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Sobolev inequalities with jointly concave weights on convex cones

Zoltán M. Balogh, Cristian E. Gutiérrez and Alexandru Kristály

Abstract

Using optimal mass transport arguments, we prove weighted Sobolev inequalities of the form
(ˆ

E

|u(x)|q ω(x) dx

)1/q

� K0

(ˆ
E

|∇u(x)|p σ(x) dx

)1/p

, u ∈ C∞
0 (Rn), (WSI)

where p � 1 and q > 0 is the corresponding Sobolev critical exponent. Here E ⊆ R
n is an open

convex cone, and ω, σ : E → (0,∞) are two homogeneous weights verifying a general concavity-type
structural condition. The constant K0 = K0(n, p, q, ω, σ) > 0 is given by an explicit formula. Under
mild regularity assumptions on the weights, we also prove that K0 is optimal in (WSI) if and only if
ω and σ are equal up to a multiplicative factor. Several previously known results, including the cases
for monomials and radial weights, are covered by our statement. Further examples and applications
to partial differential equations are also provided.
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1. Introduction

Driven by numerous applications to the calculus of variations and PDEs, there is a rich
literature of weighted Sobolev inequalities, for example, Bakry, Gentil and Ledoux [2], Kufner
[16], and Saloff-Coste [27]. Our purpose in this paper is to prove Sobolev inequalities for two
weights of the form(ˆ

E

|u(x)|q ω(x) dx
)1/q

� K0

(ˆ
E

|∇u(x)|p σ(x) dx
)1/p

for all u ∈ C∞
0 (Rn), (WSI)

with K0 > 0 independent on u ∈ C∞
0 (Rn). Here E ⊆ R

n is an open convex cone, and ω, σ :
E → (0,∞) are two homogeneous weights verifying some general concavity-type structural
conditions to be described.

There are a few ways to prove inequalities of this type when the weights ω and σ are equal.
One recent approach, based on the ABP method, is due to Cabré, Ros-Oton and Serra, see
[5] for monomial weights, and [6] for homogeneous weights. A second method used is based on
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optimal transport and was initiated by Cordero-Erausquin, Nazaret and Villani in [11] to show
the classical unweighted Sobolev inequalities. This second method has been further developed
by Nguyen [25] to deal with the case of monomial weights ω = σ = xα1

1 . . . xαn
n with αi � 0,

i = 1, . . . , n. In addition, Ciraolo, Figalli and Roncoroni [10] recently considered the case of
general α-homogeneous weights ω = σ with the property that σ1/α is concave.

In this paper, we continue the aforementioned line of research for two different weights ω and
σ satisfying a joint structural concavity condition and prove (WSI) under this assumption using
optimal transport. In fact, the study of (WSI) is motivated by reaction–diffusion problems
(see Cabré and Ros-Oton [3, 4]) and Sobolev inequalities on Heisenberg groups for axially
symmetric functions (see Section 5.2). Furthermore, the cases considered in [10, 11, 25] turn
out to be particular cases of our results which also contain the results of Castro [9] for possible
different monomial weights, see Section 4.

We begin introducing notation and the general set up. Let n � 2, and let E ⊆ R
n be an open

convex cone, that is, an open convex set such that λx ∈ E for all λ > 0 and x ∈ E; in particular,
0 ∈ E. Let p � 1 and ω, σ : E → (0,∞) be two locally integrable weights in E, continuous in
E, and satisfying the homogeneity conditions

ω(λx) = λτ ω(x), σ(λx) = λα σ(x) for all λ > 0, x ∈ E, (1.1)

where the parameters τ, α ∈ R verify

1 � p < α + n � τ + p + n, (1.2)

and

α �
(
1 − p

n

)
τ. (1.3)

Clearly, the local integrability of ω and σ implies τ + n > 0 and α + n > 0, respectively.
Moreover, (1.2) implies α > −n + 1. We remark that both integrals in (WSI) are considered
only on E and the functions u involved need not vanish on ∂E. By scaling, (WSI) implies the
dimensional balance condition

τ + n

q
=

α + n

p
− 1. (1.4)

The choice of the precise parameter range given by (1.2) and (1.3) is not arbitrary; indeed,
these ranges are necessary for the validity of (WSI) as it is shown in Section 5.1. From (1.4)
and (1.2), we immediately obtain that

q =
p(τ + n)
α + n− p

� p.

An important quantity, called fractional dimension na, is given by

1
na

=
1
p
− 1

q
. (1.5)

From (1.4), the inequality (1.3) is equivalent to

na � n.

It may happen that na = +∞ which is equivalent to p = q, that is, to α = p + τ . As usual,
denote p′ = p

p−1 for p > 1, and p′ = +∞ when p = 1.
In addition to the homogeneity assumption (1.1) and necessary conditions (1.2)–(1.4), we

assume that the weights ω, σ : E → (0,∞) are differentiable almost everywhere (a.e) in E and
satisfy either one of the following joint structural concavity conditions.
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C-0: If na > n, then there exists a constant C0 > 0 such that((
σ(y)
σ(x)

)1/p(
ω(x)
ω(y)

)1/q
)na/(na−n)

� C0

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· y (1.6)

for almost every (a.e.) x ∈ E and for all y ∈ E.
C-1: If na = n, then supx∈E

ω(x)1/q

σ(x)1/p
=: C1 ∈ (0,∞), and

0 �
(

1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· y (1.7)

for a.e. x ∈ E and for all y ∈ E.

We note that whenever ω = σ is a homogeneous weight of degree α > 0 and C0 = 1
α , relation

(1.6) in C-0 turns to be equivalent to the concavity of σ1/α, see [6, Lemma 5.1]. Even more,
Proposition 3.1 reveals an unexpected rigidity connection between condition C-0 and the
concavity of the weights ω and σ in a limiting case.

Our main results are that under either one of these assumptions (WSI) holds. Our first main
result is then as follows.

Theorem 1.1. Let p > 1, E ⊆ R
n be an open convex cone and weights ω, σ : E → (0,∞)

satisfying relations (1.1)–(1.4), continuous in E and differentiable a.e. in E. Then we have:

(i) if condition C-0 holds for some C0 > 0, then (WSI) holds with

K0 = max
{
C0

(
1 − n

na

)
,

1
na

}
q

(
1
p′

+
1
q

)

× inf´
E

v(y) dy=1,v∈C∞
0 (Rn),v�0

(´
E
v(y) |y|p′

dy
) 1

p′

´
E
v(y)1−

1
na ω(y)−

1
q σ(y)

1
p dy

;

(ii) if condition C-1 holds for some C1 > 0, then (WSI) holds with

K0 =
C1

n
q

(
1
p′

+
1
q

)
inf´

E
v(y) dy=1,v∈C∞

0 (Rn),v�0

(´
E
v(y) |y|p′

dy
) 1

p′

´
E
v(y)1−

1
n dy

.

The proof of this theorem is based on optimal transport arguments à la Cordero-Erausquin,
Nazaret and Villani [11]. The statement of the theorem is general enough to cover several
well-known results and flexible enough to apply to new cases as well. A well-known Sobolev
inequality for radial weights of the form ω(x) = |x|τ and σ(x) = |x|α (see Caffarelli, Kohn
and Nirenberg [7]) follows as a corollary of this theorem. Considering equal weights ω = σ
in Theorem 1.1(i) we recover the isotropic weighted Sobolev inequality in [10, Appendix A]
and [25] when ω = σ = w is a monomial weight. When ω and σ are monomial weights not
necessarily equal, Theorem 1.1 contains also the main result of Castro [9], providing in addition
an explicit Sobolev constant in (WSI). Moreover, our setting allows that some parameters τi ∈
R in the monomial ω(x1, . . . , xn) = xτ1

1 · · ·xτn
n can take negative values, which is an unexpected

phenomenon that does not appear in the papers [5, 10, 25].
When p = 1, with a proof similar to that of Theorem 1.1, we obtain isoperimetric-type

inequalities for two weights. In this case, we have 1
na

+ 1
q = 1 and 1

p′ = 0, and both conditions
C-0 and C-1 are understood with these values; see (2.2) and the end of the proof of Lemma 2.1.
For further use, let B := {x ∈ R

n : |x| � 1}. Our second main result is then the following.
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Theorem 1.2. Let p = 1, E ⊆ R
n be an open convex cone and weights ω, σ : E → (0,∞)

satisfying relations (1.1)–(1.4), continuous in E and differentiable a.e. in E. Then we have:

(i) if condition C-0 holds for some C0 > 0, then (WSI) holds with

K0 = max
{
C0

(
1 − n

na

)
,

1
na

}(´
B∩E

ω(y) dy
)1− 1

na´
B∩E

σ(y) dy
;

(ii) if condition C-1 holds for some C1 > 0, then (WSI) holds with

K0 =
C1

n

(´
B∩E

ω(y) dy
)1− 1

n

´
B∩E

ω(y)1−
1
n dy

.

Moreover, inequality (WSI) extends to functions with σ-bounded variation on E.

This statement covers the main results in [6] on weighted isoperimetric inequalities when
ω = σ. To be more precise, let us introduce a few definitions to conclude from Theorem 1.2
isoperimetric inequalities. A function f : R

n → R has σ-bounded variation on E if

Vσ(f,E) = sup
{ˆ

E

f(x)div(σ(x)X(x))dx : X ∈ C1
0 (E,Rn), |X(x)| � 1, ∀x ∈ E

}
< +∞.

Let BVσ(Rn) be the set of these functions. It is clear that Ẇ 1,1
σ (Rn) ⊂ BVσ(Rn) and for every

u ∈ Ẇ 1,1
σ (Rn), we have ˆ

E

|∇u(x)|σ(x)dx = Vσ(u,E).

Here for each p � 1, Ẇ 1,p
σ (Rn) denotes the set of all measurable functions u : R

n → R such
that the level sets {x ∈ E : |u(x)| > s}, s > 0, have finite σ-measure and |∇u||E ∈ Lp

σ(E), the
space of functions that are pth integrable with respect to σ in E.

A measurable set Ω ⊂ R
n has σ-bounded variation on E if 1Ω ∈ BVσ(Rn), and its weighted

perimeter with respect to the convex cone E is given by

Pσ(Ω, E) = Vσ(1Ω, E).

The conclusions of Theorem 1.2 can be then reformulated in terms of weighted isoperimetric
inequalities, that is, for any set Ω ⊂ R

n having σ-bounded variation on E, one has

K−1
0

(ˆ
Ω∩E

ω(x)dx
)1− 1

na

� Pσ(Ω, E), (1.8)

where K0 > 0 is the constant given by Theorem 1.2. When ω = σ, (1.8) is the sharp weighted
isoperimetric inequality of [6] and [25] in the monomial case. Moreover, for different monomial
weights we recover from (1.8) the results of Abreu and Fernandes [1].

The next question considered is to describe the equality cases in Theorems 1.1 and 1.2. As
expected, the candidates for extremal functions belong to Ẇ 1,p

σ (Rn) rather than to C∞
0 (Rn).

Therefore, we may assume that (WSI) is extended to functions in Ẇ 1,p
σ (Rn). The equality cases

in Theorems 1.1 and 1.2 are described in the following result.

Theorem 1.3. Let p � 1, E ⊆ R
n be an open convex cone and weights ω, σ : E → (0,∞)

satisfying relations (1.1)–(1.4), continuous in E, differentiable a.e. in E, and one of them locally
Lipschitz in E. Then we have:

(i) if condition C-0 holds for some C0 > 0 and na < +∞, then there exist nonzero extremal
functions in (WSI) (with the constant K0 in Theorem 1.1(i) or Theorem 1.2(i)) if
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and only if ω and σ are equal up to a multiplicative factor, σ
1
α is concave and

C0 = 1
na−n ;

(ii) if condition C-0 holds and na = +∞, there are no extremal functions in (WSI);
(iii) if condition C-1 holds for some C1 > 0, then there exist nonzero extremal functions in

(WSI) (with the constant K0 in Theorem 1.1(ii) or Theorem 1.2(ii)) if and only if both

weights are constant, that is, ω ≡ cω > 0 and σ ≡ cσ > 0 with c
1
q
ω = C1c

1
p
σ .

Theorem 1.3 follows by a careful analysis of the equality cases in the proof of Theorems 1.1
and 1.2. Besides the regularity properties of the optimal transport map — similar to those
in [11] (see also [25] when the weights are two equal monomials) — the main novelty in our
argument is a rigidity phenomenon showing up from conditions C-0 and C-1 which implies
that the weights ω and σ are equal up to a multiplicative factor. For a technical reason, in
order to establish Theorem 1.3, our argument requires further regularity on the weights with
respect to Theorems 1.1 and 1.2, that is, one of them is assumed to be locally Lipschitz. On
one hand, Theorem 1.3 shows in a certain sense the limits of our approach. In particular, no
characterization can be provided for the equality cases in axially symmetric Sobolev inequalities
on the Heisenberg group H

1, since in that case ω/σ 
= constant (see Section 5.2). On the other
hand, Theorem 1.3 shows that the results from [6, 10, 25] are optimal in the sense that the
only reasonable scenario to obtain sharp (WSI) inequalities with the constants given above is
when the two weights are constant multiples of each other. The difference between the cases
p > 1 and p = 1 in Theorem 1.3(i) and (iii) appears in the shape of the extremal functions. In
the former case, it is Talenti-type radial function (independently on the weight), while in the
latter case it is the indicator function of B ∩ E.

We complete this introduction summarizing the organization of the paper. In Section 2, we
prove Theorems 1.1 and 1.2. Section 3 begins with a discussion concerning a concavity rigidity
arising from condition C-0, and then we provide the proof of Theorem 1.3. In Section 4,
we give various examples and applications of our results. In particular, examples of pairs of
weights (ω, σ) satisfying conditions C-0 and C-1 are given in Section 4.1 showing that several
known results are simple corollaries of Theorems 1.1 and 1.2. In Section 4.2, we provide some
applications by estimating the spectral gap in a weighted eigenvalue problem and discuss the
existence of nontrivial weak solution for a weighted PDE. Finally, in Section 5.1, we show
that (1.2)–(1.4) are necessary conditions for the validity of (WSI), and next in Section 5.2 we
establish the relation between (WSI) and Sobolev inequalities in the Heisenberg group. We
finish the paper with final comments and open questions.

2. Proof of Theorems 1.1 and 1.2

We start this section with some preliminary remarks on conditions C-0 and C-1. Let us note
that, from Euler’s theorem for homogeneous functions, one has ∇ω(x) · x = τω(x) and ∇σ(x) ·
x = ασ(x) for a.e. x ∈ E. Picking y = x ∈ E in C-0 yields 1 � C0( τ

p′ + α
p ), implying that if C-0

holds, then at least one of the parameters τ or α must be strictly positive. Clearly, C-1 holds
for constant weights.

Remark 2.1. (i) Using (1.4) and (1.5), condition C-0 can be written in terms of α and τ
as follows.((

σ(y)
σ(x)

)τ+n(
ω(x)
ω(y)

)α+n−p
) 1

n(α−τ)+pτ

� C0

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· y, (2.1)

for a.e. x ∈ E and all y ∈ E.
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(ii) When na = +∞ (that is, p = q, which is equivalent to α = p + τ), from (i), it is easy
to see that condition C-0 takes the form(

σ(y)
σ(x)

ω(x)
ω(y)

)1/p

� C0

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· y for a.e. x ∈ E and all y ∈ E. (2.2)

(iii) When na → n in condition C-0, the only reasonable relation we obtain is precisely (1.7)
in condition C-1. Indeed, if we fix x, y ∈ E such that ω(x)1/q

σ(x)1/p
< ω(y)1/q

σ(y)1/p
, then the left-hand side

of (1.6) tends to 0 whenever na → n.
(iv) When na = n, (1.4) implies τ

q = α
p , and so by (1.1) the function ω1/q

σ1/p is homogeneous
of degree zero. Thus, the constant C1 in condition C-1 equals

C1 := sup
x∈E∩Sn−1

ω(x)1/q

σ(x)1/p
< ∞.

In spite of the fact that ω1/q

σ1/p is homogeneous of degree zero, the last condition is not
automatically satisfied; indeed, the function (x1, x2) �→ x1

x2
is 0-homogeneous in E = (0,∞)2

but it certainly blows up when x2 → 0+.

2.1. Weighted divergence type inequalities

The proof of Theorems 1.1 and 1.2 are based on a pointwise divergence type inequality stated
in the following lemma. Let us recall that if φ : R

n → R is a convex function, D2
Aφ denotes its

Hessian in the sense of Alexandrov, that is, the absolutely continuous part of the distributional
Hessian of φ, see, for example, Villani [31]. In the same sense, let ΔAφ = trD2

Aφ be the
Laplacian and for f ∈ C1(Rn), let divA(f∇φ) = ∇f · ∇φ + fΔAφ.

Lemma 2.1. Let ω, σ : E → (0,∞) be weights satisfying (1.1)–(1.4), continuous in E and
differentiable a.e. in E. Let φ : R

n → R be a convex function such that ∇φ(E) ⊆ E.
Then we have:

(i) if C-0 holds with C0 > 0, then for a.e. x ∈ E one has

ω(x)1−
1

na ω(∇φ(x))−1/q
σ(∇φ(x))1/p

(
detD2

Aφ(x)
)1/na � C̃0 divA

(
ω(x)1/p

′
σ(x)1/p ∇φ

)
,

with

C̃0 = max
{
C0

(
1 − n

na

)
,

1
na

}
; (2.1)

(ii) if C-1 holds with C1 > 0, then

ω(x)1−
1

na

(
detD2

Aφ(x)
)1/na � C1

na
divA

(
ω(x)1/p

′
σ(x)1/p ∇φ

)
for a.e. x ∈ E.

Proof. Let us begin proving (i). We divide the proof into several cases.
Case 1: p > 1 and na < +∞. Since ∇φ(E) ⊆ E, ω(∇φ(x)) and σ(∇φ(x)) are well defined for

a.e. x ∈ E. Therefore, for a.e. x ∈ E, we have

ω(x)1−
1

na ω(∇φ(x))−1/q
σ(∇φ(x))1/p

(
detD2

Aφ(x)
)1/na

� ω(x)1−
1

na ω(∇φ(x))−1/q
σ(∇φ(x))1/p

(
ΔAφ(x)

n

)n/na

(from the AM-GM inequality)

= ω(x)1−
1

na

(
ω(∇φ(x))−1/q

σ(∇φ(x))1/p

ω(x)−n/qna σ(x)n/pna

)(
ΔAφ(x)

n
ω(x)−1/q σ(x)1/p

)n/na
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= ω(x)1−
1

na

⎛
⎝(ω(∇φ(x))−1/q

σ(∇φ(x))1/p

ω(x)−n/qna σ(x)n/pna

)na/(na−n)
⎞
⎠

1− n
na

×
(

ΔAφ(x)
n

ω(x)−1/q σ(x)1/p
)n/na

� ω(x)1−
1

na

((
1 − n

na

)(
ω(∇φ(x))−1/q

σ(∇φ(x))1/p

ω(x)−n/qna σ(x)n/pna

)na/(na−n)

+
1
na

ω(x)−1/q σ(x)1/p ΔAφ(x)

)

� ω(x)1−
1

na

×
(

1 − n

na

)⎛⎜⎝
(
C0

(
1
p′

∇ω(x)
ω(x) + 1

p
∇σ(x)
σ(x)

)
· ∇φ(x)

)(na−n)/na

ω(x)−1/qσ(x)1/p

ω(x)−n/qna σ(x)n/pna

⎞
⎟⎠

na/(na−n)

+
1
na

ω(x)1−
1

na ω(x)−1/q σ(x)1/p ΔAφ(x) (from C-0)

= ω(x)1−
1

na

(
1 − n

na

)C0

(
1
p′

∇ω(x)
ω(x) + 1

p
∇σ(x)
σ(x)

)
· ∇φ(x)

ω(x)1/q σ(x)−1/p

+
1
na

ω(x)1−
1

na ω(x)−1/q σ(x)1/p ΔAφ(x)

= ω(x)1/p
′
σ(x)1/p

(
1 − n

na

)
C0

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· ∇φ(x)

+
1
na

ω(x)1/p
′
σ(x)1/p ΔAφ(x)

� max
{
C0

(
1 − n

na

)
,

1
na

}(
ω(x)1/p

′
σ(x)1/p

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)

·∇φ(x) + ω(x)1/p
′
σ(x)1/p ΔAφ(x)

)

= max
{
C0

(
1 − n

na

)
,

1
na

}
divA

(
ω(x)1/p

′
σ(x)1/p ∇φ

)
,

which proves (i) whenever p > 1. In the above estimates, we used that both terms ΔAφ(x) and
( 1
p′

∇ω(x)
ω(x) + 1

p
∇σ(x)
σ(x) ) · ∇φ(x) are nonnegative. Case 2: p = 1 and na < +∞. Then 1

na
+ 1

q = 1
and 1

p′ = p−1
p = 0; accordingly, condition C-0 takes the form

(
σ(y)
σ(x)

(
ω(x)
ω(y)

)(na−1)/na
)na/(na−n)

� C0
∇σ(x)
σ(x)

· y for all x, y ∈ E. (2.2)
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A similar argument as before gives

ω(x)1−
1

na ω(∇φ(x))−1/q
σ(∇φ(x))

(
detD2

Aφ(x)
)1/na � C̃0 divA(σ(x)∇φ(x)) for a.e. x ∈ E,

which is the desired inequality.
Case 3: p > 1 and na = +∞. Since na = +∞, we have q = p. Thus, by (2.2) and ΔAφ(x) � 0

for a.e. x ∈ E, it turns out that

ω(x)ω(∇φ(x))−1/p
σ(∇φ(x))1/p � C0ω(x)

1
p′ σ(x)1/p

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· ∇φ(x)

� C0 divA

(
ω(x)1/p

′
σ(x)1/p ∇φ(x)

)
,

which is the required inequality with C̃0 = C0.
Case 4: p = 1 and na = +∞. Since in this case p = q = 1, condition C-0 reduces to

σ(y)
σ(x)

ω(x)
ω(y)

� C0
∇σ(x)
σ(x)

· y for a.e. x ∈ E and all y ∈ E. (2.3)

Therefore, by (2.3) and ΔAφ(x) � 0 for a.e. x ∈ E, one has

ω(x)ω(∇φ(x))−1
σ(∇φ(x)) � C0 ∇σ(x) · ∇φ(x) � C0 divA(σ(x)∇φ(x)) for a.e. x ∈ E,

concluding the proof of (i).
To show(ii), we divide the proof into two parts.
Case 1: p > 1 and na = n. Since na = n, one has 1

p − 1
q = 1

n . Moreover, by the definition of
C1 > 0 in condition C-1, it follows that

ω(x)1−
1
n � C1ω(x)1/p

′
σ(x)1/p, x ∈ E. (2.4)

Then for a.e. x ∈ E, one has

ω(x)1−
1

na

(
detD2

Aφ(x)
)1/na = ω(x)1−

1
n

(
detD2

Aφ(x)
)1/n

� ω(x)1−
1
n

ΔAφ(x)
n

(from the AM-GM inequality)

� C1

n
ω(x)1/p

′
σ(x)1/pΔAφ(x)

� C1

n

((
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· ∇φ(x) + ω(x)1/p

′
σ(x)1/pΔAφ(x)

)

(from ∇φ(E) ⊆ E and C − 1)

=
C1

n
divA

(
ω(x)1/p

′
σ(x)1/p ∇φ(x)

)
,

which concludes the proof whenever p > 1.
Case 2: p = 1 and na = n. Since p = 1, one has 1

p′ = 0, and condition C-1 reads as

supx∈E
ω(x)1/q

σ(x) = C1 ∈ (0,∞) and 0 � ∇σ(x) · y for all x, y ∈ E. In particular, since 1
q = 1 − 1

n ,

then ω(x)1−
1
n � C1σ(x) for every x ∈ E. A similar argument as in the previous case provides

the inequality

ω(x)1−
1

na

(
detD2

Aφ(x)
)1/na � C1

n
divA(σ(x)∇φ(x)) for a.e. x ∈ E,

which concludes the proof of the lemma. �
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2.2. Proof of Theorem 1.1

From Lemma 2.1, we can now give the proof of the desired weighted Sobolev inequalities on
convex cones.

Let u ∈ C∞
0 (Rn) be fixed. If Ln(supp(u) ∩ E) = 0, we have nothing to prove; hereafter, Ln

stands for the n-dimensional Lebesgue measure. Thus, we may assume that Ln(supp(u) ∩ E) >
0 and to simplify the notation, let U = supp(u). We may assume that u is nonnegative and by
scaling ˆ

E

u(x)q ω(x) dx = 1.

We also fix v ∈ C∞
0 (Rn) a nonnegative function satisfyingˆ

E

v(y) dy = 1.

Consider the probability measures in E, μ = uq ω dx and ν = v dy, and let T be the optimal
map with respect to the quadratic cost such that T�μ = ν. By Brenier’s theorem, there is φ
convex in R

n such that T = ∇φ and ∇φ(E) ⊆ suppν ⊆ E. This is equivalent to the following
Monge–Ampère equation

uq(x)ω(x) = v(∇φ(x)) detD2
Aφ(x) for a.e. x ∈ U ∩ E. (2.5)

Proof of (i). Raising (2.5) to the power 1 − 1
na

and rewriting the resulting equation yields

v1− 1
na (∇φ(x))h(∇φ(x)) detD2

Aφ(x) = uq(1− 1
na

)(x)ω1− 1
na (x)h(∇φ(x))[detD2

Aφ(x)]
1

na , (2.6)

where h(x) = ω(x)−1/q σ(x)1/p. Integrating this identity over U ∩ E, changing variables on the
left-hand side, and using Lemma 2.1(i) on the right-hand side, yieldsˆ

E

v(y)1−
1

na h(y) dy � C̃0

ˆ
U∩E

u(x)q(1−
1

na
) divA

(
σ(x)1/pω(x)1/p

′ ∇φ
)
dx := C̃0 I.

Since ΔAφ � ΔD′φ, where ΔD′ is the distributional Laplacian, integrating by parts, one gets

I �
ˆ
U∩E

uq(1− 1
na

)(x) divD′(ω(x)
1
p′ σ(x)

1
p∇φ(x))dx

=
ˆ
∂(U∩E)

uq(1− 1
na

)(x)ω(x)
1
p′ σ(x)

1
p∇φ(x) · n(x) ds(x)

−q

(
1 − 1

na

)ˆ
U∩E

uq(1− 1
na

)−1(x)ω(x)
1
p′ σ(x)

1
p∇φ(x) · ∇u(x) dx, (2.7)

where n(x) is the outer normal vector at x ∈ ∂(U ∩ E). Since E is a convex cone, y · n(x) � 0
for each y ∈ Ē and x ∈ ∂E. In particular, ∇φ(x) · n(x) � 0 for each x ∈ ∂E, since ∇φ(E) ⊆ E.
On the other hand, ∂(U ∩ E) ⊂ ∂U ∪ ∂E. So we obtain that the integrand in the boundary
integral is nonpositive for x ∈ ∂E and is zero for x ∈ ∂U since q(1 − 1

na
) > 0. Therefore, the

boundary integral in (2.7) can be dropped and by Hölder’s inequality it follows that

I � q

(
1 − 1

na

)(ˆ
E

uq(x)ω(x)|∇φ(x)|p′
dx

) 1
p′
(ˆ

E

|∇u(x)|pσ(x)dx
) 1

p

,

since (q(1 − 1
na

) − 1)p′ = q. Using once again the Monge–Ampère equation (2.5) yields
ˆ
E

u(x)q ω(x) |∇φ(x)|p′
dx =

ˆ
E

v(∇φ(x)) |∇φ(x)|p′
detD2

Aφ(x) dx =
ˆ
E

v(y) |y|p′
dy.
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Therefore, the above estimates give

ˆ
E

v(y)1−
1

na h(y) dy � C̃0 q

(
1 − 1

na

)(ˆ
E

v(y) |y|p′
dy

) 1
p′
(ˆ

E

|∇u(x)|pσ(x) dx
) 1

p

,

which completes the proof of (i).
Proof of (ii). Since C-1 holds, one has na = n. From (2.5), we have

v1− 1
na (∇φ(x)) detD2

Aφ(x) = uq(1− 1
na

)(x)ω1− 1
na (x)[detD2

Aφ(x)]
1

na , x ∈ E.

Integrating the last equation and using Lemma 2.1(ii) gives
ˆ
E

v(y)1−
1

na dy � C1

na

ˆ
U∩E

u(x)q(1−
1

na
) divA

(
σ(x)1/pω(x)1/p

′ ∇φ
)
dx. (2.8)

We now proceed as in case (i), obtaining that

ˆ
E

v(y)1−
1

na dy � C1

na
q

(
1 − 1

na

)(ˆ
E

v(y) |y|p′
dy

) 1
p′
(ˆ

E

|∇u(x)|pσ(x)
) 1

p

,

which completes the proof of the theorem. �

2.3. Proof of Theorem 1.2

Let us start with an arbitrarily fixed nonnegative function u ∈ C∞
0 (Rn) with the property´

E
u(x)

na
na−1ω(x)dx = 1, and v(y) := ω(y)´

B∩E
ω(y)dy

1B∩E(y). Let us consider the optimal transport

map T = ∇φ such that T�μ = ν for μ = u
na

na−1ωdx and ν = vdx. We may repeat the arguments
from Theorem 1.1 with suitable modifications.

Proof of (i). If C-0 holds, then since ∇φ(x) ∈ suppv = B ∩ E for a.e. x ∈ U ∩ E, we can use
Lemma 2.1/(i) for p = 1. In this case, we note that 1 − 1

na
= 1

q . The divergence theorem and
∇φ(x) ∈ B ∩ E for a.e. x ∈ U ∩ E imply

ˆ
B∩E

v(y)1−
1

na ω(y)−
1
q σ(y) dy � C̃0

ˆ
U∩E

u(x)q(1−
1

na
) divA(σ(x)∇φ) dx

= C̃0

ˆ
U∩E

u(x) divA(σ(x)∇φ) dx

� C̃0

(ˆ
∂(U∩E)

u(x)σ(x)∇φ(x) · n(x) ds(x)

−
ˆ
U∩E

σ(x)∇u(x) · ∇φ(x) dx
)

� C̃0

ˆ
U∩E

σ(x)|∇u(x)||∇φ(x)| dx

� C̃0

ˆ
E

|∇u(x)|σ(x) dx.

Using again the relation 1 − 1
na

= 1
q , we obtain

ˆ
B∩E

v(y)1−
1

na ω(y)−
1
q σ(y) dy =

´
B∩E

σ(y) dy(´
B∩E

ω(y) dy
)1− 1

na

.
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Proof of (ii). Suppose, that condition C-1 holds for some C1 > 0. In this case, instead of
(2.8), we use Lemma 2.1/(ii) for p = 1. We conclude
ˆ
B∩E

v(y)1−
1

na dy � C1

na

ˆ
U∩E

u(x)q(1−
1

na
) divA(σ(x)∇φ) dx =

C1

na

ˆ
U∩E

u(x) divA(σ(x)∇φ) dx.

Proceeding as before yields
ˆ
E

v(y)1−
1

na dy � C1

na

ˆ
E

|∇u(x)|σ(x)dx,

which concludes the proof.
Clearly, both (i) and (ii) can be extended to functions with σ-bounded variation on E. �

Remark 2.2. Theorems 1.1 and 1.2 can be formulated in the anisotropic setting as well, by
considering any norm instead of the usual Euclidean one. The only technical difference is the
use of Hölder’s inequality for the norm and its polar transform, see, for example, [10, 11]. When
ω = σ = 1, the weights are homogeneous of degree zero and one has na = n. Choosing E = R

n,
condition C-1 trivially holds with constant C1 = 1. Thus Theorems 1.1(ii) and 1.2(ii) yield
the well-known sharp Sobolev inequality (p > 1) and sharp isoperimetric inequality (p = 1),
respectively, in Del Pino and Dolbeault [12, 13] and Cordero-Erausquin, Nazaret and Villani
[11, Theorems 2 and 3].

3. Discussion of the equality cases: proof of Theorem 1.3

In this section, we are going to prove Theorem 1.3, that is, to identify the equality cases in
Theorems 1.1 and 1.2. As we already pointed out after the statement of Theorem 1.2, we may
extend (WSI) from C∞

0 (Rn) to Ẇ 1,p
σ (Rn), that is larger space in order to search for a suitable

candidate as an extremal function. To do this extension, a careful approximation argument is
needed which is similar to the one carried out in [11, Lemma 7] for the unweighted case, and
that was adapted to equal monomial weights in [25]. In fact, the idea to do this is to extend
the integration by parts formula (2.7) to functions u in Ẇ 1,p

σ (Rn), a technical issue discussed
in detail in [11, 25]. Since the same technique can be adapted also to our setting, we thus omit
the details.

In order to prove Theorem 1.3, we shall need some preliminary results. First, we have the
following characterization of concavity.

Lemma 3.1. Let E ⊆ R
n be an open convex set and h : E → R be a continuous function

which is a.e. differentiable in E. Then the following statements are equivalent.

(a) h is concave in E.
(b) For a.e. x ∈ E and all y ∈ E, one has h(y) − h(x) � ∇h(x) · (y − x).

Proof. Although standard, we provide the proof since we did not find it in the literature. The
implication ‘(a)⇒(b)’ is trivial. For ‘(b)⇒(a)’, let E0 ⊂ E be the set where h is differentiable;
clearly, Ln(E \ E0) = 0. Let x0, y0 ∈ E, 0 < t < 1, and z0 = (1 − t)x0 + ty0. If z0 ∈ E0, then by
our assumption, we have that h(x0) − h(z0) � ∇h(z0) · (x0 − z0) and h(y0) − h(z0) � ∇h(z0) ·
(y0 − z0). Multiplying the first inequality by (1 − t), the second by t, and adding them up yields
(1 − t)h(x0) + t h(y0) − h(z0) � 0. On the other hand, if z0 /∈ E0, pick a sequence zk ∈ E0 such
that zk → z0. Since E is open, we can pick sequences xk, yk ∈ E such that xk → x0, yk →
y0, with zk = (1 − t)xk + tyk. In particular, we have that h(xk) − h(zk) � ∇h(zk) · (xk − zk)
and h(yk) − h(zk) � ∇h(zk) · (yk − zk). Multiplying the latter inequality by t and the former
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by (1 − t) yields (1 − t)h(xk) + t h(yk) − h(zk) � 0. Since h is continuous, letting k → ∞ we
obtain the concavity of h. �

We are ready to prove a rigidity result based on the validity of condition C-0.

Proposition 3.1. Let E ⊆ R
n be an open convex cone and weights ω, σ : E → (0,∞)

satisfying relation (1.1) with α > 0, τ ∈ R, continuous in E, differentiable a.e. in E. Assume
in addition that at least one of the weights ω or σ is locally Lipschitz in E. If na < +∞, we
have:

(i) if condition C-0 holds with C0 > 0 and τ � α, then C0 � 1
na−n ;

(ii) the following statements are equivalent.
(a) Condition C-0 holds for C0 = 1

na−n and τ � α.

(b) ω = cσ for some c > 0 (thus α = τ) and σ1/α is concave in E.

Proof. (i) From Euler’s theorem for homogeneous functions, ∇ω(x) · x = τω(x) and ∇σ(x) ·
x = ασ(x) for all a.e. x ∈ E. Picking y = x ∈ E in C-0 yields 1 � C0( τ

p′ + α
p ) . Using (1.4) and

(1.5), we get that na = p (τ+n)
τ−α+p , and

na − n =
p τ + n(α− τ)

τ − α + p
� τ +

n

p
(α− τ) � τ +

1
p
(α− τ) =

τ

p′
+

α

p
,

where in the last estimate we used the assumption τ � α. The lower estimate for C0 then
follows.

(ii) ‘(b)⇒(a)’ On one hand, by Lemma 3.1, we note that the concavity of σ1/α in E implies

σ(y)1/α − σ(x)1/α � ∇σ1/α(x) · (y − x) for a.e. x ∈ E and all y ∈ E.

By the 1-homogeneity of σ1/α and Euler’s theorem, it turns out that σ(x)1/α = ∇σ1/α(x) · x
for a.e. x ∈ E, thus the last inequality is equivalent to

σ(y)1/α � ∇σ1/α(x) · y =
1
α
σ(x)1/α−1∇σ(x) · y for a.e. x ∈ E and all y ∈ E. (3.1)

On the other hand, since by assumption ω = cσ (for some c > 0), one has τ = α and na = n + α.
Now using (2.1) we see that condition C-0 means

σ(x)
(
σ(y)
σ(x)

)1/α

� C0∇σ(x) · y for a.e. x ∈ E and all y ∈ E.

On account of (3.1), condition C-0 holds for C0 = 1
α = 1

na−n .
‘(a)⇒(b)’ This is the trickiest part of the proof and at the same time is the most important
result to use later in the description of equality in (WSI).

Since by assumption, condition C-0 holds with C0 = 1
na−n , it follows from (2.1) that

((
σ(y)
σ(x)

)τ+n(
ω(x)
ω(y)

)α+n−p
) 1

n(α−τ)+pτ

� 1
na − n

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· y for a.e. x ∈ E and all y ∈ E. (3.2)

Choosing y = x in (3.2) yields

1 � 1
na − n

(
τ

p′
+

α

p

)
. (3.3)
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Let us recall from the proof of Part (i) that

na − n =
p τ + n(α− τ)

τ − α + p
.

This inserted into (3.3) yields

p τ + n(α− τ)
τ − α + p

� τ +
α− τ

p
,

which is equivalent to (
n + τ

α− τ + p
− 1

p

)
(α− τ) � 0.

Once again from the expression of na, the last inequality is equivalent to (α− τ)(na − 1)/p � 0.
Since na > n � 2, this implies that α � τ , and since by assumption τ � α, we conclude that
α = τ . In particular, we have that na = n + α and (3.2) reduces to((

σ(y)
σ(x)

)α+n(
ω(x)
ω(y)

)α+n−p
) 1

pα

� 1
α

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· y for a.e. x ∈ E and all y ∈ E. (3.4)

Let us define the function f : E → (0,∞) given by f(x) = ω(x)
σ(x) , x ∈ E. Our task is to prove

that f is constant on E. To do this, we first rewrite (3.4) in terms of f and σ to eliminate ω.
In this way, we obtain[(

f(x)
f(y)

)α+n−p(
σ(y)
σ(x)

)p
] 1

pα

� 1
α

[
1
p

∇σ(x)
σ(x)

+
1
p′

f(x)∇σ(x) + ∇f(x)σ(x)
f(x) · σ(x)

]
· y, (3.5)

for a.e x ∈ E and for all y ∈ E. Motivated by this inequality, we define for a.e. x ∈ E the
function gx : E → R given by

gx(y) =
1
α

(
1
p′

∇f(x)
f(x)

+
∇σ(x)
σ(x)

)
· y −

(
σ(y)
σ(x)

) 1
α
(
f(x)
f(y)

)n+α
αq

, y ∈ E.

Clearly gx is continuous in E, and since α = τ and (1.4), (3.5) is equivalent to gx(y) � 0 for a.e
x ∈ E and all y ∈ E. Furthermore, since f is homogeneous of degree zero and differentiable a.e.,
one has that ∇f(x) · x = 0, and thus gx(x) = 0 for a.e. x ∈ E. In particular, for a.e. x ∈ E, the
function y �→ gx(y) has a global minimum on E at y = x and since y �→ gx(y) is differentiable
at y = x, we obtain ∇gx(y)|y=x = 0. This means that for a.e. x ∈ E, one has

1
α

(
1
p′

∇f(x)
f(x)

+
∇σ(x)
σ(x)

)
− 1

α

∇σ(x)
σ(x)

+
n + α

αq

∇f(x)
f(x)

= 0,

which is equivalent to (
1
αp′

+
n + α

αq

)∇f(x)
f(x)

= 0 for a.e. x ∈ E.

Since 1
p′ + n+α

q > 0, it follows that

∇f(x) = 0 for a.e. x ∈ E. (3.6)
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We are going to prove that f is locally Lipschitz in E; once we do that, by (3.6) we may
conclude that f is constant. To see this, let h : E → (0,∞) be the continuous, a.e. differentiable
function given by

h(x) =
(

σ(x)α+n

ω(x)α+n−p

) 1
pα

, x ∈ E. (3.7)

From (3.6), it follows that ∇ω(x)
ω(x) = ∇σ(x)

σ(x) for a.e. x ∈ E. A simple computation then shows

that ∇h(x) = 1
αh(x) ∇ω(x)

ω(x) for a.e. x ∈ E. Therefore, relation (3.4) reduces to

h(y) � ∇h(x) · y for a.e. x ∈ E and all y ∈ E. (3.8)

Since h is homogeneous of degree one, it follows by (3.8) that

h(y) − h(x) � ∇h(x) · (y − x) for a.e. x ∈ E and all y ∈ E. (3.9)

Now, Lemma 3.1 implies that h is concave in E, thus locally Lipschitz in E. By assumption,
one of the weights is locally Lipschitz, thus the other one is locally Lipschitz too. In particular,
f is also locally Lipschitz in E, and so from (3.6) we conclude the proof that f is constant.
Hence ω = cσ in E for some c > 0, and so h(x) = c

p−α−n
pα σ(x)

1
α for every x ∈ E. Therefore σ

1
α

is concave in E concluding the proof. �

Proof of Theorem 1.3. Let us assume that equality holds in (WSI) for some u ∈ Ẇ 1,p
σ (Rn) \

{0}, and without loss of generality, assume that u is nonnegative withˆ
E

u(x)q ω(x) dx = 1.

A similar argument as in [11, Proposition 6] implies that ΔD′φ is absolutely continuous on
E0, where E0 denotes the interior of the set {x ∈ R

n : φ(x) < +∞}. We note that U ∩ E =
supp(u) ∩ E ⊂ E0.

To prove Theorem 1.3, we discuss separately the equality cases for p > 1 (see Theorem 1.1)
and p = 1 (see Theorem 1.2), respectively. �

3.1. Case p > 1

We split the proof into several cases.
Case 1: condition C-0 holds, p > 1 and na < +∞.
Since u gives equality in (WSI), we must have equality in each step in the proof of

Lemma 2.1(i), Case 1. In particular, we have equality in the AM-GM inequality detD2
Aφ(x) �

(ΔAφ(x)
n )n for μ-a.e. x ∈ E (recall that μ = uq ω dx), thus identifying D2

Aφ with D2
D′φ, it

turns out that D2
Aφ(x) = λIn for a.e. x ∈ E, where λ > 0 and In is the n× n-identity matrix.

Therefore, for some x0 ∈ R
n, one has

∇φ(x) = λx + x0 for a.e. x ∈ E ∩ E0. (3.10)

Since ∇φ(E) ⊆ E and 0 ∈ E, we necessarily have that x0 ∈ E.
The equality in the second AM-GM inequality in the proof of Lemma 2.1(i) yields(
ω(∇φ(x))−1/q

σ(∇φ(x))1/p

ω(x)−n/qna σ(x)n/pna

)na/(na−n)

=
ΔAφ(x)

n
ω(x)−1/q σ(x)1/p for a.e. x ∈ E ∩ E0.

By rearranging the last equation, combined with ΔAφ(x) = λn for a.e. x ∈ E ∩ E0 and (3.10),
it follows that

ω(λx + x0)
−1/q

σ(λx + x0)
1/p = λ(na−n)/naω(x)−1/q σ(x)1/p for a.e. x ∈ E ∩ E0. (3.11)
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When we apply condition C-0 in the proof of Lemma 2.1(i), the equality means that for a.e.
x ∈ E ∩ E0, we have

ω(∇φ(x))−1/q
σ(∇φ(x))1/p =

(
C0

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· ∇φ(x)

)(na−n)/na

ω(x)−1/qσ(x)1/p.

Thus, by (3.10) and (3.11), it turns out that

λ = C0

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· (λx + x0) for a.e. x ∈ E ∩ E0.

By (1.1), the last relation is equivalent to

1 = C0

(
τ

p′
+

α

p
+ I0(x)

)
for a.e. x ∈ E ∩ E0, (3.12)

where

I0(x) = λ−1

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· x0.

By using condition C-0 for y := yk, where {yk}k ⊂ E is a sequence converging to x0 ∈ E, we
immediately obtain that I0(x) � 0 for a.e. x ∈ E. Therefore, by (3.12) we have that

1 � C0

(
τ

p′
+

α

p

)
. (3.13)

Finally, in the last estimate of the proof of Lemma 2.1/(i), the equality requires

C0

(
1 − n

na

)
=

1
na

,

that is,

C0 =
1

na − n
. (3.14)

This means that we have τ
p′ + α

p � na − n that is precisely the reverse inequality to (3.3). A
similar reasoning as before using (3.13) together with (3.14) imply now the reverse conclusion,
that is τ � α.

We also note that α > 0. Indeed, if we assume that α � 0, we would have τ � α � 0 and by
picking y = x ∈ E in C-0, it follows 1 � C0( τ

p′ + α
p ) � 0; a contradiction.

Summing up, from the above arguments one concludes that condition C-0 holds with C0 =
1

na−n and τ � α with α > 0. But now from Proposition 3.1(ii) it follows that there exists c > 0
such that ω(x) = cσ(x) for every x ∈ E (thus α = τ and na = n + α) and σ1/α is concave in
E.

Now, we are precisely in the setting of [10, Theorem A.1]. In particular, by the equality in
the Hölder inequality, it follows that the extremal function satisfies |∇u(x)|pσ(x) = c0u(x)q|x +
x0|p′

ω(x) for some c0 > 0 and every x ∈ E. Thus, |∇u(x)|p = c0cu(x)q|x + x0|p′
, obtaining that

the extremal function in (WSI) is u(x) := uγ(x) = (γ + |x + x0|p′
)−

n+α−p
p , γ > 0. We note that

(3.12) reduces to I0(x) = 0 for a.e x ∈ E, thus x0 ∈ E verifies ∇ω(x) · x0 = ∇σ(x) · x0 = 0 for
a.e. x ∈ E. In this way, (WSI) takes the more familiar form (with only one weight)(ˆ

E

|u(x)|q σ(x) dx
)1/q

� K̃0

(ˆ
E

|∇u(x)|p σ(x) dx
)1/p

for all u ∈ Ẇ 1,p
σ (Rn), (3.15)
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where

K̃0 =
p(na − 1)
na(na − p)

(´
E
uγ(y)q |y|p′

σ(y) dy
) 1

p′ (´
E
uγ(y)qσ(y) dy

) 1
q

´
E
uγ(y)q(1−

1
na

)σ(y) dy
(3.16)

is the best constant in (3.15) (not depending on γ > 0).
Case 2: condition C-0 holds, p > 1 and na = +∞.
In order to have equality in (WSI), we must have equality in the proof of Lemma 2.1(i),

Case 3. In particular, we have ΔAφ(x) = 0 for a.e. x ∈ E, which leads us to the degenerate case
∇φ(x) = x0 for a.e. x ∈ E, for some x0 ∈ E, which is not compatible with the Monge–Ampère
equation (2.5). Therefore, no equality can be obtained in (WSI).

Case 3: condition C-1 holds and p > 1.
Equality in (WSI) requires equality in each estimate in the proof of Lemma 2.1(ii), Case

1. First, as before, the equality in the AM-GM inequality detD2
Aφ(x) � (ΔAφ(x)

n )n for μ-a.e.
x ∈ E yields

∇φ(x) = λx + x0 for a.e. x ∈ E ∩ E0 (3.17)

for some λ > 0 and x0 ∈ E. The equality in the second estimate, where (2.4) is applied, together
with the continuity of the weights σ and ω implies

ω(x)
1
q = C1σ(x)1/p for all x ∈ E, (3.18)

where C1 > 0 is the constant in condition C-1. Furthermore, the equality when we apply
condition C-1 requires(

1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· (λx + x0) = 0 for a.e. x ∈ E ∩ E0.

A similar argument as before shows that the latter relation can be transformed equivalently
into

τ

p′
+

α

p
+ I0(x) = 0 for a.e. x ∈ E ∩ E0, (3.19)

where

I0(x) = λ−1

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· x0.

By condition C-1, it is clear that τ
p′ + α

p � 0 (taking y = x) and I0(x) � 0 for a.e. x ∈ E (taking
y := yk where {yk}k ⊂ E converges to x0). Therefore, by (3.19), we have that τ

p′ + α
p = 0 and

I0(x) = 0 for a.e. x ∈ E ∩ E0. Since na = n, it follows that τ
q = α

p ; this relation combined with
τ
p′ + α

p = 0 gives that τ = α = 0.
Due to (3.18), condition C-1 implies

∇ω(x) · y � 0, ∇σ(x) · y � 0 for a.e x ∈ E and all y ∈ E. (3.20)

Let x ∈ E be any differentiability point of ω and fix ρ > 0 small enough such that x + Bρ ⊂ E.
Applying (3.20) for y := x + z with arbitrarily z ∈ Bδ and using the fact that ∇ω(x) · x = 0
(since τ = 0), it follows that ∇ω(x) · z � 0 for every z ∈ Bδ. This holds in fact for every z ∈ R

n,
which implies ∇ω(x) = 0. Since ω is locally Lipschitz (thanks to our assumption an (3.18)),
the latter relation implies ω is a constant, ω ≡ cω > 0; in a similar way, σ ≡ cσ > 0. By (3.18),

one has c
1
q
ω = C1c

1
p
σ . We also note that x0 can be arbitrarily fixed in E.

A similar argument as in Case 1 shows that when we use Hölder inequality in the proof
of Theorem 1.1(ii), the equality case implies that the extremal function verifies |∇u(x)|p =
c1u(x)q|x + x0|p′

for some c1 > 0 and every x ∈ E. The rest is the same as in (3.15) and (3.16),
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where we may choose without loss of generality σ = 1; in fact, (3.15) is a Talenti-type sharp
Sobolev inequality on convex cones.

3.2. Case p = 1

We now turn our attention to analyze the equality cases in Theorem 1.2. Since the proof is
similar to the case p > 1, we outline only the differences.

Case 1: condition C-0 holds, p = 1 and na < +∞.
We follow the proof of Lemma 2.1(i), Case 2. First, for some λ > 0 and x0 ∈ E, one has that

∇φ(x) = λx + x0 for a.e. x ∈ E ∩ E0. Similarly to (3.11), one necessarily has that

ω(λx + x0)
−1/q

σ(λx + x0) = λ(na−n)/naω(x)−1/q σ(x) for a.e. x ∈ E ∩ E0.

Furthermore, it follows that

λ = C0
∇σ(x)
σ(x)

· (λx + x0) for a.e. x ∈ E ∩ E0,

which can be written as

1 = C0(α + I0(x)) for a.e. x ∈ E ∩ E0,

where I0(x) = λ−1 ∇σ(x)
σ(x) · x0. Since I0(x) � 0 for a.e. x ∈ E (due to condition C-0 for p =

1), it follows that C0α � 1. Clearly, condition C-0 for p = 1 and y = x gives that 1 � C0α.
Thus C0α = 1. On the other hand, we must also have C0(1 − n

na
) = 1

na
, that is, C0 = 1

na−n .
Consequently, we obtain 1

na−n = 1
α , which is equivalent to (α− τ)(n + α− p) = 0. Due to (1.2),

it follows that α = τ . We can apply again Proposition 3.1(ii) to obtain the existence of c > 0
such that ω(x) = cσ(x) for every x ∈ E, and the σ1/α is concave in E. In this way, (WSI)
reduces to(ˆ

E

|u(x)| na
na−1 σ(x) dx

)1− 1
na

� K̃0

ˆ
E

|∇u(x)|σ(x) dx for all u ∈ Ẇ 1,1
σ (Rn), (3.21)

where

K̃0 =
1
na

(ˆ
B∩E

σ(y) dy
)− 1

na

. (3.22)

The constant K̃0 in (3.21) is sharp. Indeed, according to [6, rel. (1.14), p. 2977], one has
Pσ(B,E) = (n + α)

´
B∩E

σ(x)dx. Since na = n + α, by considering u(x) := 1B∩E(x), it yields
ˆ
E

|∇u(x)|σ(x) dx = Pσ(B,E) = na

ˆ
B∩E

σ(x)dx = K̃−1
0

(ˆ
B∩E

σ(x) dx
)1− 1

na

= K̃−1
0

(ˆ
E

|u(x)| na
na−1σ(x) dx

)1− 1
na

,

which gives equality in (3.21).
Case 2: condition C-0 holds, p = 1 and na = +∞.
We must have equality in the proof of Lemma 2.1(i), Case 4. Thus we have ΔAφ(x) = 0 for

a.e. x ∈ E, which contradicts again the Monge–Ampère equation (2.5). Thus, no equality can
be obtained in (WSI).

Case 3: condition C-1 holds and p = 1.
The discussion is similar to Case 3 with p > 1, obtaining that equality in (WSI) implies

that both ω and σ are constant, ω ≡ cω > 0, σ ≡ cσ > 0, and c
1
q
ω = C1cσ, where C1 > 0 is the

constant in condition C-1. Therefore, (WSI) becomes the (usual) sharp isoperimetric inequality
on the cone E. This concludes the proof of Theorem 1.3. �
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4. Examples and applications

In this section, we illustrate the application of Theorems 1.1–1.3 to various examples.

4.1. Weights satisfying conditions C-0 and C-1

4.1.1. Monomial weights. We first discuss the validity of condition C-0 for monomial
weights to recover from our statements the results of [5, 9, 25] . More precisely, let τi ∈ R and
αi � 0, i = 1, . . . , n; τ = τ1 + · · · + τn and α = α1 + · · · + αn be such that

γi :=
τi
p′

+
αi

p
� 0 and βi :=

αi

p
− τi

q
� 0, i = 1, . . . , n, (4.1)

where q = p(τ+n)
α+n−p with the property that if γi = 0 for some i ∈ {1, . . . , n}, then τi = αi = 0.

We consider the convex cone

E =
{
x = (x1, . . . , xn) ∈ R

n : xi > 0 whenever
τi
p′

+
αi

p
> 0
}
, (4.2)

and the weights ω(x) = xτ1
1 · · ·xτn

n and σ(x) = xα1
1 · · ·xαn

n , x = (x1, . . . , xn) ∈ E.

Proposition 4.1. Assume na > n. Let E ⊆ R
n be the convex cone given in (4.2) and

ω(x) = xτ1
1 · · ·xτn

n and σ(x) = xα1
1 · · ·xαn

n for every x = (x1, . . . , xn) ∈ E. Then condition C-0
holds with the constant

C0 =
na

na − n

((
β1

γ1

)β1

· · ·
(
βn

γn

)βn
) na

na−n

. (4.3)

Here we use the convention 00 = 1.

Proof. We first assume that na < ∞. Let x = (x1, . . . , xn) ∈ E and y = (y1, . . . , yn) ∈ E be
fixed. By the scaling invariance relation (1.4) and the form of βi, we have that

β1 + · · · + βn +
n

na
= 1.

Then, by using the weighted AM-GM inequality, it follows that

((
σ(y)
σ(x)

)1/p(
ω(x)
ω(y)

)1/q
)na/(na−n)

=

((
y1

x1

)β1

· · ·
(
yn
xn

)βn
) 1

β1+···+βn

=

((
β1

γ1

)β1

· · ·
(
βn

γn

)βn
) 1

β1+···+βn(γ1

β1

y1

x1

) β1
β1+···+βn · · ·

(
γn
βn

yn
xn

) βn
β1+···+βn

� 1
β1 + · · · + βn

((
β1

γ1

)β1

· · ·
(
βn

γn

)βn
) 1

β1+···+βn(
γ1

y1

x1
+ · · · + γn

yn
xn

)

= C0

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· y,



WEIGHTED SOBOLEV INEQUALITIES ON CONVEX CONES 19

where

C0 =
1

β1 + · · · + βn

((
β1

γ1

)β1

· · ·
(
βn

γn

)βn
) 1

β1+···+βn

,

which ends the proof.
When na = +∞ (that is, p = q, which is equivalent to α = p + τ), we have that β1 + · · · +

βn = 1. The same proof as before using the AM-GM inequality shows that condition C-0 holds
(see (2.2) in Remark 2.1(ii)) with the constant

C0 =
(
β1

γ1

)β1

· · ·
(
βn

γn

)βn

,

which agrees with (4.3) whenever na → ∞. �

From the last proposition, we have the following corollary of our main theorems.

Corollary 4.1. Let τi ∈ R and αi � 0, i = 1, . . . , n, and τ = τ1 + · · · + τn and
α = α1 + · · · + αn. Consider the convex cone given in (4.2) and the weights ω(x) =
xτ1

1 · · ·xτn
n and σ(x) = xα1

1 · · ·xαn
n , x = (x1, . . . , xn) ∈ E. If conditions (1.2), (1.3) and (4.1)

hold and q = p(τ+n)
α+n−p , then (WSI) holds. In addition, if ω = σ, then the constant K0 arising in

(WSI) is optimal.

Proof. The first conclusion follows directly from Theorems 1.1 and 1.2 taking into account
Proposition 4.1.

To obtain the second conclusion, we use Theorem 1.3(i). Note that when τi = αi, i = 1, . . . , n,
one has that na = n + α1 + · · · + αn, βi = αi

na
and γi = αi, i = 1, . . . , n, while the convex cone

introduced in (4.2) becomes

E = {x = (x1, . . . , xn) ∈ R
n : xi > 0 whenever αi > 0}.

In this case, the constant in Proposition 4.1 reduces to C0 = 1
na−n . �

Remark 4.1. The first conclusion of Corollary 4.1 covers the main result in [9, Theorem
1] with a slightly different notation. The second conclusion shows that the main results [5,
Theorem 1.3] and [25, Theorem 4.2, θ = 1] are also particular cases of our results.

Remark 4.2. Let E = (0,∞)n for any n � 2.

(a) If ω(x1, . . . , xn) = n
√
x1 · · ·xn and σ(x1, . . . , xn) = x1 + · · · + xn, (x1, . . . , xn) ∈ E, the

pair (ω, σ) does not satisfy condition C-0. However, since ω � σ/n, Proposition 4.1 provides
(a nonoptimal) (WSI) for the weights ω and σ; the corresponding constant K0 > 0 in (WSI)
can be obtained by using the monomial setting, see [5, 25].

(b) Conversely, if ω(x1, . . . , xn) = x1 + · · · + xn and σ(x1, . . . , xn) = n
√
x1 · · ·xn,

(x1, . . . , xn) ∈ E, it turns out that the pair (ω, σ) satisfies condition C-0 if and only if
n = 2.

4.1.2. Radial weights. Using Theorems 1.1 and 1.2 as building blocks, we obtain further
consequences that are suitable for other applications. The first consequence is the following
domain additivity property of (WSI).

Corollary 4.2. Let M ∈ N be a positive integer and assume that E is an open set in R
n

of the form E = (∪M
i=1Ei) ∪ E0, where Ei are pairwise disjoint convex cones for i = 1, . . . ,M
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and E0 is a set of measure zero. Let ω, σ : ∪iEi → (0,∞) be two homogeneous weights such
that their restrictions (ω|Ei

, σ|Ei
) satisfy the conditions of Theorem 1.1 or Theorem 1.2 for all

i = 1, . . . ,M . Then (WSI) holds on the set E.

Proof. Let u ∈ C∞
0 (Rn). Applying Theorem 1.1 or Theorem 1.2 on the domain Ei, we

obtain (ˆ
Ei

|u(x)|q ω(x) dx
)1/q

� Ki

(ˆ
Ei

|∇u(x)|p σ(x) dx
)1/p

for all u ∈ C∞
0 (Rn),

for all i = 1, . . .M .
Since Ei are pairwise disjoint and E0 has measure zero, it follows from Minkowski’s inequality

that

(ˆ
E

|u(x)|q ω(x) dx
)1/q

=

(
M∑
i=1

ˆ
Ei

|u(x)|q ω(x) dx

)1/q

�
M∑
i=1

(ˆ
Ei

|u(x)|q ω(x) dx
)1/q

�
M∑
i=1

Ki

(ˆ
Ei

|∇u(x)|p σ(x) dx
)1/p

� K0

(ˆ
E

|∇u(x)|p σ(x) dx
)1/p

,

where K0 = M
1
p′ maxi=1,...,M Ki > 0. �

With the domain additivity property of (WSI), we now consider radial weights and deduce a
particular case of the inequality of Caffarelli, Kohn and Nirenberg [7, Inequality (1.4)], a case
also called Hardy–Littlewood–Sobolev’s inequality. To do this, we first prove the following.

Corollary 4.3. Let us assume that the parameters p, q, α, τ satisfy conditions (1.2)–(1.4)
and τ

p′ + α
p > 0. Then there exists K0 > 0 such that for all u ∈ C∞

0 (Rn), one has

(ˆ
Rn

|u(x)|q |x|τ dx
)1/q

� K0

(ˆ
Rn

|∇u(x)|p |x|α dx

)1/p

. (4.4)

Proof. By standard arguments, we can find M ∈ N and pairwise disjoint convex cones
Eii = 1, . . . ,M such that R

n = (∪i∈MEi) ∪ E0 where E0 is the union of the boundaries of Ei

(and therefore a null measure set). Moreover, we can choose Ei so small that for all x, y ∈ Ei

we have that x · y � 1
2 |x| · |y|.

Let us assume first that na > n. Using that ∇(|x|α) = αx |x|α−2 and ∇(|x|τ ) = τ x |x|τ−2,
condition C-0 on Ei, i = 1, . . . ,M , can be written as

|y|
|x| � C0

(
τ

p′
+

α

p

)
x · y
|x|2 , x, y ∈ Ei. (4.5)

Using the estimate x · y � 1
2 |x| · |y|, x, y ∈ Ei, we see that the above relation is satisfied for

x, y ∈ Ei with a properly chosen constant C0 > 0. The conclusion now follows by Corollary 4.2.
In the case na = n, we can argue in a similar way. �

We note that the condition τ
p′ + α

p > 0 in Corollary 4.3 is not assumed in [7]. However, it
turns out that by applying Corollary 4.3 with appropriate values of τ, α and q, we will obtain
[7, Inequality (1.4) with a = 1] for the full range of exponents. In fact, with the notation from
[7], let p � 1, r > 0, β, γ ∈ R be such that



WEIGHTED SOBOLEV INEQUALITIES ON CONVEX CONES 21

1
r

+
γ

n
> 0, (4.6)

0 � β − γ � 1 (4.7)

and
1
r

+
γ

n
=

1
p

+
β − 1
n

. (4.8)

We shall then prove the following desired inequality.

Corollary 4.4. Under assumptions (4.6)–(4.8), there exists K0 = K0(p, β, γ) > 0 such
that for all u ∈ C∞

0 (Rn), one has(ˆ
Rn

|u(x)|r |x|γr dx
)1/r

� K0

(ˆ
Rn

|∇u(x)|p |x|βp dx
)1/p

. (4.9)

Proof. Let d > 1 be fixed that will be specified later, and let

τ := n(d− 1) + γrd, α := (n− p)(d− 1) + βpd and q := r.

We claim the parameters p, q, α, τ satisfy conditions (1.2), (1.3) and (1.4). First, a straightfor-
ward computation shows that the balance condition (1.4) is equivalent to condition (4.8) which
determines the value of r in terms of p, β and γ.

Inequality p < α + n in (1.2) is equivalent to n + p(β − 1) > 0 which holds true due to (4.6)
and (4.8). The second inequality in (1.2), that is, α � τ + p, is equivalent to (β − 1)p � γr.
Adding n to both sides to the last inequality, it follows from (4.8) that the resulting inequality
is equivalent to p � r. Again by (4.8), r = pn

(β−1)p+n−γp . Hence p � r is equivalent to β − 1 � γ

which holds from (4.7). Thus (1.2) holds.
To show (1.3), we observe that from (4.8), α � (1 − p

n )τ is equivalent to β
r � γ

p (1 − p
n ),

which again by (4.8) is equivalent to (β − γ)(1
r + γ

n ) � 0, which in turn holds true from (4.6)
and (4.7).

To apply Corollary 4.3, it remains to check the inequality τ
p′ + α

p > 0, which for the chosen
exponents can be written equivalently as d(n− 1 + β + γr

p′ ) − n + 1 > 0. From (4.6) and (4.8),
it follows that n− 1 + β + γr

p′ = n( 1
r + γ

n )(1 + r
p′ ) > 0. So choosing d > 1 large enough, we

obtain that d(n− 1 + β + γr
p′ ) − n + 1 > 0 as desired.

Therefore, from Corollary 4.3 there exists K0 > 0 such that for every v ∈ C∞
0 (Rn), one has(ˆ

Rn

|v(x)|r |x|n(d−1)+γrd dx

)1/r

� K0

(ˆ
Rn

|∇v(x)|p |x|(n−p)(d−1)+βpd dx

)1/p

. (4.10)

In addition, by an approximation argument, the last inequality is also valid for every v ∈
C1

0 (Rn).
On the other hand, for any fixed d > 1, if T : R

n → R
n is the map defined by T (x) = |x|d−1x,

then the determinant of its Jacobian is

detJT (x) = d|x|n(d−1), x 
= 0,

see Lam and Lu [19]. For any u ∈ C∞
0 (Rn), we introduce Ru(x) = d

− 1
p′ u(T (x)) (with the usual

convention that 1
p′ = 0 when p = 1). Due to [19, Lemma 2.2], a change of variable gives that

for every t, μ ∈ R and every continuous function f : R → R, one has

ˆ
Rn

f
(
d
− 1

p′ u(x)
)

|x|t dx = d

ˆ
Rn

f(Ru(x))
|x|n+td−nd

dx (4.11)
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and ˆ
Rn

|∇Ru(x)|p
|x|d(p+μ−n)+n−p

dx �
ˆ
Rn

|∇u(x)|p
|x|μ dx. (4.12)

If we apply (4.11) and (4.12) with t := −γr, μ := −βp and f(s) = |s|r, then using (4.10) with
v := Ru ∈ C1

0 (Rn), we obtain precisely (4.9). �

4.1.3. Further examples of weights. In this section, we further illustrate conditions C-0
and C-1. A sufficient condition for C-0 to hold is the following.

Proposition 4.2. Let E ⊆ R
n be an open convex cone and let ω, σ : E → (0,∞) be

differentiable weights satisfying (1.1)–(1.4), and na > n. If

F (x) = ω(x)δ σ(x)γ

is concave in E with δ = − 1
q

na

na−n , γ = 1
p

na

na−n and ∇ω(x) · y � 0 for every x, y ∈ E, then the

pair (ω, σ) satisfies condition C-0 with constant C0 = na

na−n .

Proof. From the form of F , the pair (ω, σ) satisfies C-0 if and only if

F (y)
F (x)

� C0

(
1
p′

∇ω(x)
ω(x)

+
1
p

∇σ(x)
σ(x)

)
· y, ∀x, y ∈ E.

To prove the last inequality, we see that by (1.1), F is homogenous of degree δτ + γα. Hence
∇F (x) · x = (δτ + γα)F (x) for every x ∈ E. By the concavity of F in E, we have that

F (y) − F (x) � ∇F (x) · (y − x) for all x, y ∈ E. (4.13)

Since from the balance condition (1.4) δτ + γα− 1 = 0, it follows from (4.13) that

F (y)
F (x)

�
(
δ
∇ω(x)
ω(x)

+ γ
∇σ(x)
σ(x)

)
· y for all x, y ∈ E. (4.14)

On the other hand, by assumption ∇ω(x) · y � 0 and δ < 0, so we get

F (y)
F (x)

�
(

1
p

na

na − n

∇σ(x)
σ(x)

)
· y for all x, y ∈ E.

Thus, ∇σ(x) · y � 0 for every x, y ∈ E. Using again that ∇ω(x) · y � 0 for every x, y ∈ E, we
obtain from (4.14) that C-0 holds with C0 = na

na−n . �

To illustrate Proposition 4.2 we show the following example. Let E = (0,∞)n with n � 2,
0 < α < p and 1 � p < α + n. If ω ≡ 1, σ(x) = ( x1···xn

x1+···+xn
)α/(n−1), then na = pn

p−α ,

F (x) = ω(x)δ σ(x)γ =
(

x1 · · ·xn

x1 + · · · + xn

) 1
n−1

in Proposition 4.2, which is concave in E, see Marcus and Lopes [22]. Therefore, the pair
(ω, σ) satisfies C-0 with C0 = p/α and from Theorem 1.1, (WSI) holds for these weights with
q = p n

α+n−p .
We conclude this part by giving an example of weights for which condition C-1 holds. Let

E = (0,∞)n, n � 2, τ � 0, and 1 � p < n. If ω(x) = (x1 + · · · + xn)τ and σ(x) = |x|τ(1−p/n),
then na = n and q = np

n−p . Since

sup
x∈E

ω(x)1/q

σ(x)1/p
= n

τ
2q ∈ (0,∞),
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condition C-1 holds, and from Theorem 1.1(ii), we get that (WSI) holds for these weights. In
particular, if τ = 0, then (WSI) reduces to the sharp Sobolev inequality of Talenti [30] on the
cone E.

4.2. Weighted PDEs

4.2.1. Spectral gap. In this subsection, we provide an estimate of the spectral gap for a
weighted eigenvalue problem. More precisely, we have the following.

Proposition 4.3. Let E ⊆ R
n be an open convex cone and let Ω ⊂ R

n be an open bounded
set such that Ω ∩ E 
= ∅. Let ω, σ : E → [0,∞) be two continuous nonzero weights which are
differentiable in E, satisfying (1.1) with α = τ + 2, condition C-0 for some C0 > 0, and σ|∂E =
0. Then any eigenvalue λ > 0 of the problem{

−div(σ∇u) = λωu in Ω ∩ E,

u = 0 on ∂Ω ∩ E.
(P)

verifies

λ � 1
4C2

0

sup
v∈C∞

0 (Ω)\{0},v�0

(´
E
v(y)ω(y)−

1
2 σ(y)

1
2 dy
)2

´
E
v(y) |y|2dy ´

E
v(y)dy

> 0.

Proof. Let us multiply the first equation in (P ) by u 
= 0; an integration and the divergence
theorem gives that

−
ˆ
∂(Ω∩E)

σ(x)
∂u

∂n
(x)u(x)ds(x) +

ˆ
Ω

|∇u(x)|2σ(x)dx = λ

ˆ
Ω

u(x)2ω(x)dx. (4.15)

Since ∂(Ω ∩ E) ⊆ ∂Ω ∪ ∂E, the first integral in the left-hand side vanishes either for σ|∂E = 0
or for the Dirichlet boundary condition u = 0 on ∂Ω ∩ E. Therefore, equation (4.15) reduces
to ˆ

Ω

|∇u(x)|2σ(x)d = λ

ˆ
Ω

u(x)2ω(x)dx. (4.16)

Since τ + n > 0 (by the locally integrability of ω) and α = τ + 2, assumptions (1.2)–(1.4) are
immediately verified with the choices p = q = 2. In particular, na = +∞ and we can apply
Theorem 1.1(i), obtaining

λ =

ˆ
Ω

|∇u(x)|2σ(x)dx
ˆ

Ω

u(x)2ω(x)dx
� K−2

0 ,

where the constant K0 > 0 appears in the statement of Theorem 1.1/(i). The rest is a simple
computation. �

Remark 4.3. Due to (4.15), a similar spectral gap estimate can be obtained in the same
way also for the Neumann boundary value condition. Moreover, the case p 
= 2 can be also
handled using the operator div(σ|∇u|p−2∇u) in problem (P).

4.2.2. A variational problem. Applying a variational method, we prove the following result.

Proposition 4.4. Let E ⊆ R
n be an open convex cone and let Ω ⊂ R

N be an open
bounded set such that Ω ∩ E 
= ∅. Let ω, σ : E → [0,∞) be two nonzero weights continuous
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in E, differentiable a.e. in E, and satisfying (1.1)–(1.4) with α < τ + 2, condition C-0, and
σ|∂E = 0. Then for every r ∈ (2, q), the problem⎧⎪⎨

⎪⎩
−div(σ∇u) + σu = ωur−1 in Ω ∩ E,

u � 0 in Ω ∩ E,

u = 0 on ∂Ω ∩ E,

(P)

has a nonzero weak solution in the weighted Sobolev space W 1,2
σ (Ω).

Proof. We first recall that the weighted Sobolev space W 1,2
σ (Ω) is the set of all measurable

functions such that u ∈ L2
σ(Ω ∩ E) and |∇u| ∈ L2

σ(Ω ∩ E) with the norm

‖u‖W 1,2
σ (Ω) =

(ˆ
Ω∩E

|∇u(x)|2σ(x)dx +
ˆ

Ω∩E

u(x)2σ(x)dx
)1/2

.

By our assumptions, Theorem 1.1 implies that the space W 1,2
σ (Ω) is continuously embedded

into Lq
ω(Ω ∩ E), where q = 2(τ+n)

α+n−2 is the critical exponent. We also note that 2 < q since α <

τ + 2. Thus, it follows from the boundedness of Ω that W 1,2
σ (Ω) is compactly embedded into

Lr
ω(Ω ∩ E) for any r ∈ (2, q).
Fix r ∈ (2, q). Instead of (P), we consider first the problem{

−div(σ∇u) + σu = ωur−1
+ in Ω ∩ E,

u = 0 on ∂Ω ∩ E,
(P+)

where we used the notation u+ = max{u, 0}.
The energy functional E : W 1,2

σ (Ω) → R associated with problem (P+) is defined by

E(u) =
1
2
‖u‖2

W 1,2
σ (Ω)

− 1
r

ˆ
Ω∩E

(u(x))r+ω(x)dx.

Standard arguments imply that E is well defined (since W 1,2
σ (Ω) is continuously embedded into

Lr
ω(Ω ∩ E)) and E ∈ C1(W 1,2

σ (Ω); R); moreover, its differential is given by

E ′(u)(v) =
ˆ

Ω∩E

(∇u(x) · ∇v(x) + u(x)v(x))σ(x)dx−
ˆ

Ω∩E

(u(x))r−1
+ ω(x)v(x)dx,

for all u, v ∈ W 1,2
σ (Ω). In fact, using the divergence theorem together with the Dirichlet

boundary condition u = 0 on ∂Ω ∩ E and σ|∂E = 0, it follows that

E ′(u)(v) =
ˆ

Ω∩E

(−div(σ(x)∇u(x)) + σ(x)u(x))v(x)dx−
ˆ

Ω∩E

ω(x)(u(x))r−1
+ v(x)dx.

In particular, u ∈ W 1,2
σ (Ω) is a critical point of E if and only if u is a weak solution of problem

(P+).
We are going to prove that E satisfies the Palais–Smale condition on W 1,2

σ (Ω). In order to
complete this, we consider a sequence {uk}k ⊂ W 1,2

σ (Ω) such that E ′(uk) → 0 as k → ∞ and
|E(uk)| � C (k ∈ N) for some C > 0, and our aim is to prove that there exists a subsequence
of {uk}k which converges strongly in W 1,2

σ (Ω) to some element u ∈ W 1,2
σ (Ω). We notice that

rE(uk) − E ′(uk)(uk) =
(r

2
− 1
)
‖uk‖2

W 1,2
σ (Ω)

, k ∈ N.

Since E ′(uk) → 0, we have |E ′(uk)(uk)| � 1 for large enough values of k. Therefore, for large k �
1, one has that |rE(uk) − E ′(uk)(uk)| � rC + ‖uk‖W 1,2

σ (Ω). Because r > 2, the latter relation
implies that {uk}k is bounded in W 1,2

σ (Ω). In particular, we may extract a subsequence of {uk}k
(denoted in the same way) which converges weakly to an element u ∈ W 1,2

σ (Ω), and strongly
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to u in Lr
ω(Ω ∩ E). The latter follows from the fact that W 1,2

σ (Ω) is compactly embedded into
Lr
ω(Ω ∩ E). A simple computation shows that

‖uk − u‖2
W 1,2

σ (Ω)
= E ′(uk)(uk − u) − E ′(u)(uk − u) +

ˆ
Ω∩E

((uk)r−1
+ − ur−1

+ )(uk − u)ωdx, k ∈ N.

Since E ′(uk) → 0 as k → ∞ and {uk}k is bounded in W 1,2
σ (Ω), one has that E ′(uk)(uk − u) → 0

as k → ∞. Since {uk}k converges weakly to u, one has that E ′(u)(uk − u) → 0 as k → ∞.
Moreover, since {uk}k converges strongly to u in Lr

ω(Ω ∩ E), Hölder’s inequality implies∣∣∣∣
ˆ

Ω∩E

((uk)r−1
+ − ur−1

+ )(uk − u)ωdx
∣∣∣∣ � (‖uk‖r−1

Lr
ω(Ω∩E) + ‖u‖r−1

Lr
ω(Ω∩E)

)
‖uk − u‖Lr

ω(Ω∩E) → 0

as k → ∞. Summing up, it follows that ‖uk − u‖2
W 1,2

σ (Ω)
→ 0 as k → ∞, which means that

{uk}k strongly converges to u in W 1,2
σ (Ω).

We shall prove that E satisfies the mountain pass geometry, that is, there exist w0 ∈ W 1,2
σ (Ω)

and ρ > 0 such that ‖w0‖W 1,2
σ (Ω) > ρ and

inf
‖u‖

W
1,2
σ (Ω)

=ρ
E(u) > E(0) � E(w0). (4.17)

To see this, let cω,σ > 0 be the constant in the Sobolev embedding W 1,2
σ (Ω) into Lr

ω(Ω ∩ E),
that is, ‖u‖Lr

ω(Ω∩E) � cω,σ‖u‖W 1,2
σ (Ω) for every u ∈ W 1,2

σ (Ω). Therefore, since ‖u+‖Lr
ω(Ω∩E) �

‖u‖Lr
ω(Ω∩E), it follows that

E(u) =
1
2
‖u‖2

W 1,2
σ (Ω)

− 1
r

ˆ
Ω∩E

(u(x))r+ω(x)dx =
1
2
‖u‖2

W 1,2
σ (Ω)

− 1
r
‖u+‖rLr

ω(Ω∩E)

� 1
2
‖u‖2

W 1,2
σ (Ω)

− 1
r
‖u‖rLr

ω(Ω∩E)

� 1
2
‖u‖2

W 1,2
σ (Ω)

− 1
r
crω,σ‖u‖rW 1,2

σ (Ω)
=
(

1
2
− 1

r
crω,σ‖u‖r−2

W 1,2
σ (Ω)

)
‖u‖2

W 1,2
σ (Ω)

. (4.18)

Since r > 2, the number ρ := ( r
4crω,σ

)
1

r−2 is well defined and ρ > 0. Thus, for any u ∈ W 1,2
σ (Ω)

with ‖u‖W 1,2
σ (Ω) = ρ, the estimate (4.18) gives that

E(u) �
(

1
2
− 1

r
crω,σρ

r−2

)
ρ2 =

ρ2

4
.

Therefore, since E(0) = 0, the left-hand side of (4.17) immediately holds.
On the other hand, let w ∈ W 1,2

σ (Ω) be any nonnegative, nonzero function. Since r > 2, we
may fix t0 > 0 large enough such that

t0 > max

⎧⎨
⎩ ρ

‖w‖W 1,2
σ (Ω)

,

(
r‖w‖2

W 1,2
σ (Ω)

2‖w‖rLr
ω(Ω∩E)

) 1
r−2
⎫⎬
⎭.

Accordingly, the function w0 := t0w ∈ W 1,2
σ (Ω) verifies ‖w0‖W 1,2

σ (Ω) > ρ and

E(w0) = E(t0w) =
t20
2
‖w‖2

W 1,2
σ (Ω)

− tr0
r
‖w‖rLr

ω(Ω∩E) < 0,

which is the right-hand side of (4.17).
We are now in a position to apply the Mountain Pass Theorem, see, for example, Rabinowitz

[26], which implies the existence of a critical point u ∈ W 1,2
σ (Ω) of E with the property that

E(u) > 0 (thus u 
= 0), which is a weak solution to the problem (P+).



26 ZOLTÁN M. BALOGH, CRISTIAN E. GUTIÉRREZ AND ALEXANDRU KRISTÁLY

It remains to prove that u is nonnegative and weakly solves the original problem (P). By
multiplying the first equation of (P+) by u− = min(u, 0), an integration on Ω ∩ E implies
‖u−‖W 1,2

σ (Ω) = 0, that is, u− = 0. Accordingly, u � 0 is a nonzero weak solution to the original
problem (P) as well, which completes the proof. �

5. Final comments and open questions

5.1. Necessity of conditions (1.2), (1.3) and (1.4)

We start this section showing that by choosing appropriate test functions in (WSI), conditions
(1.2)–(1.4) on the parameters are necessary for the validity of (WSI).

Condition (1.4) follows by scaling: if u verifies (WSI), then uλ(x) = u(λx) also satisfies (WSI)
for each λ > 0. Also, since q > 0, the left-hand side inequality in (1.2) follows immediately from
(1.4) because τ + n > 0 from the local integrability of ω.

Let us next prove the right-hand inequality in (1.2). Let ϕ be a smooth function defined
for t � 0 satisfying ϕ(t) = 0 for 0 � t < 1, ϕ(t) = 1 for t � 2, and 0 � ϕ(t) � 1 for all t > 0.
Also choose h(t) smooth for t ∈ R with h(t) = 1 for |t| � 1, h(t) = 0 for |t| � 2 and 0 � h � 1.
Given ε > 0, the function uε(x) = |x|−β log |x|ϕ(|x|/ε)h(|x|) belongs to C∞

0 (Rn) with support
in the ring {ε � |x| � 2} for each β ∈ R and so uε satisfies (WSI). If β = (τ + n)/q, we have
for ε < 1/2 that

ˆ
E

|uε(x)|q ω(x) dx �
ˆ
E∩{2ε�|x|�1}

|x|−βq

(
log

1
|x|
)q

ω(x) dx

=
ˆ 1

2ε

t−βq+τ+n−1

(
log

1
t

)q

dt

ˆ
E∩Sn−1

ω(x) dx

=
1

q + 1

(
log

1
2ε

)q+1 ˆ
E∩Sn−1

ω(x) dx.

Let us now estimate
´
E
|∇uε(x)|p σ(x) dx from above. We have

∇uε(x) = (−β)|x|−β−1 x

|x| log |x|ϕ(|x|/ε)h(|x|) + |x|−β 1
|x|

x

|x|ϕ(|x|/ε)h(|x|)

+ |x|−β log |x|ϕ′(|x|/ε)1
ε

x

|x|h(|x|) + |x|−β log |x|ϕ(|x|/ε)h′(|x|) x

|x| .

Hence

|∇uε(x)| � |β| |x|−β−1 | log |x||χε�|x|�2(x) + |x|−β−1 χε�|x|�2(x)

+ ‖ϕ′‖∞ |x|−β | log |x|| 1
ε
χε�|x|�2ε(x) + |x|−β | log |x|| ‖h′‖∞ χ1�|x|�2(x)

� C1 |x|−β−1(1 + | log |x||)χε�|x|�2(x),

with C1 > 0 a constant depending only on β, ‖h′‖∞, and ‖ϕ′‖∞. Therefore
ˆ
E

|∇uε(x)|p σ(x) dx =
ˆ
E∩{ε�|x|�2}

|∇uε(x)|p σ(x) dx

� Cp
1

ˆ
E∩{ε�|x|�2}

|x|−(β+1)p(1 + | log |x||)p σ(x) dx := Cp
1 I.
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Integrating in polar coordinates

I =
ˆ 2

ε

t−(β+1)p+n−1+α(1 + | log t|)p dt
ˆ
E∩Sn−1

σ(x) dx,

and from (1.4) and the choice of β, the exponent −(β + 1)p + n− 1 + α = −1. So

I = C

ˆ 2

ε

t−1(1 + | log t|)p dt � 2p C
ˆ 2

ε

t−1(1 + | log t|p) dt

= 2p C
(ˆ 2

ε

t−1 dt +
ˆ 2

ε

t−1| log t|p dt
)

= 2p C (I1 + I2).

Now I1 = log(2/ε) and

I2 =
ˆ 1

ε

t−1| log t|p dt +
ˆ 2

1

t−1| log t|p dt

=
ˆ 1

ε

t−1

(
log

1
t

)p

dt + cp =
1

p + 1

(
log

1
ε

)p+1

+ cp.

We then obtain the estimate
ˆ
E

|∇uε(x)|p σ(x) dx � Cp

((
log

1
ε

)p+1

+ log
2
ε

+ 1

)

and since uε satisfies (WSI), it then follows from the estimate of the Lq-norm of uε that

(
log

1
2ε

)1+ 1
q

� C

((
log

1
ε

)p+1

+ log
2
ε

+ 1

)1/p

,

for all ε small with C independent of ε. Since the dominant term, as ε → 0, on the right-hand
side of the last inequality is (log 1

ε )
1+ 1

p , we then get that p � q which together with (1.4) yields
the inequality on right-hand side of (1.2).

It remains to prove that (1.3) is necessary for (WSI). Fix y0 ∈ E ∩ S
n−1. The idea is to

construct a test function supported on a small ball whose center is along the direction y0 that
tends to infinity. Since E is open, we may pick r0 > 0 small enough with Br0(y0) ⊂ E. Let

m0 := min
Br0 (y0)

ω > 0, M0 := max
Br0 (y0)

σ > 0,

fix a function v ∈ C∞
0 (B1) \ {0}, and define uδ(x) = v(x− δy0) for δ > 0. Note that uδ ∈

C∞
0 (B1(δy0)). Observe also, that if δ r0 > 1, then B1(δy0) ⊂ Bδr0(δy0) ⊂ δ(Br0(y0)) ⊂ E, since

E is a cone. Therefore, by (1.1) and the definitions of m0,M0, it follows that
ˆ
E

|uδ(x)|q ω(x) dx =
ˆ
E

|v(x− δy0)|q ω(x) dx =
ˆ
B1(δy0)

|v(x− δy0)|q ω(x) dx

=
ˆ
B1

|v(y)|q ω(y + δy0) dy = δτ
ˆ
B1

|v(y)|q ω
(y
δ

+ y0

)
dy

� δτm0

ˆ
B1

|v(y)|q dy.
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In a similar way, we obtain
ˆ
E

|∇uδ(x)|p σ(x) dx =
ˆ
E

|∇v(x− δy0)|p σ(x) dx =
ˆ
B1(δy0)

|∇v(x− δy0)|p σ(x) dx

=
ˆ
B1

|∇v(y)|p σ(y + δy0) dy = δα
ˆ
B1

|∇v(y)|p σ
(y
δ

+ y0

)
dy

� δαM0

ˆ
B1

|∇v(y)|p dy.

Accordingly, if we plug in the function uδ into (WSI) with δ > 1/r0, and use the last two
estimates it follows that(

δτm0

ˆ
B1

|v(y)|q dy
) 1

q

� K0

(
δαM0

ˆ
B1

|∇v(y)|p dy
) 1

p

.

Letting δ → ∞, we obtain that τ
q � α

p . Now, using once again the dimensional balance condition
(1.4), we see that the last inequality is equivalent to (1.3).

5.2. Sobolev inequalities in the Heisenberg group

In this part, we consider the connection between weighted Sobolev inequalities in Euclidean
cones and Sobolev inequalities in Heisenberg groups. Our original purpose was in fact to prove
Sobolev inequalities in the Heisenberg group with sharp constants.

For simplicity, we consider the first Heisenberg group H
1. Let us recall that H

1 = R
3 is

endowed with its group operation given by

(x, y, z) ∗ (x′, y′, z′) :=
(
x + x′, y + y′, z + z′ +

1
2
(xy′ − yx′)

)
.

In this setting, one considers the left invariant horizontal vector fields given by X = ∂x − 1
2y∂z

and Y = ∂y + 1
2x∂z and the associated horizontal gradient ∇Hu = X(u)X + Y (u)Y . For p ∈

[1, 4) we consider the Sobolev inequality

(ˆ
H1

|u|q
)1/q

� Cp

(ˆ
H1

|∇Hu|p
)1/p

, u ∈ C∞
0 (H1), (5.1)

where Cp > 0 and q = 4p
4−p is the Sobolev exponent given by scaling with Heisenberg dilations,

where we have used the norm of the horizontal gradient for a function u ∈ C∞
0 (H1) given by

|∇Hu| =
√

(Xu)2 + (Y u)2. In the following, let us consider the class of functions u that are
axially symmetric:

u(x, y, z) = w(z, x2 + y2).

Then, by changing variables, the Heisenberg Sobolev inequality (5.1) becomes equivalent to
the Euclidean weighted Sobolev inequality

(ˆ
R

ˆ ∞

0

wq(x1, x2)dx1dx2

)1/q

� Cp

(ˆ
R

ˆ ∞

0

|∇w|p(x1, x2)x
p/2
2 dx1dx2

)1/p

. (5.2)

This problem fits well into the framework of this paper. In fact, with our setup, the open convex
cone we are working with is E = R × (0,∞), the weights being ω = 1 and σ(x1, x2) = x

p/2
2
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for (x1, x2) ∈ E; accordingly, τ = 0 while α = p/2, and the fractional dimension is na = 4.
Applying Theorem 1.1(i) and Theorem 1.2(i), we obtain that (5.2) holds with constant

Cp =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3p
4 − p

inf´
E

v(y) dy=1,v∈C∞
0 (R2),v�0

(´
E
v(y) |y| p

p−1 dy
) p−1

p

´
E
v(y)

3
4 (y2)

1
2 dy

if p ∈ (1, 4),

5π
5
4

2
13
4 Γ2( 3

4 )
if p = 1.

We do not know how to compute the explicit value of the constant Cp for p > 1. On the other
hand, it is clear that this constant is not the sharp one for the inequality (5.2), see Theorem 1.3.
It is in fact still an open question to determine the sharp constant in both inequalities (5.1) and
(5.2) for general values of p. When p = 2, a sharp Sobolev inequality in the Heisenberg setting
is due to Jerison and Lee [15] and it was proved also by a different method by Frank and Lieb
[14]. Inequality (5.1) for p = 1 is equivalent with Pansu’s isoperimetric inequality; the Pansu’s

optimal constant is claimed to be Copt = 3
3
4

4
√
π
< C1. There are several partial results related

to Pansu’s conjecture; we refer to the monograph of Capogna, Danielli, Pauls and Tyson [8]
for a detailed account on this subject.

5.3. Open questions

We list here a few open problems related to results of this paper.

5.3.1. Sharp Sobolev inequalities with different weights. While the explicit computation
of the constant K0 in the statement of Theorem 1.2 can be done by a direct calculation of
the integrals in the expression of K0, the computation of the value of K0 in the statement of
Theorem 1.1, even in case of simple weights, is a nontrivial matter.

Motivated mainly by the Heisenberg setting from Section 5.2, it would be interesting to
further investigate whether the method of optimal transport can be used to obtain sharp
constants in weighted Sobolev inequalities with different weights.

Another challenging question is to obtain Gagliardo–Nirenberg type inequalities with
different weights. We note that sharp Gagliardo–Nirenberg inequalities have been established
by Del Pino and Dolbeault [12, 13] in the unweighted form, and by Lam [17, 18] for identical
homogeneous weights.

5.3.2. Condition C-0 and Bakry-Émery curvature-dimension condition. When ω = σ,
condition C-0 is equivalent to the concavity of ω

1
α that in turn characterizes the fact that the

metric-measure space (Rn, dE , ωdx) satisfies the Bakry–Émery curvature-dimension condition
CD(0, n + α) (see [6, Remark 1.4] for details). Here, dE and ωdx are the usual Euclidean
metric and the measure whose density with respect to the Lebesgue measure is ω, respectively.
It would be an interesting problem to find a geometric interpretation of condition C-0 in terms
of generalized curvature conditions of metric-measure spaces in the spirit of [2, 21 23, 28,
29].

5.3.3. On Muckenhoupt–Wheeden’s weighted inequality. To give a broader view, we close
the paper mentioning earlier Sobolev inequalities for two weights in all space proved by
Muckenhoupt and Wheeden [24] via fractional integration. They proved the following result:
if 0 < γ < n, 1 < p < n/γ, and 1

q = 1
p − γ

n , then

‖Tγf V ‖Lq(Rn) � C ‖f V ‖Lp(Rn) (5.3)
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for all functions f if and only if there exists K > 0 such that( 
Q

V (x)q dx
)1/q( 

Q

V (x)−p′
dx

)1/p′

� K (5.4)

for all cubes Q ⊂ R
n. This condition is equivalent to V q belongs to the Muckenhoupt class Ar,

with r = 1 + q/p′. Here Tγ stands for the fractional integral of order γ given by

Tγf(x) =
ˆ
Rn

f(y)
|x− y|n−γ

dy.

Using a representation formula of functions in terms of the fractional integral of order one of
its derivatives, Muckenhoupt and Wheeden [24, Theorem 9] deduced from (5.3) when γ = 1 a
weighted Sobolev inequality of the form

‖f V ‖Lq(Rn) � C
(‖f V ‖Lp(Rn) + ‖|∇f |V ‖Lp(Rn)

)
.

We note that Muckenhoupt–Wheeden’s condition and our condition C-0 are rather indepen-
dent from each other. Indeed, if V : R

n → (0,∞) is any differentiable, homogeneous function
of degree α ∈ R and ω(x) = V (x)q, σ(x) = V (x)p for every x ∈ E = R

n, then na = n and
supx∈Rn

ω(x)1/q

σ(x)1/p
= 1. We observe that the pair (ω, σ) satisfies inequality (1.7) in condition C-0

if and only if V ≡ c for some c > 0. Hence with this choice of the weights, conditions (5.4) and
C-0 are simultaneously satisfied in the whole R

n if and only if both weights are constant, that
is, ω(x) = cq, σ(x) = cp, x ∈ R

n.
Since our results are on cones, they are not in general comparable to these but nevertheless

they raise the following methodological question: is it possible to prove inequality (5.3), for
example, when V = 1, by using optimal transport? This would be the analogue of the problem
solved in [11] for fractional integrals. In particular, it may give optimal constants and extremal
functions for the fractional integral inequality as in Lieb [20, Theorem 2.3].
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3. X. Cabré and X. Ros-Oton, ‘Regularity of minimizers up to dimension 7 in domains of double revolution’,
Comm. Partial Differential Equations 38 (2013) 135–154.
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