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Abstract
PACAP is a neuropeptide with widespread distribution and diverse biological functions. It has strong cytoprotective effects
mediated mainly through specific PAC1 receptors. Experimental data show protective effects of PACAP in the retina and cornea
in several pathological conditions. Although intravitreal injections are a common practice in some ocular diseases, delivery of
therapeutic agents in the form of eye drops would be more convenient and would lead to fewer side effects. We have previously
shown that PACAP, in the form of eye drops, is able to pass through the ocular barriers and can exert retinoprotective effects. As
eye drops represent a promising form of administration of PACAP in ocular diseases, it is important to investigate the stability of
PACAP in solutions used in eye drops. In this study, the stability of PACAP1-27 and PACAP1-38 in eye drops was measured in
four commonmedia and a commercially available artificial tear solution at both room temperature and +4 °C. Mass spectrometry
results show that the highest stability was gained with PACAP1-38 in water and 0.9% saline solution at +4 °C, representing 80–
90% drug persistence after 2 weeks. PACAP1-38 in the artificial tear showed very fast degradation at room temperature, but was
stable at +4 °C. In summary, PACAP1-38 has higher stability than PACAP1-27, with highest stability at +4 °C in water solution,
but both peptides in each medium can be stored for relatively longer periods without significant degradation. These data can
provide reference for future therapeutic use of PACAP in eye drops.
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Introduction

The neuropeptide pituitary adenylate cyclase activating poly-
peptide (PACAP) exists in two active forms, PACAP1-38 and
PACAP1-27, both of which are well-established neuro- and
general cytoprotective peptides, with 38 and 27 amino acid
residues, respectively (Reglodi et al. 2017, 2018a, b; Shioda
and Nakamachi 2015). PACAP1-27 is the form with the
shorter C-terminal, representing about 10% of the naturally
occurring peptide (Miyata et al. 1990; Vaudry et al. 2009).

Both PACAP forms occur in most organs, with the highest
expression levels in the nervous system, endocrine glands
and testis, but several peripheral organs also have measurable
levels of PACAP (Fulop et al. 2019; Horvath et al. 2019;
Reglodi et al. 2018c; Vaudry et al. 2009). PACAP and its
receptors are also found in ocular tissues, including the lacri-
mal gland, conjunctiva, inner eye muscles and different layers
of the eye. It has been found in all three layers of the eyecup:
the fibrous, vascular and nervous layers (Atlasz et al. 2016;
Seki et al. 2000a, b). PACAP exerts several different effects in
the eye. It affects tear secretion (Nakamachi et al. 2016), in-
fluences muscle responses of the iris (Yamaji et al. 2005),
increases blood flow in the eye (Dorner et al. 1998) and reg-
ulates pigment epithelial cell functions (Fabian et al. 2012,
2019; Maugeri et al. 2019a). Most importantly, as a general
protective peptide found not only in the central nervous sys-
tem but several peripheral organs as well (Laszlo et al. 2019;
Liu et al. 2019; Polanco and Pennuto 2018; Reglodi et al.
2018d, e; Shioda et al. 2019; Szegeczki et al. 2019), PACAP
has been shown to exert diverse retinoprotective effects in
models of toxic, ischemic, inflammatory and traumatic retinal
injuries (Atlasz et al. 2016, 2019; Cheng et al. 2018; Endo
et al. 2011; Gabriel et al. 2019; Kvarik et al. 2016; Seki
et al. 2008; Szabadfi et al. 2016; Vaczy et al. 2016; Ye et al.
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2019a, b). Several retinal cell types can be protected by
PACAP, including ganglion cells, bipolar neurons, amacrine
and pigment epithelial cells (Atlasz et al. 2008; Fabian et al.
2019; Maugeri et al. 2019a; Szabadfi et al. 2012).

PACAP has protective effects not only in the retina, but
also in the cornea, where PACAP and its receptors are present
in the cornea (Maugeri et al. 2018, 2019b, c; Wang et al.
1995). A few studies have investigated the local effects of
PACAP on the cornea. A study in rabbits found that
PACAP1-27 eye drops promoted the growth of neuronal pro-
cesses in the cornea and accelerated recovery of corneal sen-
sitivity (Fukiage et al. 2007). Although it focused only on
neuronal recovery, the study drew attention to the possibility
that PACAP, in the form of eye drops, could enhance corneal
recovery. Indeed, the enhancement of corneal regeneration by
topical administration of PACAPwas subsequently confirmed
in two independent studies (Ma et al. 2015; Nakamachi et al.
2016). PACAP has also demonstrated protective effects on
corneal endothelial cells, indicating an important trophic func-
tion of the peptide in the cornea (Maugeri et al. 2018, 2019b,
c). In in vivo studies, PACAP was given in the form of eye
drops in order to exert local effects on the cornea. In contrast,
most studies showing retinoprotective effects of the peptide
have utilized intravitreal administration. Intravitreal injec-
tions, despite their wide clinical use, have the distinct disad-
vantage of being invasive (Atlasz et al. 2016; Shioda and
Nakamachi 2015). Recently, in a model of ischemic retinopa-
thy, we provided evidence that both PACAP forms, given as
eye drops, are able to pass through the ocular barriers and
reach the retina, where they can exert retinoprotective effects
(Werling et al. 2016, 2017). This shows that PACAP treatment
as eye drops is a promising therapeutic approach not only in
corneal diseases, but also in retinal pathologies. Therefore, it is
important to investigate the stability of PACAP in different
solutions used in ophthalmic practice. Since the ocular appli-
cation of PACAP is a potential therapeutic approach in several
diseases, including dry eye syndrome (Shioda et al. 2019), the
aim of the present study was to analyze the stability of
PACAP1-27 and PACAP1-38 in the most commonly used
eye drop solvents.

Materials and Methods

Materials

PACAP1-27 and PACAP1-38 were synthesized in our labora-
tory on a CEM Liberty microwave peptide synthesizer
(Matthews, NC, USA) and were dissolved in the following
sterile vehicles: (i) 0.9% saline solution, (ii) benzalkonium
chloride solution for ophthalmic use (SOCB), (iii) thimerosal
solution for ophthalmic use and (iv) water for injection, ob-
tained from the Faculty Central Pharmacy, Faculty of

Medicine, University of Szeged. A commercially available
artificial tear solution (Systane Ultra®, Alcon, Switzerland)
was also used in the experiment.

Analytical reversed-phase high-performance liquid chro-
matography (RP-HPLC) was performed on an Agilent 1200
Series separation system with diode array and multiple wave-
length detector (Waldbronn, Germany), with a Luna C18(2)
100 Å column (10 μm, 250 × 4.6 mm; Phenomenex,
Torrance, CA, USA). The chromatography was carried out
at room temperature (RT), with a flow rate maintained at
1.2 mL min−1 at a wavelength of 220 nm [mobile phase sol-
vent A: 0.1% TFA in Milli-Q water; solvent B: 0.1% TFA in
acetonitrile (AcN)] using gradient elution. Mass spectrometry
(MS) data were collected on a Waters SQ Detector (Milford,
MA, USA) with an API mass spectrometer in positive ion
mode.

Peptide Synthesis and Purification

For the experiment, the synthesized peptides at the University
of Szeged (Szeged, Hungary) were as follows: PACAP1-27:
H-His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-
Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Ala-Ala-Val-
Leu-NH2; PACAP1-38: H-His-Ser-Asp-Gly-Ile-Phe-Thr-
Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-
Lys-Tyr-Leu-Ala-Ala-Val-Leu-Gly-Lys-Arg-Tyr-Lys-Gln-
Arg-Val-Lys-Asn-Lys-NH2. The sequences were synthesized
b y a s o l i d - p h a s e t e c h n i q u e u t i l i z i n g Fmo c
(fluorenylmethyloxycarbonyl) chemistry. The peptide chains
were elongated on a Rink amide MBHA resin (1.1 mmol/g),
and the syntheses were carried out using a CEM Liberty mi-
crowave peptide synthesizer. The side-chain protecting groups
were as follows: Fmoc-His(Trt) (Trt: trityl), Fmoc-Ser(tBu)
(tBu: tert-butyl), Fmoc-Asp(tBu), Fmoc-Thr(tBu), Fmoc-
Ty r ( t B u ) , F m o c - A r g ( P b f ) ( P b f : 2 , 2 , 4 , 6 , 7 -
pentamethyldihydrobenzofuran-5-sulfonyl), Fmoc-Lys(Boc)
(Boc: tert-butyloxycarbonyl). Coupling was performed with
HBTU. The completed peptide resins were treated with TFA/
water/TIS (93:5:2, v/v) at RT for 2.5 h. The reagents were
removed, and the resulting free peptides were solubilized in
10% aqueous acetic acid, filtered and lyophilized. Next, 120–
150 mg of crude peptides was dissolved in 1.5 mL 5% m/m
acetic acid, and then filtered using a 0.45 μm nylon filter.
Gradient elution was used, 20–40% eluent B for 50 min at a
flow rate of 3 mL min−1, with detection at 220 nm. Pure
fractions were collected and lyophilized to give a white mate-
rial, with weight of 55–63 mg.

Stability Testing

The stability of the peptides was examined with LC-MS in
four media commonly used in ophthalmology: (i) 0.9% saline
solution, (ii) benzalkonium chloride solution for ophthalmic

J Mol Neurosci



use (SOCB), (iii) thimerosal solution for ophthalmic use and
(iv) water for injection. First, 0.5 mg peptide was dissolved in
0.5 mL solvent; after dissolution, the resulting liquids were
halved. One half of the solvent was cooled to and maintained
at +4 °C; the other half was kept at RT. After 3, 6, 8, 11 and
14 days, 40 μL of the given solutions was examined. The
stability of PACAP1-38, which showed higher stability in
every condition, was also tested in a commercially available
artificial tear solution as medium [ingredients: polyethylene
glycol 400, propylene glycol, hydroxypropyl guar, sorbitol,
aminomethyl propanol, potassium chloride, sodium chloride,
0.001% Polyquad® (polidronium chloride)], following the
same protocol.

Results

Table 1 and Figs. 1 and 2 show the stability results for
PACAP1-27 in the four media at the two experimental tem-
peratures (RT and +4 °C) over a 2-week period. The results
show that at +4 °C, all four solutions have significantly higher
stability than the solutions at RT, and the rate of degradation is
higher in the SOCB and thimerosal solution than in the other
two vehicles (0.9% saline and water).While more than 90% of
PACAP1-27 was still intact at +4 °C after 14 days, only 25%
remained un-degraded at RT. In contrast, PACAP1-27 was
a lmos t comp l e t e l y deg r aded i n benza l kon ium
chloride solution at RT, while 65% remained intact at the
colder temperature.

PACAP1-38 solutions proved to be more stable than
PACAP1-27 in the same four media under the same thermal
conditions (Table 2, Figs. 3 and 4). At +4 °C, all four solutions
retained more than 90% of PACAP1-38 un-degraded, and
even after 2 weeks, more than 90% of the original peptide
was measured in saline and water solutions, and more than
75% in the other two solutions.

PACAP1-38 stability was also measured in a commercially
available artificial tear solution (Systane® Ultra) at the two

experimental temperatures over a 2-week period (Table 3
and Fig. 5). The results showed that the lower temperature
gave higher stability, similar to the other examined solutions,
but values were worse than in the other solvents during the
second week.

LC-MS measurements showed that a lower temperature
(+4 °C) resulted in higher stability for both peptides in all
media, but PACAP1-38 had higher stability than PACAP1-
27 in all media at both experimental temperatures. Both
PACAP1-27 and PACAP1-38 solutions with 0.9% saline so-
lution and water for injection were more stable at both tem-
peratures throughout the 14-day period. We can conclude that
the stability of PACAP1-38 and PACAP1-27 was highly me-
dium-dependent. We examined the more stable PACAP1-38
in a commercially available artificial tear solution as medium
and found that the stability was lower than in any of the other
media. Our findings were confirmed with RP-HPLC profiles
of both the initial state and the least and most degraded
PACAP1-27 and PACAP1-38 (Figs. 6–11). PACAP1-38
proved to be completely stable in water for injection at
+4 °C over a period of 2 weeks (Fig. 10).

Discussion

In the present study we showed the time course of degradation
of PACAP1-27 and PACAP1-38 in different solutions at room
temperature and at +4 °C. The results show that PACAP1-38
has significantly higher stability than PACAP1-27 at both RT
and +4 °C in each medium, with the longest stability in 0.9%
saline solution and water for injection.

Naturally occurring or exogenously injected PACAP1-38
and 1-27 are degraded by several peptidases in the blood
(Bourgault et al. 2009). Dipeptidyl peptidase IV (DPPIV)
cleaves PACAP1-38 to the PAC1 receptor antagonist
PACAP3-38 and 5–38 fragments, while PACAP1-27 is more
resistant to DPPIV but is readily cleaved by neutral endopep-
tidase, similar to the structurally homologous VIP. Other

Table 1 Stability of PACAP1-27 in different media and conditions over a period of 2 weeks. The numbers in the cells indicate the percentage of the
starting material that was not decomposed on the given day

PACAP1-27 0.9% Saline solution Benzalkonium chloride solution
for ophthalmic use (SOCB)

Thimerosal solution for
ophthalmic use

Water for injection

RT +4 °C RT +4 °C RT +4 °C RT +4 °C

Day 3 76 96 72 91 49 93 80 98

Day 6 73 91 59 78 44 84 52 95

Day 8 54 89 31 77 30 82 38 92

Day 11 43 83 24 72 27 70 37 91

Day 14 39 79 7 65 22 62 25 90

RT room temperature
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enzymes also take part in further cleavage, such as carboxy-
peptidase and endopeptidase and prohormone convertase
(Bourgault et al. 2009; Gourlet et al. 1997).

The therapeutic value of PACAP and/or its derivatives has
emerged in light of its strong neuroprotective and general
cytoprotective properties as well as potent vasodilatory and
several other biological effects (Cline et al. 2019; Jozsa et al.
2019; Parsons and May 2019; Reglodi et al. 2018a; Shioda
et al. 2019; Van et al. 2019; Vaudry et al. 2009). PACAP has
shown in vivo protective effects in animal models of cerebral
ischemia, Parkinson’s and Alzheimer’s disease, Huntington
chorea, traumatic brain and spinal cord injury, and different
retinal pathologies (Reglodi et al. 2017, 2018b). PACAP
passes through the blood–brain barrier (Banks 2016), and
therefore, systemic administration can affect the nervous

system and lead to neuroprotective effects. Several other
routes of administration have been proven to provide protec-
tive effects of PACAP in the nervous system and peripheral
organs, such as intracerebral, intrathecal, intracerebroventric-
ular, intravitreal and systemic treatments, as well as intrave-
nous, intraperitoneal and subcutaneous administration. Other
options include emerging therapeutic approaches such as in-
tranasal and eye drop treatments (Cabezas-Llobet et al. 2018;
Meredith et al. 2015; Reglodi et al. 2018a). As far as protec-
tion in the eye is concerned, the intravitreal approach is the
first choice for treatment in animal models of ocular diseases
(Atlasz et al. 2016; Kiss et al. 2006; Reglodi et al. 2018a). This
approach has led to the demonstration of the retinoprotective
effects of PACAP in models of retinal hypoperfusion (Atlasz
et al. 2007), traumatic optic nerve injury (Seki et al. 2008),
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Fig. 1 Degradation of PACAP1-27 and PACAP1-38 at room temperature
(RT) and at +4 °C in four media (0.9% saline solution, SOCB,
thimerosal solution, water for injection) (a–d). We found that all four
solutions demonstrated significantly higher stability at +4 °C than at
RT, and the rate of degradation was higher in the SOCB and thimerosal

solutions than in saline or water vehicles. PACAP1-38 was also more
stable than PACAP1-27 in the four media. Degradation of PACAP1-38
in Systane® Ultra at RT and +4 °C (e). Higher stability was found at
+4 °C, similar to the other examined media
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kainate- and glutamate-induced excitotoxicity (Atlasz et al.
2009; Seki et al. 2006), UV light-induced lesion (Atlasz
et al. 2011), lipopolysaccharide-induced inflammation
(Vaczy et al. 2018), oxygen-induced retinopathy of prematu-
rity (Kvarik et al. 2016), diabetic retinopathy (D’Amico et al.

2017; Szabadfi et al. 2016) and high intraocular pressure-
induced retinopathy (Seki et al. 2011).

Although intravitreal treatments are commonly used in oph-
thalmological practice, it is an invasive method, with potential
side effects and patient discomfort. PACAP, in the form of eye
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Fig. 2 PACAP1-27 initial state tR = 15.14 min (a). The most stable
PACAP1-27 after day 14 medium: water for injection, temperature:
+4 °C (b). The most degraded PACAP1-27 after day 14 medium:
SOCB, temperature: room temperature (c). PACAP1-38 initial state
tR = 13.94 min (d). The most stable PACAP1-38 after day 14 medium:

water for injection, temperature: +4 °C (e). The most degraded PACAP1-
38 after day 14 medium: SOCB, temperature: room temperature (f).
Conditions: 0–100% B in 30 min, 220 nm, 1.2 mL/min, eluent A: 0.1%
TFA/H2O, eluent B: 80% AcN/0.1% TFA/H2O
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drops, has been shown to lead to extension of neuronal process-
es from amputated nerve trunks in the cornea following laser-
assisted in situ keratomileusis and to accelerate recovery of
corneal sensitivity after the surgery (Fukiage et al. 2007).
Corneal application of PACAP1-27 eye drops or of a
PACAP-derived peptide, with higher stability and PAC1-
specific potency than PACAP, also led to enhancement of cor-
neal wound healing in mice (Ma et al. 2015). PACAP treatment
in the form of eye drops is also able to increase tear secretion
and cAMP and pPKA levels, in addition to the suppression of
corneal keratinization and dose-dependent corneal wound
healing in mice and rats (Farkas et al. 2010; Nakamachi et al.
2016). We recently showed that both PACAP1-27 and
PACAP1-38 given in the form of eye drops could readily cross
the ocular surfaces and could reach the retina in a concentration
high enough to exert retinoprotective effects in a model of
retinal ischemia (Werling et al. 2016, 2017). These results offer
a potential novel therapeutic approach to treating retinal dis-
eases. The use of PACAP in eye drops, therefore, would be
beneficial not only in corneal diseases, but also in retinal pa-
thologies. The emerging potential of PACAP in the form of eye
drops led us to investigate the degradation process of PACAP1-
27 and PACAP1-38 in themost commonly used solvents at two
different temperatures, room temperature and +4 °C, which are

important from both an experimental and clinical perspective.
The present results provide a future reference for PACAP solu-
tions to be used in the treatment of ocular disease.
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