0 0.55 Unstable oscillations
+ 688 11 932 12 620 3.90 s 2.8 0.54 Sine waveforms

+ 34 900 8 511 43 411 18.54 s 0.9 0.55 Sine waveform
+ + 35 005 8 500 43 505 18.81 s 0.7 0.54 Almost identical

6 Discussion

6.1 Limitations and opportunities

As demonstrated in section 5 adaptive step size control
can be used to improve simulation performance. Step size
control has been shown to be effective for event detection
as well as decreasing runtime while preserving numerical
accuracy.

Usability The sensitivity model for the adaptive step
size controller requires domain knowledge (e.g. for event
prediction), however, some parts of it (e.g. the step sizes
assigned to the intervals for threshold-crossing detection)
depend on the current simulation configuration. Since
both domain-specific and simulation-specific knowledge
are required, using the step size controller in its current
form may cause difficulties in an industrial environment.
A possible solution can be separating the required infor-
mation and creating the sensitivity model in a final step
(see subsection 6.2).

Extensibility The proposed step size controller can be
easily extended with additional functionalities: the core
of the proposed approach is determining an upper bound
of the size of the next step based on several approaches
and then choosing the minimum of the calculated upper
bounds – it is easy to introduce new analysis methods to
the sensitivity model that determine upper bounds based
on new aspects. For instance, the algorithm could be com-
bined with the step size controller approach for numer-
ical stability proposed in (Busch and Schweizer, 2011)
or the threshold-crossing detection approach proposed in
(Esposito et al., 2001).

Possible improvements The proposed solution only
considers the possible events in the next step, which –
as presented in subsection 4.2 – causes delays. The de-
lays could be minimized using a lookahead method that
includes more than one step in the calculation.

Example: In the previously referred example there is a
communication step at t − 0.2 s. No event is expected in
the next simulation step, therefore the next step size is set
to 0.15 s. At t − 0.05 s the event at t is considered, but



(a) Result of simulation with event indicators (b) Result of simulation with intervals

(c) Result of simulation with complete sensitivity model

Figure 7. Results of simulating the automotive case study with step size control

since the minimal step size is 0.1 s the event is detected
with latency. However, the delay can be prevented by tak-
ing two consecutive steps of 0.1 s.

The threshold-crossing detection approach can also be
improved by using an advanced solution that uses extrap-
olation to analyse the possibility of threshold crossing
and adjust the step size accordingly. This way it can be
avoided to provide intervals and corresponding step sizes.

6.2 Lessons learnt

Implementation Throughout the OpenCPS project we
have simulated FMUs from various sources, such as
OMEdit, Dymola, Simulink, etc. and we have discovered
that some FMUs do not comply with the FMI standard
completely. As mentioned before, sometimes FMUs can
not perform rollbacks. Additionally, in case of the ther-
mostat example the changes in the step sizes introduced
odd slopes that later turned out to be caused by the fact
that certain defective FMU implementations always per-
form the step with the previous step size. The difference
between the values of the decreasing phase of Figure 2 is
caused by the same phenomenon: in the first simulation
step (not depicted in the figure) the value does not change
and the decrease of the temperature starts in the second
simulation step, which is at 0.1 s in one case (denoted by
the blue line) and 0.01 s in the other. The time shift causes
the difference between the values. This shows that the
FMUs must be prepared in order to use adaptive step size
control effectively.

Error approximation Currently there are no approxi-
mations for the error of the simulation, other than that
of the internal simulators of the FMUs. However, – as
demonstrated in Figure 5 – discrete events can introduce
new types of errors besides numerical stability. The cal-
culation of simulation errors resulting from hybrid co-
simulation is a complex theoretical problem and we be-
lieve it is an area worth exploring.

Simulation configuration The sensitivity model re-
quires data that can be difficult to acquire, especially when
the FMUs to co-simulate originate from different stake-
holders. While the DefaultExperiment element of the
model description file contains simulation-specific infor-
mation, it only specifies configuration data for simula-
tion with constant step size. Moreover, from a hybrid
co-simulation point of view, there are few ways to pro-
vide discrete system-specific information in the model de-
scription file. A notable exception is the variability at-
tribute of ScalarVariable elements that can be set to dis-
crete thereby denoting an event indicator. However, in
case of FMI for co-simulation, timed events and relevant
threshold-crossings can not be specified.

Accordingly, in the current implementation the infor-
mation stored in the sensitivity model is provided by the
user as an input of the simulator. However, we believe it
would be beneficial to make it possible to provide infor-
mation specific to discrete/hybrid systems and configura-
tion parameters for simulation with variable step size in
the model description file.



7 Conclusions
In this paper we presented a step size controller approach
that improves continuous time simulation of discrete event
components. The core of the approach is the sensitiv-
ity model that describes the simulation scenarios where
it is necessary to adjust the step size in order to sim-
ulate accurately. The sensitivity model can include se-
quences of discrete events, timed events and intervals for
threshold-crossing detection. The described scenarios can
also change dynamically during simulation.

After each communication steps of the master algo-
rithm, the size of the next simulation step is calculated
based on the sensitivity model and the current values of
variables. The presented method does not require roll-
backs.

We have implemented the presented approach within
OMSimulator and studied its applicability to the Thermo-
stat example as well as an industrial case study. The re-
sults show that the step size controller provides a better
compromise between simulation accuracy and efficiency
than fixed step sizes by using small step sizes only when
is required for simulation accuracy.

We have conducted experiments and found that the step
size controller can bridge the gap between continuous time
simulation and discrete event components, thereby im-
proving simulation of cyber-physical systems.
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