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ABSTRACT

Software security is undoubtedly a major concern in today’s soft-

ware engineering. Although the level of awareness of security issues

is often high, practical experiences show that neither preventive ac-

tions nor reactions to possible issues are always addressed properly

in reality. By analyzing large quantities of commits in the open-

source communities, we can categorize the vulnerabilities mitigated

by the developers and study their distribution, resolution time, etc.

to learn and improve security management processes and practices.

With the help of the Software Heritage Graph Dataset, we inves-

tigated the commits of two of the most popular script languages –

Python and JavaScript – projects collected from public repositories

and identified those that mitigate a certain vulnerability in the code

(i.e. vulnerability resolution commits). On the one hand, we identi-

fied the types of vulnerabilities (in terms of CWE groups) referred

to in commit messages and compared their numbers within the two

communities. On the other hand, we examined the average time

elapsing between the publish date of a vulnerability and the first

reference to it in a commit.

We found that there is a large intersection in the vulnerability

types mitigated by the two communities, but most prevalent vulner-

abilities are specific to language. Moreover, neither the JavaScript

nor the Python community reacts very fast to appearing security

vulnerabilities in general with only a couple of exceptions for cer-

tain CWE groups.
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1 INTRODUCTION

Software security is one of the most striking problems of today’s

software systems. Large impact security vulnerabilities are explored
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on a daily basis, for example, a serious flaw [21] has been discovered

in ’Sudo’, a powerful utility used in macOS this February. Security

problems can cause not just financial damage [2], but can compro-

mise vital infrastructure, or used to threaten entire countries.

Our focus in this paper is to examine vulnerability mitigation (i.e.

corrective code changes to resolve security vulnerabilities) within

the open-source community and their typical types. We specifi-

cally target Python and JavaScript open-source projects as these

languages are very popular and widely used in many domains to-

day. By getting a detailed picture of what security vulnerabilities

and when are mitigated in the open-source community of these

languages, we can identify vulnerability categories that are not suf-

ficiently addressed, explore patterns that might help to build more

efficient vulnerability prediction models, or even discover some

patterns that may help in generalizing the models. We investigate

the following two research questions in this work:

RQ1:What are the typical security vulnerability types the JavaScript

and Python open-source communities mitigate and how do they relate

to each other?

RQ2: How quickly the JavaScript and Python open-source commu-

nities mitigate a newly published security vulnerability?

Based on the rich set of data in the Software Heritage Graph

Dataset [15], we found that the JavaScript projects refer to secu-

rity vulnerabilities falling into 87 different categories, the Python

projects to 71, out of which 55 security vulnerability categories

are common. For vulnerability categorization, we use the widely

adopted Common Weakness Enumeration (CWE) list [5]. Despite

the large intersection in the security vulnerability types, the num-

ber of mitigated vulnerabilities differ significantly depending on the

language of the projects. For example, Cross-site Scripting (CWE-

79), Path Traversal (CWE-22), Improper Input Validation (CWE-20)

and Uncontrolled Resource Consumption (CWE-400) type of vulner-

abilities are mitigated mostly in JavaScript projects, while Resource

Management Errors (CWE-399) and Permissions, Privileges, and

Access Controls (CWE-264) are mitigated mostly in Python.

The growing number of vulnerability mitigating commits is a

common tendency in both languages, but it is proportionate to the

growth of the total number of commits. The vulnerability mitigation

per total commit ratio increases only slowly, however, there was

a significant increase in the amount of vulnerability mitigation in

the year 2018 for both JavaScript and Python projects (see Figure 1).

Regarding the number of days elapsing between the publish date of

a particular security vulnerability and the date of the first commit

with its mitigation is varying to a large extent. Typically, Python

commits mitigate vulnerabilities no older than 100 days, while some

JavaScript commits mitigate vulnerabilities older than a year.
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2 APPROACH

Our approach is based on collecting the vulnerability mitigation

commits for JavaScript and Python projects from the dataset, which

are potentially connected to a public CVE [3] entry. To achieve

this, we used a very simple but effective heuristics-based approach,

similar to those widely used in works related to bug data collec-

tion [13, 20]. First, we searched for the commits containing the

patterns “CVE-”, “CWE-”, “NVD-” (all of them are case insensitive)

in their commit messages using SQL queries. Referring to a CVE or

CWE identifier in the commit message is a widely used practice in

case of vulnerability mitigation patches, so the community can un-

derstand why the given commit is extremely important and urgent

to be merged. By filtering the revision table, we created a tempo-

ral table called cve_revs with 357,757 rows (from the original 1.26

billion rows).

After the first filtering step, we had to identify the programming

language of the project a given commit belongs to. Since the struc-

ture of the database did not provide an effective way to do this, we

used the information retrieved from the revisions’ root directory:

• We considered a revision as a Python revision if its root

directory contained either __init.py__ or setup.py. With-

out at least one of these files, the project cannot be used as

a Python module [16, 18, 25] (nor published on PyPI [17]),

therefore it is a viable heuristics to detect Python projects.

• We considered a revision to be a JavaScript one if its root

directory contained either index.js, app.js, server.js as
one of these files will most likely be included in the root

directory [11] of a JavaScript project. We did not consider

package.json for identifying a revision as a JavaScript revi-

sion because package.json is often used in other languages

as well, such as PHP (e.g. Symfony uses package.json to

manage tools that are necessary for packing the application’s

frontend [22]).

Based on this second round of filtering, we got 3,718 rows for

Python and 4,136 rows for JavaScript, which we stored in two new

tables: cve_revs_py and cve_revs_js, respectively. We analyzed

the data collected in these instead of the original revision table.

2.1 Tools and Queries for Data Mining

We processed the collected Python and JavaScript revisions using

Python scripts and pandas [10], and used regular expressions1 to

find and extract the CVE/CWE IDs from the commit messages.

All the used regular expressions and extraction scripts for finding

CVE/CWE and vulnerability mitigating revisions are available in

our online asset package.2 We also tried to filter commits for “NVD”,

but there were no matching commit messages. If a commit message

contained more than one CVE or CWE references, we extracted all

and considered them separately (i.e. the commit contained mitiga-

tion for more than one vulnerabilities). As a commit message can

contain the same CVE/CWE IDs several times (for example, it can

be in the first line of the commit message and later it can appear in

the description as well), we had to remove the duplicates. Thus one

CVE/CWE entry is considered only once per revision.

1 (𝐶𝑉𝐸 − \𝑑 {4} − \𝑑 {4, }) , (𝐶𝑊𝐸 − [\𝑑 ] {1, 4}) , and (𝑁𝑉𝐷 .+)
2https://doi.org/10.5281/zenodo.3699486

Several rows has not been filtered out in the first step, but in

the processing step we could not find any CVE/CWE IDs in their

commit messages. We examined and validated all of these cases by

hand. These revisions contained messages that could pass our first

filtering but did not mention any valid CVE/CWE IDs, for example,

execve-safe, Glennvd-patch-1, nvd-downloader, no CVE-id.

As we focused on the types of vulnerabilities, which can be de-

scribed by the CWE identifier of the security problem category the

vulnerability belongs to, we had to link each CVE entries to the

corresponding CWE categories of the vulnerabilities. To achieve

this, we relied on the data provided by the National Vulnerability

Database [12] and used a customized version of CVEmanager by At-

lasis [4] to parse the JSON data files describing the CVE entries with

meta-information, like its corresponding CWE category. Besides

the CWE group of a CVE entry, we also extracted the publishing

date, severity, and the base impact score of every CVE entries.

Some revisions contained references to CWE groups without

mentioning any specific CVE entries. These revisions were mapped

directly to the referenced CWE categories.

2.2 Software Heritage Graph Dataset Version

We performed our study using the compressed PostgreSQL for-

mat [14] of the full Software Heritage Graph Dataset [15]. It took

us several tries to correctly import the dataset into a local database.

With some modifications to the original load script (e.g. remov-

ing concurrent index creation), we managed to import the whole

database into a local server.

The technical specifications of the database server we used were

20-core Intel CPU (2,6 GHz), 90 Gbs of RAM, 5 Tb SSD. Despite the

quite strong hardware, the data import and queries were rather slow

due to the enormous size of the database. To speed up the process,

we created intermediate tables from the relevant information in a

filtered and transformed way.

3 RESULTS

After all filtering steps, we identified a total number of 3,458 vulner-

ability mitigation commits (i.e. commit messages containing valid

CVE or CWE IDs) for JavaScript and 2,884 for Python to which we

were able to resolve the corresponding CWE security type groups

as well. Figure 1 shows the ratio of commits over the years in terms

of the average number of vulnerability mitigation commits per 100k

commits.

Figure 1: Vulnerability mitigation ratio per year

While Python vulnerability mitigation ratio is quite stable, the

same ratio for JavaScript projects grows consistently from 2015,

with a large peak in 2018, but is still lower than that of Python

projects. As there are no JavaScript commits in Software Heritage
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Figure 2: Number of security issues found with the given CWE types

Dataset before 2010, and the data for 2019 is still incomplete, we

omitted those years from the analysis. Table 1 provides further

details on the number of detected vulnerability mitigation commits

and the total number of commits in the analyzed years. The distri-

bution of the referenced CWE vulnerability types are depicted in

Figure 2.

Table 1: Commit statistics per year

Year Vuln. JS Vuln. PY Total JS Total PY

2010 0 225 102,525 1,597,160
2011 0 67 675,492 2,068,155
2012 6 343 2,078,887 2,663,836
2013 41 209 5,705,696 3,436,804
2014 84 291 12,692,836 4,440,660
2015 111 328 23,794,463 5,537,294
2016 239 453 38,990,699 6,527,350
2017 393 329 40,883,417 6,835,803
2018 2584 639 37,729,971 6,315,866

3.1 Typical Security Issue Types (RQ1)

To answer RQ1, we examined the extracted vulnerability mitiga-

tion commits with 103 different CWE categories. From these 103,

55 CWE types occurred in both JavaScript and Python commit

messages, while 32 CWE groups were found only in JavaScript

projects, while 16 only in Python projects (however, the number of

vulnerabilities with such types were very low).

We examined the most popular CWE categories in more detail.

The CWEs having at least 150 references in either of the analyzed

languages are as follows:

• CWE-79 – Improper Neutralization of Input During Web

Page Generation (Cross-site Scripting).

• CWE-399 – Resource Management Errors.

• CWE-200 – Information Exposure.

• CWE-20 – Improper Input Validation.

• CWE-264 – Permissions, Privileges, and Access Controls.

• CWE-400 – Uncontrolled Resource Consumption.

• CWE-119 – Improper Restriction of Operations within the

Bounds of a Memory Buffer.

• CWE-22 – Improper Limitation of a Path-name to a Restricted

Directory (Path Traversal).

Interestingly, except for CWE-200 that is the type of the vulnera-

bilities mitigated in more than 200 commits in both languages, each

of the other six CWE groups can be attributed to either JavaScript

or Python projects (i.e. one of the languages contain the majority of

the mitigation to these vulnerability types). On the one hand, Cross-

site Scripting (CWE-79), Path Traversal (CWE-22), Improper In-

put Validation (CWE-20) and Uncontrolled Resource Consumption

(CWE-400) type of vulnerabilities are mitigated mostly in JavaScript

projects. All these vulnerability types are primarily relevant for

web applications, where JavaScript is heavily used at the client-

side, thus it is more probable that a JavaScript project encounters

such vulnerabilities. On the other hand, mitigation of Resource

Management Errors (CWE-399), Permissions, Privileges, and Ac-

cess Controls (CWE-264), and Improper Restriction of Operations

within the Bounds of a Memory Buffer (CWE-119) type of vulnera-

bilities occur in Python commits mostly. These are more relevant

at the server-side, where Python seems to dominate. There is a

significant overlap in these categories as well, so projects from both

languages have vulnerabilities with all these CWE types, but based

on the data we have, it seems that these are more typical for a

particular language.

3.2 Reaction Times to Security Issues (RQ2)

To answer RQ2, we analyzed the average number of days elapsing

between a mitigation commit date and the publish date of a CVE

entrymentioned in that commit. Figure 3 depicts a general overview

of these average number of days per year. We can see that it takes

about 100 days on average for both communities to start mitigating

a public vulnerability in their code-base, with some peaks in years

2010 and 2014 for Python and 2017 for JavaScript. Therefore, we can

conclude that at a very general level, neither the JavaScript nor the

Python communities react fast to appearing vulnerabilities in their

code. It would be also interesting to see, if there are reported CVE

entries that are never mitigated in reality, but it would require an

entirely different methodology and could be a good future research.

Figure 3: Average number of days between mitigation com-

mit date and CVE publish date grouped by years
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We also examined the eight most prevalent CWE categories from

the same aspect. The average number of days elapsed between

the publish date of a CVE entry and the date of its mitigation

commit for the top eight CWEs are shown in Figure 4. The Python

community reacts 1.5-14 times faster to these type of vulnerabilities

than the JavaScript community; most of the mitigation commits

appear 50 days or less after the publish date of the corresponding

vulnerabilities. In the case of JavaScript, only vulnerabilities from

three CWE categories enjoy extra care (CWE-20, CWE-200, CWE-

400), all the others are mitigated after at least 100 days.

Figure 4: Average number of days between commit date and

issue publish date for the most common CWEs

The JavaScript community reacts exceptionally fast to informa-

tion exposure (CWE-200) type of vulnerabilities (after only 32.5

days on average), while improper input validation (CWE-20) and

uncontrolled resource consumption (CWE-400) are mitigated after

about 50 days on average. Interestingly, the vulnerabilities falling

into the CWE categories characteristic to Python (CWE-264, CWE-

399, and CWE-119) are mitigated after 200 days or more.

4 RELATEDWORK

By exploring the life-cycle of the vulnerabilities [6, 19], one can un-

derstand their nature better, which helps to find or predicting them.

Analogously to general bug prediction models, specific vulnerabil-

ity prediction models have been introduced [7, 9]. A big question

regarding them is how well they generalize across projects (or even

across languages) [1].

In their work, Li et Paxson [8] conducted a large-scale empirical

study (with over 4000 security patches) to investigate the vulnera-

bility fix development life cycle and its characteristics, compared

to the non-security bug fixing life cycle and characteristics. They

revealed that third of all security fixes are introduced more than 3

years after publishing.

Xu et al. [24] proposed a binary-level patch analysis framework

called SPAIN, which identifies security (and non-security) patches

by analyzing the binaries. The framework also detects patch and

vulnerability patterns that can be used to detect similar patch-

es/vulnerabilities in the given binaries. In contrast to this work, we

analyzed the source code changes mitigating vulnerabilities.

Vásquez et al. [23] analyzed 660 Android-related vulnerabilities

and their fixes. They used both NVD and Google Android security

bulletins to collect their data. Their analysis include vulnerability

types and the hierarchical relationship between vulnerabilities, the

impacted components and the survivability of the vulnerabilities.

We instead analyzed JavaScript and Python vulnerabilities.

5 THREATS TO VALIDITY

We had to apply heuristics to determine the language of the projects

(as the exact solution would have been practically infeasible due to

the database structure). Due to this, we might have omitted some

projects as well as identified some projects wrongly. However, as

our heuristics are based on widely established guidelines and best

practices that most of the projects follow, the number of these

projects should be minimal.

In most of the cases the committers mention CVE IDs explicitly,

however, there are unusual references, for example “Fixed XSS (with

CVE number 2020-100)” or “CVE-2020-20500/330/34/345”. Also,

there is a chance that a committer mentions a CVE in a context

that is not related to fixing its underlying security issue. In such

cases, we might drop valid vulnerability mitigation commits or

include invalid ones. To estimate the impact of this threat, we

manually evaluated 700 randomly selected commit messages from

the identified revisions. In the vast majority of the evaluated cases,

the commit messages refer to CVE IDs as we anticipated, thus the

impact of this threat should be minimal.

6 CONCLUSIONS

Using the Software Heritage Graph Dataset, we analyzed the vul-

nerability mitigation commits in the Python and JavaScript projects

from two aspects. On the one hand, we identified the types of

vulnerabilities (in terms of CWE groups) referred to in commit mes-

sages and compared their numbers within the two communities.

The percentage of vulnerability mitigation commits compared to

the total number of commits in projects show a growing tendency

(sharper in case of JavaScript, slower for Python). We detected 103

different CWE groups out of which 55 appeared in both languages

projects. From the eight most prevalent vulnerability types, one

was mitigated by both communities in equal numbers (CWE-200),

but four (CWE-20, CWE-22, CWE-79, CWE-400) was typical to

JavaScript, while three (CWE-399, CWE-264, CWE-119) to Python

projects. This suggests that JavaScript and Python communities

suffer the most from different types of vulnerabilities.

On the other hand, we examined the average time elapsing be-

tween the publish date of a vulnerability and the date of the commit

mitigating it. We found that in general, neither the JavaScript nor

the Python community reacts very fast to appearing vulnerabilities

(i.e. it takes more than 100 days on average to mitigate a vulnera-

bility after its publish date). However, this reaction is 1.5-14 times

faster in the Python community for the most common CWE cate-

gories (even to the ones more typical to JavaScript projects), while

the JavaScript community seems to take special care only of three

CWE categories: CWE-200, CWE-20, and CWE-400.
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