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Zoltán Keresztes1,† and Balázs Mikóczi2,‡
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We investigate the evolution of spinning bodies moving along zoom-whirl orbits in different rotat-
ing (singular/regular) black hole spacetimes. The spinning body approaches the central black hole
along the zoom-whirl orbits so much that it enters the ergosphere periodically. The initial data is
chosen such that the body would move in the equatorial plane without spin. We illustrate that the
spin precessional angular velocity is highly increased near and within the ergosphere when the spin
of the body is not nearly parallel to the rotation axis of the central black hole. We discuss the signs
of the different black hole spacetimes occurring in the spin precessional dynamics.
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I. INTRODUCTION

In general relativity any black hole solution contains a spacetime singularity where the validity of the theory breaks
both in the presence and the absence of standard model matter fields. However the inclusion of non-standard matter
fields can result in singularity free spacetime solutions describing black holes. In the recent years, the properties of
these regular black holes have been widely studied [1–5].

The first metric characterizing the spacetime of a nonrotating regular black hole was proposed by Bardeen [6]. It was
interpreted as describing the spacetime surrounding a magnetic monopole which occur in a nonlinear electrodynamic
model [7]. The model is defined in terms of an antisymmetric electromagnetic field tensor as the Maxwell theory but
the Lagrangian is modified. A nonrotating regular black hole spacetime was also proposed by Hayward [8] which has
similar interpretation but with another Lagrangian [9]. A more generic metric containing the subcases suggested by
Bardeen and Hayward, and including the rotation of the black hole was derived in Ref. [10].

In this paper we will consider the distinguishability of singular and regular black holes when spinning bodies, prac-
tically a much smaller mass black hole compared to the central one, moving about them. We neglect the backreaction
of the moving test body to the spacetime curvature, hence use the Mathisson-Papapetrou-Dixon (MPD) equations
[11–15] for describing the dynamics. The MPD equations are not closed, a spin supplementary condition (SSC) is
necessary to choose [13, 16–23] which defines the point at which the four-momentum and the spin of the body are
evaluated.

Analytic computations in case of hyperbolic orbits were carried out for small spin magnitudes whose direction is
parallel to the central Kerr black hole rotation axis and when the body moves in the equatorial plane [24]. In this
configuration the spin direction is conserved. The spin precession and the orbits when the body approached the
centrum from the spatial infinity then it left again into the spatial infinity in both singular and regular black hole
spacetimes was studied in Ref. [25]. There the dependencies of the final values of spin and orbital plane orientation
angles and azimuthal Boyer-Lindquist coordinate on the initial spin angles and dimensionless specific charge parameter
are discussed.

In this paper we focus on zoom-whirl orbits [26–28]. For non-spinning test particles the topology of these orbits was
encoded by a rational number [29, 30]. While the zoom-whirl orbits of spinning bodies are more complicated shown
within the framework of post-Newtonian dynamics with spin-orbit interaction [31, 32]. Here we will investigate the
spin precession along such orbits where the closest approach distance of central black hole is inside the ergosphere.
There the post-Newtonian approximation would fail.

The paper is organized as follow. In Section 2 we introduce the MPD equations, the metric characterizing the
spacetime of the considered rotating, singular/regular black holes, and two fundamental families of observers, the
static and the zero angular momentum ones. We set two frames of comoving observers by boosting the static and the
zero angular momentum observers’ frames and describe the spin evolution in them. In Section 3 the discussion of the
spin precession based on numerical simulations are presented while Section 4 contains the conclusions.

II. THE DYNAMICS OF THE EXTENDED BODIES IN ROTATING, REGULAR BLACK HOLE
SPACETIMES

A. Evolution equations

The Mathisson-Papapetrou-Dixon equations [11, 12, 14, 15] read as

uc∇cp
a = −1

2
Ra

bcdu
bScd , (1)

uc∇cS
ab = paub − uapb . (2)

Here ∇c is the covariant derivative, Ra
bcd is the Riemann tensor, pa is the four-momentum of the moving body, Sab

is its spin tensor and ua (with normalization uaua = −1) is the four-velocity of the representative point for the
extended body determined by the SSC. We use the Tulczyjew-Dixon (TD) SSC [13, 21] imposing that paS

ab = 0.

This SSC together with the MPD equations results in two constants of motion: the spin magnitude S =
√
ScdScd/2

and the dynamical mass M =
√
−papa. In addition, the TD SSC and the MPD equations yield the following

velocity-momentum relation [33]:

ub =
m

M2

(
pb +

2SbaRaecdp
eScd

4M2 +RaecdSaeScd

)
, (3)

where m = −uap
a is the mass measured in the rest frame of the observer moving with velocity ua.
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In addition we introduce a spin four vector as

Sa = − 1

2M
ηabcdpbScd , (4)

where ηabcd is the 4-dimensional Levi-Civita tensor which is totally antisymmetric and η0123 =
√
−g, where g is the

determinant of the metric.

B. Rotating singular and regular black holes

The considered line element squared of rotating black hole spacetimes in Boyer-Lindquist coordinates (t, r, θ, ϕ)
[10] 1 is

ds2 = −∆− a2 sin2 θ

Σ
dt2 − 2aB sin2 θ

Σ
dtdϕ+

Σ

∆
dr2 +Σdθ2 +

A
Σ

sin2 θdϕ2 , (5)

where a is the rotation parameter, Σ = r2+a2 cos2 θ, ∆ = r2+a2−2α (r) r, B = r2+a2−∆, A =
(
r2 + a2

)2−∆a2 sin2 θ

and2

α (r) = µ+
µemrγ

(rν + qνm)
γ/ν

. (6)

For a vacuum spacetime µem = 0, then (5) reduces to the Kerr metric [37] and µ represents the mass parameter
of the black hole. The parameter µem = q3m/σ is interpreted as an electromagnetically induced ADM mass by the
nonlinear electrodynamic field [38]. The quantity σ in the expression of µem controls the strength of the nonlinear
electrodynamic field and carries the dimension of length squared while qm is related to the magnetic charge [9]. The
spacetime is free from the singularity for µ = 0, qm ̸= 0 and γ ≥ 3. In the case of µ = 0 and µem ̸= 0, the powers
(γ,ν) are (3,2) for the Bardeen and (3,3) for the Hayward subcases [10].

In our investigation either µ or µem vanishes. We introduce the notation µ̃ for the ADM mass which is µ̃ = µ
for the Kerr spacetime and µ̃ = µem for singularity free spacetimes. The dimensionless line element squared ds2/µ̃2

can be expressed in terms of t/µ̃, r/µ̃, θ, ϕ and a/µ̃ with α/µ = 1 in case of Kerr spacetime and α (r) /µem =

(r/µem)
γ
/ [(r/µem)

ν
+ qν ]

γ/ν
with q = qm/µem in cases of singularity free spacetimes. The latter shows that the

structure of singularity free spacetimes is determined by the dimensionless specific charge parameter3 q, the dimen-
sionless rotation parameter a/µem and the ADM mass µem (which gives a distance scale). In the limit q → 0 with
µem ̸= 0 (hence both σ → 0 and qm → 0) we obtain α (r) /µem = 1 which corresponds to the Kerr spacetime with
mass parameter µ = µem [10].

The stationary limit surfaces and the event horizons (if they exist) are determined by the solutions of gtt = 0 and
grr = 0, respectively. The region which is located outside the outer event horizon but inside the outer stationary
limit surface is called ergosphere. The existence of the stationary limit surfaces and the event horizons are strongly
dependent on the parameters a/µem and q, see Figs. 3 and 4 in Ref. [10]. For the chosen parameter values in the next
section, the regular black holes will have similar structure as the Kerr spacetime, i.e. they have two event horizons
and two stationary limit surfaces.

C. Spin precession angular velocities in different comoving frames

We describe the spin dynamics in both comoving frames which are obtained by boost transformations from either
the frame of static observers or that of the zero angular momentum observers. The frame of static observers (SOs) is
given by

e0 = u(SO) =
1√
−gtt

∂r , e1 =

√
∆

Σ
∂r , e2 =

∂θ√
Σ

, e3 = − 1√
∆

(
aB sin θ

Σ
√
−gtt

∂t −
√
−gtt
sin θ

∂ϕ

)
, (7)

1 There are discussions [34–36] on that the rotating regular black hole spacetimes derived in Ref. [10] are not exact solutions of the field
equations. However the analytically presented spacetime family may differ perturbatively from the exact solution [36], therefore it is
suitable for consideration of the evolution of spinning bodies.

2 Correspondence between notations used throughout this article and Ref. [10]: µ → M , µem → Mem, qm → q, α (r) → ρ (r).
3 The notation is the same for this parameter in Ref. [10].
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while that of the zero angular momentum observers (ZAMOs) by

f0 = u(ZAMO) =

√
A
Σ∆

(
∂t +

aB
A

∂ϕ

)
, f1 =

√
∆

Σ
∂r , f2 =

∂θ√
Σ

, f3 =

√
Σ

A
∂ϕ
sin θ

. (8)

The boosted comoving frames are obtained [39] as

E0 (e, u) = u , Eα (e, u) = eα +
u · eα

1 + Γ(S)

(
u+ u(SO)

)
, (9)

and

E0 (f, u) = u , Eα (f, u) = fα +
u · fα

1 + Γ(Z)

(
u+ u(ZAMO)

)
, (10)

with frame indices α = {1,2,3} and Lorentz factors Γ(S) = −u · u(SO) and Γ(Z) = −u · u(ZAMO). The dot denotes
the inner product with respect to the background spacetime metric. A spatial rotation about the axis nα with
nonvanishing components

n1 = −
w2

(Z)√(
w1

(Z)

)2
+
(
w2

(Z)

)2 and n2 =
w1

(S)√(
w1

(S)

)2
+
(
w2

(S)

)2 (11)

by an angle Θ determined from

sinΘ = −

[(
1−

√
Σ∆

−gttA

)
Γ(S)w

3
(S)

1 + Γ(S)
− aB sin θ√

−gttΣA

]
Γ(S)

√(
w1

(S)

)2
+
(
w2

(S)

)2
1 + Γ(Z)

, (12)

transforms the frame vectors EA (e, u) to EA (f, u) (where A = {0,1,2,3}). Here w(S) = Γ−1
(S)u(SO) − u and

w(Z) = Γ−1
(Z)u(ZAMO) − u are the relative spatial velocities of the SO and ZAMO, respectively, with respect to the

moving body in the comoving frame.
Following Refs. [39] and [25], we introduce Cartesian-like 3-bases (ex, ey, ez) and (fx, fy, fz) in the local rest

spaces of SOs and ZAMOs, respectively, by the definitions (e1, e2, e3) = (ex, ey, ez)R (θ, ϕ) and (f1, f2, f3) =
(fx, fy, fz)R (θ, ϕ). Here R (θ, ϕ) is the same rotation matrix

R (θ, ϕ) =

 sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0

 , (13)

which locally relates the unit basis vectors of Cartesian and spherical coordinates in the 3-dimensional Euclidean space.
The orbit of the spinning body will be represented by the corresponding Cartesian-like coordinates x = r cosϕ sin θ,
y = r sinϕ sin θ and z = r cos θ.

The evolution equations for the Cartesian-like frame components of the spin vector derived from the MPD equations
are given by

dSi

dτ
= −Ri

αε
α
βγΩ

β
(prec)S

γ , (14)

where i = {x,y, z}, α, β, γ = {1,2,3}, ε γ
αβ is the 3-dimensional Levi-Civita symbol and Ri

α stands for the
components of rotation matrix. Hence the dynamics is encoded in the precessional angle velocity

Ωβ
(prec) = −Ωβ

(orb) +Ωβ , (15)

where Ω1
(orb) = cos θϕ̇, Ω2

(orb) = − sin θϕ̇, Ω3
(orb) = θ̇ and Ω1 = E3 ·DE2/dτ , Ω

2 = −E3 ·DE1/dτ , Ω
3 = E2 ·DE1/dτ .

However the parallel component of Ωβ
(prec) with sγ does not influence on the spin precession due to the cross product

on the right hand side of Eq. (14), only its perpendicular component

Ω̃β
(prec) = Ωβ

(prec) −
δαγΩ

α
(prec)S

γ

S2
Sβ (16)

which is count.
When describing the evolution in the Cartesian boosted SO (ZAMO) frame we use Eα (e, u) (Eα (f, u)) vectors in

the expression of Ωβ hence obtaining Ωβ(e, u) (Ωβ(f, u)), Ωβ
(prec)(e, u) (Ω

β
(prec)(f, u)) and Ω̃β

(prec)(e, u) (Ω̃
β
(prec)(f, u)).
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FIG. 1. The evolutions along zoom-whirl orbits with initial spin polar angle θ(S) (0) = π/2 and rotation parameter rotation
parameter a = 0.99µ̃. The first column represents the evolution for the two cases: when the background spacetime is either the
Kerr or the rotating Hayward with q = 0.081 (they are only perturbatively differ from each other). In case of the middle and
the right columns the central black hole are the rotating Hayward with q = 0.216 and the rotating Bardeen with q = 0.081.
The rows represent the following: 1st and 2nd the orbit in the coordinate spaces (x,y,z) and (ρ,z), 3th and 4th the unit spin
vector in the boosted SO and ZAMO comoving Cartesian-like frames, respectively.

III. NUMERICAL INVESTIGATION

We consider the evolution of spinning bodies which follow zoom-whirl orbits crossing through the ergosphere of
singular and regular black holes. The body starts at θ (0) = π/2, r (0) = 14.05µ̃ and ϕ (0) = 0 = t (0) while the
independent components of the initial four momentum are pr(0)/M = −0.03, µ̃pϕ (0) /M = 0.012 and µ̃pθ(0)/M = 0.
The initial spin vector of the body is characterized in the comoving Cartesian frame set up by boosting the SO frame.
Thus

S = SiEi (e, u) , (17)

where i = {x,y, z} and

Si = |S|
(
cosϕ(S) sin θ(S), sinϕ(S) sin θ(S), cos θ(S)

)
. (18)
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FIG. 2. The evolution of sinΘ and the spherical comoving triad components of the spin precessional velocities Ω̃α
(prec) (e, u) and

Ω̃α
(prec) (f, u) in the boosted SO (blue lines) and ZAMO (red lines) frames, respectively, along the same orbits (but containing

only the first three zoom period) presented in the columns of Fig. 1.

TABLE I. The coefficients ci of quadratic polynomial function shown on Fig. 4.

BHs c2 c1 c0

Kerr −0.4020 1.2784 −0.0237
Hayward, q = 0.081 −0.4002 1.2725 −0.0240
Hayward, q = 0.216 −0.3707 1.1772 −0.0290
Bardeen, q = 0.081 −0.3608 1.1229 0.0188

The angles θ(S) and ϕ(S) are the spherical polar angles of the spin vector in the comoving Cartesian frame. The spin
magnitude and the initial spin azimuthal angle will be chosen as |S| /µ̃M = 0.01 and ϕ(S) (0) = 0.

We choose γ = 3. The background will be either a regular, rotating Bardeen (ν = 2) or Hayward (ν = 3) black hole
spacetime. There is always a black hole in the singularity free spacetimes in the range a ≤ 0.99µem if q ≤ 0.081 for
ν = 2 and q ≤ 0.216 for ν = 3, respectively. The event horizon disappears for the higher values of q if a = 0.99µem.

The first row of Fig. 1 shows typical zoom-whirl orbits in the (x,y,z)-space with initial spin polar angle θ(S) (0) = π/2
and rotation parameter a = 0.99µ̃. The first column represents the evolution for the two cases: when the background
spacetime is either the Kerr or the rotating Hayward with q = 0.081. The evolutions only differ pertubatively from
each other in these cases. The background spacetimes in the second and the third columns are the rotating Hayward
with q = 0.216 and the rotating Bardeen with q = 0.081, respectively. The initial and the final positions of the
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FIG. 3. The maximum of the magnitude (Ω̃max) of Ω̃
α
(prec) (f, u) during the first zoom period is shown in the parameter plane

(θ(s)(0), a/µ̃). From top left to bottom right the background spacetimes are the Kerr, the rotating Hayward with q = 0.081,
the rotating Hayward with q = 0.216 and the rotating Bardeen with q = 0.081.

body are marked by green and red dots. The blue surface at the centre depicts the outer bound of the black hole’s
ergosphere. The second row shows the same orbits in the (ρ = r sin θ,z = r cos θ) coordinate space. The third and
fourth rows image the evolutions of the unit spin vector represented in the boosted SO and ZAMO Cartesian frames,
respectively. Since SOs exist only outside of the ergosphere, the spin evolution cannot be represented in the boosted
SO frame when the body stays in that region. The jump in the evolution of the spin vector in the boosted SO frame
(marked by black dots) emphasizes that a relatively large part of the variation in the spin direction takes place inside
the ergosphere.
The first row of Fig. 2 show the evolutions of the rotation angle Θ defined by Eq. (12). The columns represent

the same cases as that of Fig. 1 but only presenting that part of the evolutions which contains the first three zoom
period where the body approaches the central black hole. The purplish shadow represent the first period when the
body is inside the ergosphere. The angle Θ is small when the body is relatively far from the central black hole, hence
the boosted SO and ZAMO frames differ only slightly there. The additional three rows image the spherical comoving
triad components of precessional angular velocities Ω̃α

(prec) (e, u) and Ω̃α
(prec) (f, u) both in the boosted SO (blue line)

and ZAMO (red line) frames. The blue lines diverge at the location of the outer stationary surface because SOs exist
only outside of the ergosphere. However the boosted ZAMO frame can be used for description of the spin precession
inside the ergosphere. The red curves show that the spin precessional velocities are highly increased near the centrum.
The maximum of the magnitude Ω̃max of Ω̃α

(prec) (f, u) during the first zoom period is shown in the parameter

plane (θ(s)(0), a/µ̃) on Fig. 3. We note that zoom-whirl orbits do not develop for a/µ̃ < 0.97 with the used initial
values because the body crosses the event horizon. In the upper row, the two panel representing the cases when
the background either the Kerr (left) or the rotating Hayward with q = 0.081 (right) show considerable differences
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FIG. 4. The dependence of µ̃Ω̃max on θ(s)(0) for a/µ̃ = 0.98 is shown when the spinning body moves about singular/regular

black holes. The coefficients of the fitted quadratic polynomial function c2X
2 + c1X + c0 with X = µ̃Ω̃max is given in Table I

for each cases.

in the right middle region. The dimensionless specific charge parameter in the second row takes those largest value
(q = 0.216 for the rotating Hayward and q = 0.081 for the rotating Bardeen case) where the event horizon surrounding
the centrum does not disappear in the range a ≤ 0.99µem. These maps are significantly differ from the Kerr case
along a wide stripe around θ(s)(0) = π/2. The rotating Hayward (left) and the rotating Bardeen (right) cases are also
well distinguishable along this stripe.

For a fixed rotation parameter the dependence of Ω̃max on θ(s)(0) can be described roughly by a quadratic function
which is shown on Fig. 4 with a = 0.98µ̃. The coefficients ci of the fitted quadratic function is presented in Table I.
We see that there is no considerable difference between the Kerr and the rotating Hayward with q = 0.081 subcases.
While the other two cases significantly differ from these and from each other around θ(s)(0) = π/2. However this
stands for the case a = 0.98µ̃. On Fig. 5 we present how depend the coefficients ci (i = 0, 1, 2) of the quadratic
function on the rotation parameter in case of singular and regular black hole spacetimes. These functions supports that
the singular and regular (for sufficiently large values of q) black hole spacetimes can be distinguished by considering
the spin precession of a such moving body which significantly approaches the centre.

IV. CONCLUSION

We have studied the evolution of spinning bodies moving on zoom-whirl orbits. At the closest approach distance
of the central rotating, singular/regular black hole, the body crossed the ergosphere. In the considered numerical
simulations the initial values were chosen such that the relatively small mass body without spin would have moved
in the equatorial plane. However since the initial spin was not aligned or anti-aligned with the rotation axis of the
central black hole, the body moved out of the equatorial plane. Apart from narrow stripes at θ(S) (0) = 0 and π,
the spin precession was highly increased close to and within the ergosphere. The maximum of the dimensionless spin
precessional angular velocity µ̃Ω̃max depended significantly on the black hole rotation parameter a, the dimensionless
specific charge parameter q and the initial polar spin angle θ(s)(0). The limit q → 0 with µem ̸= 0 of the rotating
Hayward and Bardeen spacetimes result in the Kerr black hole. Otherwise (q ̸= 0) the rotating Hayward and

the Bardeen spacetimes are free from the singularity. For a fixed a and q, the dependence of µ̃Ω̃max on θ(s)(0) is

roughly described by a quadratic function. For sufficiently large values of q, µ̃Ω̃max has showed significantly different
dependence on both a and θ(s)(0) in cases of the central singular and regular black holes.
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