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We study Lord Rayleigh’s problem for clamped plates on 
an arbitrary n-dimensional (n ≥ 2) Cartan-Hadamard 
manifold (M, g) with sectional curvature K ≤ −κ2 for 
some κ ≥ 0. We first prove a McKean-type spectral gap 
estimate, i.e. the fundamental tone of any domain in (M, g)
is universally bounded from below by (n−1)4

16 κ4 whenever 
the κ-Cartan-Hadamard conjecture holds on (M, g), e.g. 
in 2- and 3-dimensions due to Bol (1941) and Kleiner 
(1992), respectively. In 2- and 3-dimensions we prove sharp 
isoperimetric inequalities for sufficiently small clamped plates, 
i.e. the fundamental tone of any domain in (M, g) of volume 
v > 0 is not less than the corresponding fundamental tone of 
a geodesic ball of the same volume v in the space of constant 
curvature −κ2 provided that v ≤ cn/κn with c2 ≈ 21.031 and 
c3 ≈ 1.721, respectively. In particular, Rayleigh’s problem 
in Euclidean spaces resolved by Nadirashvili (1992) and 
Ashbaugh and Benguria (1995) appears as a limiting case 
in our setting (i.e. K ≡ κ = 0). Sharp asymptotic estimates of 
the fundamental tone of small and large geodesic balls of low-
dimensional hyperbolic spaces are also given. The sharpness 
of our results requires the validity of the κ-Cartan-Hadamard 
conjecture (i.e. sharp isoperimetric inequality on (M, g)) and 
peculiar properties of the Gaussian hypergeometric function, 
both valid only in dimensions 2 and 3; nevertheless, some 
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nonoptimal estimates of the fundamental tone of arbitrary 
clamped plates are also provided in high-dimensions. As 
an application, by using the sharp isoperimetric inequality 
for small clamped hyperbolic discs, we give necessarily and 
sufficient conditions for the existence of a nontrivial solution 
to an elliptic PDE involving the biharmonic Laplace-Beltrami 
operator.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let Ω ⊂ Rn be a bounded domain (n ≥ 2), and consider the eigenvalue problem
{

Δ2u = Γu in Ω,

u = |∇u| = 0 on ∂Ω,
(1.1)

associated with the vibration of a clamped plate. The lowest/principal eigenvalue for 
(1.1) – the fundamental tone of the clamped plate – can be characterized in a variational 
way by

Γ0(Ω) = inf
u∈W 2,2

0 (Ω)\{0}

∫
Ω

(Δu)2dx

∫
Ω

u2dx
. (1.2)

The minimizer of (1.2) in the plane describes the vibration of a homogeneous thin plate 
Ω ⊂ R2 whose boundary is clamped, while the frequency of vibration of the plate Ω is 
proportional to Γ0(Ω) 1

2 . The famous conjecture of Lord Rayleigh [36, p.382] – formulated 
initially for planar domains in 1894 – states that

Γ0(Ω) ≥ Γ0(Ω�) = h4
ν

(
ωn

|Ω|

)4/n

, (1.3)

where Ω� ⊂ Rn is a ball with the same measure as Ω, with equality if and only if Ω is 
a ball. Hereafter, ν = n

2 − 1, ωn = πn/2/Γ(1 + n/2) is the volume of the unit Euclidean 
ball, while hν is the first positive critical point of Jν

Iν
, where Jν and Iν stand for the 

Bessel and modified Bessel functions of first kind, respectively.
Assuming that the eigenfunction corresponding to Γ0(Ω) is sign-preserving over a 

simply connected domain Ω ⊂ R2, Szegő [38] proved (1.3) in the early fifties. As one 
can deduce from his paper’s text, his belief on the constant-sign first eigenfunction cor-
responding to Γ0(Ω) has been based on the second-order membrane problem (called as 
the Faber-Krahn problem). It turned out shortly that his expectation perishes due to 
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the construction of Duffin [19] on strip-like domains and Coffman, Duffin and Shaffer 
[16] on ring-shaped clamped plate, localizing nodal lines of vibrating plates. While the 
membrane problem involves only the Laplacian, the clamped plate problem requires the 
presence of the fourth order bilaplacian operator; as we know nowadays, fourth order 
equations are lacking general maximum/comparison principles which is unrevealed in 
Szegő’s pioneering approach. In fact, stimulated by the papers [19] and [16], several sce-
narios are described for nodal domains of clamped plates, see e.g. Bauer and Reiss [3], 
Coffman [15], Grunau and Robert [21], from which the main edification is that eigen-
functions corresponding to (1.2) may change their sign.

In order to handle the presence of possible nodal domains, Talenti [40] developed 
a Schwarz-type rearrangement method on domains where the first eigenfunction corre-
sponding to (1.2) has both positive and negative parts. In this way, a decomposition 
of (1.2) into a two-ball minimization problem arises which provided a nonoptimal esti-
mate in (1.3); in fact, instead of (1.3), Talenti proved that Γ0(Ω) ≥ dnΓ0(Ω�) where the 
dimension-depending constant dn has the properties 1

2 ≤ dn < 1 for every n ≥ 2 and 

lim
n→∞

dn = 1
2.

By a careful improvement of Talenti’s two-ball minimization argument, Rayleigh’s 
conjecture has been proved in its full generality for n = 2 by Nadirashvili [31,32]. Fur-
ther modifications of some arguments from the papers [32] and [40] allowed to Ashbaugh 
and Benguria [1] to prove Rayleigh’s conjecture for n = 3 (and n = 2) by explor-
ing fine properties of Bessel functions. Roughly speaking, for n ∈ {2, 3}, the two-ball 
minimization problem reduces to only one ball (the other ball disappearing), while in 
higher dimensions the ‘optimal’ situation appears for two identical balls which provides 
a nonoptimal estimate for Γ0(Ω). Although asymptotically sharp estimates are provided 
by Ashbaugh and Laugesen [2] for Γ0(Ω) in high-dimensions, i.e. Γ0(Ω) ≥ DnΓ0(Ω�)
where 0.89 < Dn < 1 for every n ≥ 4 with lim

n→∞
Dn = 1, the conjecture is still open for 

n ≥ 4. Very recently, Chasman and Langford [6,7] provided certain Ashbaugh-Laugesen-
type results in Euclidean spaces endowed with a log-convex/Gaussian density, by proving 
that Γw(Ω) ≥ C̃Γw(Ω�), where the constant C̃ ∈ (0, 1) depends on the volume of Ω and 
dimension n ≥ 2, while Γw(Ω) and Γw(Ω�) denote the fundamental tones of the clamped 
plate with respect to the corresponding density function w.

Interest in the clamped plate problem on curved spaces was also increased in recent 
years. One of the most central problems is to establish Payne-Pólya-Weinberger-Yang-
type inequalities for the eigenvalues of the problem

{
Δ2

gu = Γu in Ω,

u = ∂u
∂n = 0 on ∂Ω,

(1.4)

where Ω is a bounded domain in an n-dimensional Riemannian manifold (M, g), Δ2
g

stands for the biharmonic Laplace-Beltrami operator on (M, g) and ∂
∂n is the outward 

normal derivative on ∂Ω, respectively; see e.g. Chen, Zheng and Lu [9], Cheng, Ichikawa 
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and Mametsuka [10], Cheng and Yang [11–13], Wang and Xia [42]. Instead of (1.2), one 
naturally considers the fundamental tone of Ω ⊂ M by

Γg(Ω) := Γg,n(Ω) = inf
u∈W 2,2

0 (Ω)\{0}

∫
Ω

(Δgu)2dvg

∫
Ω

u2dvg
, (1.5)

where dvg denotes the canonical measure on (M, g), and W 2,2
0 (Ω) is the usual Sobolev 

space on (M, g), see Hebey [22]; in fact, it turns out that Γg(Ω) is the first eigen-
value to (1.4). Due to the Bochner-Lichnerowicz-Weitzenböck formula, the Sobolev space 
H2

0 (Ω) = W 2,2
0 (Ω) is a proper choice for (1.4), see Proposition 3.1 for details.

To the best of our knowledge, no results – comparable to (1.3) – are available in 
the literature concerning Lord Rayleigh’s problem for clamped plates on curved struc-
tures. Accordingly, the main purpose of the present paper is to identify those geometric 
and analytic properties which reside in Lord Rayleigh’s problem for clamped plates on 
nonpositively curved spaces. To develop our results, the geometric context is provided 
by an n-dimensional (n ≥ 2) Cartan-Hadamard manifold (M, g) (i.e. simply connected, 
complete Riemannian manifold with nonpositive sectional curvature). Having this frame-
work, we recall McKean’s spectral gap estimate for membranes which is closely related 
to (1.5); namely, in an n-dimensional Cartan-Hadamard manifold (M, g) with sectional 
curvature K ≤ −κ2 for some κ > 0, the principal frequency of any membrane Ω ⊂ M

can be estimated as

γg(Ω) := inf
u∈W 1,2

0 (Ω)\{0}

∫
Ω

|∇gu|2dvg
∫
Ω

u2dvg
≥ (n− 1)2

4 κ2; (1.6)

in addition, (1.6) is sharp on the n-dimensional hyperbolic space (Hn
−κ2 , gκ) of constant 

curvature −κ2 in the sense that γgκ(Ω) → (n−1)2
4 κ2 whenever Ω tends to Hn

−κ2 , see 
McKean [30].

Before to state our results, we fix some notations. If κ ≥ 0, let Nn
κ be the n-dimensional 

space-form with constant sectional curvature −κ2, i.e. Nn
κ is either the hyperbolic space 

Hn
−κ2 when k > 0, or the Euclidean space Rn when κ = 0. Let Bκ(L) be the geodesic 

ball of radius L > 0 in Nn
κ and if Ω ⊂ Nn

κ , we denote by Γκ(Ω) the corresponding 
value from (1.5). By convention, we consider 1/0 = +∞ and as usual, Vg(S) denotes the 
Riemannian volume of S ⊂ M .

Our first result provides a fourth order counterpart of McKean’s spectral gap estimate, 
which requires the validity of the κ-Cartan-Hadamard conjecture on (M, g); the latter is 
nothing but the sharp isoperimetric inequality on (M, g), which is valid e.g. on hyperbolic 
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spaces of any dimension as well as on generic 2- and 3-dimensional Cartan-Hadamard 
manifolds with sectional curvature K ≤ −κ2 for some κ ≥ 0, see §2.2.

Theorem 1.1. Let (M, g) be an n-dimensional Cartan-Hadamard manifold with sectional 
curvature K ≤ −κ2 for some κ ≥ 0, which verifies the κ-Cartan-Hadamard conjecture. 
If Ω ⊂ M is a bounded domain with smooth boundary then

Γg(Ω) ≥ (n− 1)4

16 κ4. (1.7)

Moreover, for n ∈ {2, 3}, relation (1.7) is sharp in the sense that

Γκ(Nn
κ ) := lim

L→∞
Γκ(Bκ(L)) = (n− 1)4

16 κ4. (1.8)

Clearly, Theorem 1.1 is relevant only for κ > 0 (as (1.7) and (1.8) trivially hold for 
κ = 0). Moreover, if n ∈ {2, 3} and κ > 0, and Γl

κ(Ω) denotes the lth eigenvalue of
(1.4) on Ω ⊂ Hn

−κ2 , then making use of (1.8) and a Payne-Pólya-Weinberger-Yang-type 
universal inequality on Hn

−κ2 , it turns out that

Γl
κ(Hn

−κ2) := lim
L→∞

Γl
κ(Bκ(L)) = (n− 1)4

16 κ4 for all l ∈ N. (1.9)

In particular, (1.9) confirms a claim of Cheng and Yang [12, Theorem 1.4] for n ∈ {2, 3}, 
where the authors assumed (1.8) itself in order to derive (1.9). In fact, one can expect 
the validity of (1.9) for any n ≥ 2 but some technical difficulties prevent the proof in 
high-dimensions; for details, see §5.3.

Actually, Theorem 1.1 is just a byproduct of a general argument needed to prove the 
main result of our paper (for its statement, we recall that hν is the first positive critical 
point of Jν

Iν
and ν = n

2 − 1):

Theorem 1.2. Let n ∈ {2, 3} and (M, g) be an n-dimensional Cartan-Hadamard manifold 
with sectional curvature K ≤ −κ2 for some κ ≥ 0, Ω ⊂ M be a bounded domain with 
smooth boundary and volume Vg(Ω) ≤ cn

κn with c2 ≈ 21.031 and c3 ≈ 1.721. If Ω� ⊂ Nn
κ

is a geodesic ball verifying Vg(Ω) = Vκ(Ω�) then

Γg(Ω) ≥ Γκ(Ω�), (1.10)

with equality in (1.10) if and only if Ω is isometric to Ω�. Moreover,

Γκ(Bκ(L)) ∼
(

(n− 1)2

4 κ2 + h2
ν

L2

)2

as L → 0. (1.11)

Some comments are in order.
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The proof of Theorems 1.1 and 1.2 is based on a decomposition argument similar to the 
one carried out by Talenti [40] and Ashbaugh and Benguria [1] in the Euclidean frame-
work. In fact, we transpose the original variational problem from generic nonpositively 
curved spaces to the space-form Nn

κ by assuming the validity of the κ-Cartan-Hadamard 
conjecture on (M, g). By a fourth order ODE it turns out that Γκ(Ω�) is the small-
est positive solution to the cross-product of suitable Gaussian hypergeometric functions 
(resp., Bessel functions) whenever κ > 0 (resp., κ = 0). The aforementioned decom-
position argument combined with certain oscillatory and asymptotic properties of the 
hypergeometric function provides the proof of Theorem 1.1.

The dimensionality restriction n ∈ {2, 3} in Theorem 1.2 (and relation (1.8)) is needed 
not only for the validity of the κ-Cartan-Hadamard conjecture but also for some pecu-
liar properties of the Gaussian hypergeometric function; similar phenomenon has been 
pointed out also by Ashbaugh and Benguria [1] in the Euclidean setting for Bessel 
functions. In addition, the arguments in Theorem 1.2 work only for sets with suffi-
ciently small measure; unlike the usual Lebesgue measure in Rn (where the scaling 
Γ0(B0(L)) = L−4Γ0(B0(1)) holds for every L > 0), the inhomogeneity of the canoni-
cal measure on hyperbolic spaces requires the aforementioned volume-restriction. The 
intuitive feeling we get that eigenfunctions corresponding to Γg(Ω) on a large domain 
Ω ⊂ M with strictly negative curvature may have large nodal domains whose symmet-
ric rearrangements in Hn

−κ2 produce large geodesic balls and their ‘joined’ fundamental 
tone can be definitely lower than the expected Γκ(Ω�). In fact, our arguments show that 
Theorem 1.2 cannot be improved even if we restrict the setting to the model space-form 
Hn

−κ2 . It remains an open question whether or not (1.10) remains valid for arbitrarily 
large domains in any dimension n ≥ 4; we notice however that some nonoptimal es-
timates of Γg(Ω) are also provided for any domain in high-dimensions (see §5.4). The 
asymptotic property (1.11) for κ > 0 follows by an elegant asymptotic connection be-
tween hypergeometric and Bessel functions, which is crucial in the proof of (1.10) and 
its accuracy is shown in Table 1 (see §5.2) for some values of L � 1. Clearly, (1.11) is 
trivial for κ = 0 since Γ0(B0(L)) = h4

ν/L
4 for every L > 0.

A natural question arises concerning the sharp estimate of the fundamental tone on 
complete n-dimensional Riemannian manifolds with Ricci curvature Ric(M,g) ≥ k(n − 1)
for some k ≥ 0. Some arguments based on the spherical Laplacian show that Bessel 
functions (when k = 0) and Gaussian hypergeometric functions (when k > 0) will play 
again crucial roles. Since the parameter range of the aforementioned special functions 
in the nonnegatively curved case is different from the present setting, further technical-
ities appear which require a deep analysis. Accordingly, we intend to come back to this 
problem in a forthcoming paper.

As an application of Theorem 1.2, we consider the elliptic problem

{
Δ2

κu− μΔκu + γu = |u|p−2u in Bκ(L),
u ≥ 0, u ∈ W 2,2(Bκ(L)),

(P)

0
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where Bκ(L) ⊂ H2
−κ2 is a hyperbolic disc and the range of parameters μ, γ, p, κ and L

is specified below. By using variational arguments, one can prove the following result.

Theorem 1.3. Let μ ≥ 0, γ ∈ R, p > 2, κ > 0 and 0 < L < 2.1492
κ . The following 

statements hold:

(i) if μ = 0 and problem (P) admits a nonzero solution then γ > −Γκ(Bk(L));
(ii) if μ > 0 and γ > −Γκ(Bk(L)) then problem (P) admits a nonzero solution.

The paper is organized as follows. In Section 2 we recall/prove those notions/results 
which are indispensable in our study (space-forms, κ-Cartan-Hadamard conjecture, oscil-
latory properties of specific Gaussian hypergeometric functions). In Section 3 we develop 
an Ashbaugh-Benguria-Talenti-type decomposition from curved spaces to space-forms. In 
Sections 4 and 5 we provide a McKean-type spectral gap estimate (proof of Theorem 1.1) 
and comparison principles (proof of Theorem 1.2) for fundamental tones, respectively. 
In Section 6 we prove Theorem 1.3.

2. Preliminaries

2.1. Space-forms

Let κ ≥ 0 and Nn
κ be the n-dimensional space-form with constant sectional curvature 

−κ2. When κ = 0, Nn
κ = Rn is the usual Euclidean space, while for κ > 0, Nn

κ is the 
n-dimensional hyperbolic space represented by the Poincaré ball model Nn

κ = Hn
−κ2 =

{x ∈ Rn : |x| < 1} endowed with the Riemannian metric

gκ(x) = (gij(x))i,j=1,...,n = p2
κ(x)δij ,

where pκ(x) = 2
κ(1−|x|2) . (H

n
−κ2 , gκ) is a Cartan-Hadamard manifold with constant sec-

tional curvature −κ2. If ∇ and div denote the Euclidean gradient and divergence operator 
in Rn, the canonical volume form, gradient and Laplacian operator on Nn

κ are

dvκ(x) =
{

dx if κ = 0,
pnκ(x)dx if κ > 0,

∇κu =
{

∇u if κ = 0,
∇u
p2
κ

if κ > 0,

and

Δκu =
{

Δu if κ = 0,
p−n
κ div(pn−2

κ ∇u) if κ > 0,

respectively. The distance function on Nn
κ is denoted by dκ; the distance between the 

origin and x ∈ Nn
κ is given by
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dκ(x) := dκ(0, x) =
{

|x| if κ = 0,
1
κ ln

(
1+|x|
1−|x|

)
if κ > 0.

The volume of the geodesic ball Bκ(r) = {x ∈ Nn
κ : dκ(x) < r} is

Vκ(r) := Vκ(Bκ(r)) = nωn

r∫
0

sκ(ρ)n−1dρ, (2.1)

where

sκ(ρ) =
{

ρ if κ = 0,
sinh(κρ)

κ if κ > 0.

A simple change of variables gives the following useful transformation.

Proposition 2.1. Let κ ≥ 0. For every integrable function g : [0, L] → R with L ≥ 0 one 
has

L∫
0

g(s)ds =
∫

Bκ(rL)

g(Vκ(dκ(x)))dvκ(x),

where rL ≥ 0 is the unique real number verifying Vk(rL) = L.

2.2. κ-Cartan-Hadamard conjecture

Let (M, g) be an n-dimensional Cartan-Hadamard manifold with sectional curvature 
bounded above by −κ2 for some κ ≥ 0. The κ-Cartan-Hadamard conjecture on (M, g)
(called also as the generalized Cartan-Hadamard conjecture) states that the κ-sharp 
isoperimetric inequality holds on (M, g), i.e. for every open bounded Ω ⊂ M one has

Ag(∂Ω) ≥ Aκ(∂Bκ(r)), (2.2)

whenever Vg(Ω) = Vκ(r); moreover, equality holds in (2.2) if and only if Ω is isometric 
to Bκ(r). Hereafter, Ag and Aκ stand for the area on (M, g) and Nn

κ , respectively.
The κ-Cartan-Hadamard conjecture holds for every κ ≥ 0 on space-forms with 

constant sectional curvature −κ2 (of any dimension), see Dinghas [18], and on Cartan-
Hadamard manifolds with sectional curvature bounded above by −κ2 of dimension 2, see 
Bol [5], and of dimension 3, see Kleiner [26]. In addition, a very recent result of Ghomi 
and Spruck [20] states that the 0-Cartan-Hadamard conjecture holds in any dimension; 
in dimension 4, the validity of the 0-Cartan-Hadamard conjecture is due to Croke [14]. 
In higher dimensions and for κ > 0, the conjecture is still open; for a detailed discussion, 
see Kloeckner and Kuperberg [28].
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2.3. Gaussian hypergeometric function

For a, b, c ∈ C (c �= 0, −1, −2, ...) the Gaussian hypergeometric function is defined by

F(a, b; c; z) = 2F 1(a, b; c; z) =
∑
k≥0

(a)k(b)k
(c)k

zk

k! (2.3)

on the disc |z| < 1 and extended by analytic continuation elsewhere, where (a)k =
Γ(a+k)
Γ(a) denotes the Pochhammer symbol. The corresponding differential equation to z 
→

F(a, b; c; z) is

z(1 − z)w′′(z) + (c− (a + b + 1)z)w′(z) − abw(z) = 0. (2.4)

We also recall the differentiation formula

d
dzF(a, b; c; z) = ab

c
F(a + 1, b + 1; c + 1; z). (2.5)

Let n ≥ 2 be an integer, K > 0 be fixed, and consider the function

wK
± (t) = F

⎛
⎝1 −

√
(n− 1)2 ± 4

√
K

2 ,
1 +

√
(n− 1)2 ± 4

√
K

2 ; n2 ;−t

⎞
⎠ , t > 0.

The following result will be indispensable in our study.

Proposition 2.2. Let K > 0 be fixed. The following properties hold:

(i) wK
+ (t) > 0 for every t ≥ 0;

(ii) if K ≤ (n−1)4
16 , then wK

+ (t) ≥ wK
− (t) > 0 for every t ≥ 0;

(iii) wK
− is oscillatory on (0, ∞) if and only if K > (n−1)4

16 .

Proof. For simplicity of notation, let a± = 1−
√

(n−1)2±4
√
K

2 and b± = 1+
√

(n−1)2±4
√
K

2 .
(i) The connection formula (15.10.11) of Olver et al. [33] implies that

wK
+ (t) = (1 + t)−b+F

(
n

2 − a+, b+; n2 ; t

1 + t

)
, t ≥ 0.

Due to n2 − a+ > 0, b+ > 0 and (2.3), we have that wK
+ (t) > 0 for every t ≥ 0.

(ii) Fix 0 < K ≤ (n−1)4
16 . First, since n2 − a− > 0 and b− > 0, the connection formula 

(15.10.11) of [33] together with (2.3) implies again that

wK
− (t) = (1 + t)−b−F

(
n − a−, b−; n ; t

)
> 0, t > 0.
2 2 1 + t
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By virtue of (2.4), an elementary transformation shows that w± := wK
± verifies the 

ordinary differential equation

t(t + 1)w′′
±(t) +

(
2t + n

2

)
w′

±(t) + 1 − (n− 1)2 ∓ 4
√
K

4 w±(t) = 0, t > 0. (2.6)

It turns out that (2.6) is equivalent to

(
p(t)w′

±(t)
)′ + q±(t)w±(t) = 0, t > 0, (2.7)

where p(t) = t
n
2 (1 + t)2−n

2 , q±(t) = K̃±t
n
2 −1(1 + t)1−n

2 and K̃± = 1−(n−1)2∓4
√
K

4 . For 
any τ > 0, relation (2.7) and a Sturm-type argument gives that

0 =
τ∫

0

[
w−
((

pw′
+
)′ + q+w+

)
− w+

((
pw′

−
)′ + q−w−

)]

=
τ∫

0

(q+ − q−)w−w+ +
[
p
(
w−w

′
+ − w+w

′
−
)] ∣∣τ

0 .

Since q+ < q−, p(0) = 0, and w± > 0, we necessarily have that w−w
′
+ − w+w

′
− ≥ 0 on 

(0, ∞). In particular, w+
w−

is non-decreasing on (0, ∞) and since w+(0) = w−(0) = 1, we 
have that w+ ≥ w− on [0, ∞).

(iii) By (ii) we have wK
− (t) > 0 for every t > 0 whenever 0 < K ≤ (n−1)4

16 , i.e. wK
− is 

not oscillatory on (0, ∞) for numbers K belonging to this range.

Assume now that K > (n−1)4
16 . Since 

∞∫
α

1
p(t)dt < ∞ for every α > 0, one can apply the 

result of Sugie, Kita and Yamaoka [39, Theorem 3.1] (see also Hille [23]), which states 
that if

p(t)q−(t)

⎛
⎝ ∞∫

t

1
p(τ)dτ

⎞
⎠

2

≥ 1
4 for t � 1, (2.8)

then the function wK
− in (2.7) is oscillatory. Due to the fact that

p(t)q−(t)

⎛
⎝ ∞∫

t

1
p(τ)dτ

⎞
⎠

2

∼ K̃− as t → ∞,

and K̃− = 1−(n−1)2+4
√
K

4 > 1
4 , inequality (2.8) trivially holds, which concludes the 

proof. �
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Remark 2.1. Dmitrii Karp kindly pointed out that for every β ≥ 1
2 and t > 0, the function 

x 
→ F(1
2 −x, 12 +x; β; −t) is strictly increasing on [0, ∞) from which Proposition 2.2/(ii) 

follows; his proof is based on fine properties of the hypergeometric functions 2F1 and 

3F2, cf. Karp [24].

3. Ashbaugh-Benguria-Talenti-type decomposition: from curved spaces to space-forms

Without saying explicitly throughout this section, we put ourselves into the context of 
Theorem 1.1, i.e. we fix an n-dimensional (n ≥ 2) Cartan Hadamard manifold (M, g) with 
sectional curvature K ≤ −κ2 ≤ 0 (κ ≥ 0), verifying the κ-Cartan-Hadamard conjecture 
(see §2.2).

Let Ω ⊂ M be a bounded domain. Inspired by Talenti [40] and Ashbaugh and Ben-
guria [1], we provide in this section a decomposition argument by estimating from below 
the fundamental tone Γg(Ω) given in (1.5) by a value coming from a two-geodesic-ball 
minimization problem on the space-form Nn

κ . We first state:

Proposition 3.1. The infimum in (1.5) is achieved.

Proof. Due to Hopf-Rinow’s theorem, the set Ω is relatively compact. Consequently, 
the Ricci curvature is bounded from below on Ω, see e.g. Bishop and Critenden [4, 
p.166], and the injectivity radius is positive on Ω, see Klingenberg [27, Proposition 
2.1.10]. By a similar argument as in Hebey [22, Proposition 3.3], based on the Bochner-
Lichnerowicz-Weitzenböck formula, the norm of the Sobolev space H2

0 (Ω) = W 2,2
0 (Ω), 

i.e. u 
→

⎛
⎝∫

Ω

(|∇2
gu|2 + |∇gu|2 + u2)dvg

⎞
⎠

1/2

, is equivalent to the norm given by u 
→

⎛
⎝∫

Ω

(
(Δgu)2 + |∇gu|2 + u2)dvg

⎞
⎠

1/2

. Accordingly, (1.5) is well-defined. The proof of 

the claim, i.e. putting minimum in (1.5), follows by a similar variational argument as in 
Ashbaugh and Benguria [1, Appendix 2]. �

We are going to use certain symmetrization arguments à la Schwarz; namely, if U :
Ω → [0, ∞) is a measurable function, we introduce its equimeasurable rearrangement 
function U� : Nn

κ → [0, ∞) such that for every t > 0 we have

Vκ({x ∈ Nn
κ : U�(x) > t}) = Vg({x ∈ Ω : U(x) > t}). (3.1)

If S ⊂ M is a measurable set, then S� denotes the geodesic ball in Nn
κ with center in 

the origin such that Vg(S) = Vκ(S�).
Let u ∈ W 2,2

0 (Ω) be a minimizer in (1.5); since u is not necessarily of constant sign, 
let u+ = max(u, 0) and u− = − min(u, 0) be the positive and negative parts of u, and
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Ω+ = {x ∈ Ω : u+(x) > 0} and Ω− = {x ∈ Ω : u−(x) > 0},

respectively. For further use, let a, b ≥ 0 such that

Vκ(a) = Vg(Ω+) and Vκ(b) = Vg(Ω−). (3.2)

In particular, Vκ(a) + Vκ(b) = Vg(Ω) = Vκ(L) for some L > 0. We define the functions 
u�

+, u
�
− : Nn

κ → [0, ∞) such that for every t > 0,

Vκ({x ∈ Nn
κ : u�

+(x) > t}) = Vg({x ∈ Ω : u+(x) > t}) =: α(t), (3.3)

Vκ({x ∈ Nn
κ : u�

−(x) > t}) = Vg({x ∈ Ω : u−(x) > t}) =: β(t). (3.4)

The functions u�
+ and u�

− are well-defined and radially symmetric, verifying the property 
that for some rt > 0 and ρt > 0 one has

{x ∈ Nn
κ : u�

+(x) > t} = Bκ(rt) and {x ∈ Nn
κ : u�

−(x) > t} = Bκ(ρt), (3.5)

with Vκ(rt) = α(t) and Vκ(ρt) = β(t), respectively.
For further use, we consider the sets

Λ�
t = ∂({x ∈ Nn

κ : u�
+(x) > t}), Λt = ∂({x ∈ Ω : u+(x) > t}),

Π�
t = ∂({x ∈ Nn

κ : u�
−(x) > t}), Πt = ∂({x ∈ Ω : −u(x) > t}).

Proposition 3.2. Let u ∈ W 2,2
0 (Ω) be a minimizer in (1.5). Then for a.e. t > 0 we have

(i) Ag(Λt)2 ≤ α′(t) 
∫

{u(x)>t}

Δgudvg;

(ii) Ag(Πt)2 ≤ β′(t) 
∫

{u(x)<−t}

Δgudvg.

Proof. Statements (i) and (ii) are similar to those by Talenti [40, Appendix, p.278] in the 
Euclidean setting; for completeness, we reproduce the proof in the curved framework. By 
density reasons, it is enough to consider the case when u is smooth. For h > 0, Cauchy’s 
inequality implies

⎛
⎜⎝ 1
h

∫
t<u(x)≤t+h

|∇gu(x)|dvg

⎞
⎟⎠

2

≤ α(t) − α(t + h)
h

1
h

∫
t<u(x)≤t+h

|∇gu(x)|2dvg.

When h → 0, the latter relation and the co-area formula (see Chavel [8, p.86]) imply 
that
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Ag(Λt)2 ≤ −α′(t)
∫
Λt

|∇gu|dHn−1,

where Hn−1 is the (n −1)-dimensional Hausdorff measure. The divergence theorem gives 
that ∫

Λt

|∇gu|dHn−1 = −
∫

{x∈Ω:u+(x)>t}

Δgudvg = −
∫

{x∈Ω:u(x)>t}

Δgudvg,

which concludes the proof of (i). Similar arguments hold in the proof of (ii). �
Let

F (s) = (Δgu)#−(s) − (Δgu)#+(Vg(Ω) − s) and G(s) = −F (Vg(Ω) − s), s ∈ [0, Vg(Ω)],

where ·# stands for the notation

H#(s) = H�(x) for s = Vκ(dκ(x)), x ∈ Ω.

Proposition 3.3. For every t > 0 one has that

(i)
α(t)∫
0

F (s)ds ≥ − 
∫

{u(x)>t}

Δgu(x)dvg(x);

(ii)
β(t)∫
0

G(s)ds ≥ − 
∫

{u(x)<−t}

Δgu(x)dvg(x).

Proof. We first recall a Hardy-Littlewood-Pólya-type inequality, i.e. if U : Ω → [0, ∞)
is an integrable function and U� is defined by (3.1), one has for every measurable set 
S ⊆ Ω that ∫

S

Udvg ≤
∫
S�

U�dvk; (3.6)

moreover, if S = Ω, the equality holds in (3.6) as U� being an equimeasurable rearrange-
ment of U .

(i) Let t > 0 be fixed. In order to complete the proof, we are going to show first that

α(t)∫
0

(Δgu)#−(s)ds ≥
∫

{u(x)>t}

(Δgu)−(x)dvg(x), (3.7)

and
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∫
{u(x)>t}

(Δgu)+(x)dvg(x) ≥
α(t)∫
0

(Δgu)#+(Vg(Ω) − s)ds. (3.8)

To do this, let rt > 0 be the unique real number with Vk(rt) = α(t), see (3.5). The 
estimate (3.7) follows by Proposition 2.1 and inequality (3.6) as

α(t)∫
0

(Δgu)#−(s)ds =
∫

Bκ(rt)

(Δgu)#−(Vκ(dκ(x)))dvκ(x) =
∫

Bκ(rt)

(Δgu)�−(x)dvκ(x)

≥
∫

{u(x)>t}

(Δgu)−(x)dvg(x),

where we explored that {x ∈ Ω : u(x) > t}� = Bκ(rt), following by Vk(rt) = α(t).
The proof of (3.8) is similar; for completeness, we provide its proof. By a change of 

variable and Proposition 2.1 it turns out that

α(t)∫
0

(Δgu)#+(Vg(Ω) − s)ds =
Vg(Ω)∫
0

(Δgu)#+(s)ds−
Vg(Ω)−α(t)∫

0

(Δgu)#+(s)ds

=
∫
Ω�

(Δgu)#+(Vκ(dκ(x)))dvκ(x) −
∫

Bκ(τt)

(Δgu)#+(Vκ(dκ(x)))dvκ(x)

=
∫
Ω�

(Δgu)�+(x)dvκ(x) −
∫

Bκ(τt)

(Δgu)�+(x)dvκ(x),

where τt > 0 is the unique real number verifying Vκ(τt) = Vg(Ω) − α(t). Let At = {x ∈
Ω : u(x) ≤ t}; then Vg(At) = Vg(Ω) − α(t) = Vκ(τt). In particular, by inequality (3.6)
(together with the equality for the whole domain) and the latter relations we have

α(t)∫
0

(Δgu)#+(Vg(Ω) − s)ds =
∫
Ω�

(Δgu)�+(x)dvκ(x) −
∫

Bκ(τt)

(Δgu)�+(x)dvκ(x)

≤
∫
Ω

(Δgu)+(x)dvg(x) −
∫
At

(Δgu)+(x)dvg(x)

=
∫

Ω\At

(Δgu)+(x)dvg(x) =
∫

{u(x)>t}

(Δgu)+(x)dvg(x),

which concludes the proof of (3.8).
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By (3.7) and (3.8) one has

α(t)∫
0

F (s)ds =
α(t)∫
0

(Δgu)#−(s)ds−
α(t)∫
0

(Δgu)#+(Vg(Ω) − s)ds

≥
∫

{u(x)>t}

(Δgu)−(x)dvg(x) −
∫

{u(x)>t}

(Δgu)+(x)dvg(x)

= −
∫

{u(x)>t}

Δgu(x)dvg(x),

which is precisely our claim. The proof of (ii) is similar. �
We consider the function v : Ω� = Bκ(L) → R defined by

v(x) = 1
nωn

a∫
dκ(x)

sκ(ρ)1−n

⎛
⎜⎝

Vκ(ρ)∫
0

F (s)ds

⎞
⎟⎠ dρ. (3.9)

A direct computation shows that v is a solution to the problem

{
−Δκv(x) = F (Vκ(dκ(x))) in Bκ(a);
v = 0 on ∂Bκ(a).

(3.10)

In a similar way, the function w : Ω∗ = Bκ(L) → R given by

w(x) = 1
nωn

b∫
dκ(x)

sκ(ρ)1−n

⎛
⎜⎝

Vκ(ρ)∫
0

G(s)ds

⎞
⎟⎠ dρ (3.11)

is a solution to
{

−Δκw(x) = G(Vκ(dκ(x))) in Bκ(b);
w = 0 on ∂Bκ(b).

(3.12)

In particular, by their definitions, it turns out that

v ≥ 0 in Bκ(a) and w ≥ 0 in Bκ(b).

In fact, much precise comparisons can be said by combining the above preparatory 
results:
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Theorem 3.1. Let v and w from (3.9) and (3.11), respectively. Then

u�
+ ≤ v in Bκ(a); (3.13)

u�
− ≤ w in Bκ(b), (3.14)

where a and b are from (3.2). In particular, one has

∫
Ω

u2dvg ≤
∫

Bκ(a)

v2dvκ +
∫

Bκ(b)

w2dvκ. (3.15)

In addition,
∫
Ω

(Δgu)2dvg =
∫

Bκ(a)

(Δκv)2dvκ +
∫

Bκ(b)

(Δκw)2dvκ. (3.16)

Proof. We first prove (3.13). Since (M, g) verifies the κ-Cartan-Hadamard conjecture, 
on account of (3.3) and (3.4), it follows that

Aκ(Λ�
t ) ≤ Ag(Λt) for a.e. t > 0, (3.17)

Aκ(Π�
t ) ≤ Ag(Πt) for a.e. t > 0. (3.18)

By relation (3.17) and Propositions 3.2 and 3.3, one has for a.e. t > 0 that

Aκ(Λ�
t )2 ≤ −α′(t)

α(t)∫
0

F (s)ds.

Due to (3.3), (3.5) and (2.1), it follows that for a.e. t > 0,

α′(t) = Aκ(Λ�
t )r′t = nωnsκ(rt)n−1r′t.

Combining the above relations, it yields

nωn ≤ −r′tsκ(rt)1−n

Vκ(rt)∫
0

F (s)ds.

After an integration, we obtain for every τ ∈ [0, ‖u+‖L∞(Ω)] that

nωnτ ≤ −
τ∫
r′tsκ(rt)1−n

Vκ(rt)∫
F (s)dsdt.
0 0
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By changing the variable rt = ρ, and taking into account that r0 = a, it follows that

τ ≤ 1
nωn

a∫
rτ

sκ(ρ)1−n

⎛
⎜⎝

Vκ(ρ)∫
0

F (s)ds

⎞
⎟⎠ dρ.

Let x ∈ Bκ(a) be arbitrarily fixed and associate to this element the unique τ ∈
[0, ‖u+‖L∞(Ω)] such that dκ(x) = rτ . By the definition of u�

+ it follows that u�
+(x) = τ , 

thus the latter inequality together with (3.9) implies that

u�
+(x) ≤ 1

nωn

a∫
dκ(x)

sκ(ρ)1−n

⎛
⎜⎝

Vκ(ρ)∫
0

F (s)ds

⎞
⎟⎠ dρ = v(x),

which is precisely the claimed relation (3.13). The proof of (3.14) is similar, where (3.18)
is used.

The estimate in (3.15) is immediate, since
∫
Ω

u2dvg =
∫

Ω+

u2
+dvg +

∫
Ω−

u2
−dvg =

∫
Bκ(a)

(u�
+)2dvκ +

∫
Bκ(b)

(u�
−)2dvκ

≤
∫

Bκ(a)

v2dvκ +
∫

Bκ(b)

w2dvκ,

where we apply (3.2) together with the estimates (3.13) and (3.14), respectively.
We now prove (3.16). On one hand, by problems (3.10) and (3.12), Proposition 2.1

and a change of variables imply that
∫

Bκ(a)

(Δκv)2dvκ +
∫

Bκ(b)

(Δκw)2dvκ =
∫

Bκ(a)

F (Vκ(dκ(x)))2dvκ +
∫

Bκ(b)

G(Vκ(dκ(x)))2dvκ

=
Vg(Ω+)∫

0

F (s)2ds +
Vg(Ω−)∫

0

G(s)2ds

=
Vg(Ω)∫
0

F (s)2ds.

On the other hand,

Vg(Ω)∫
F (s)2ds
0
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=
Vg(Ω)∫
0

[
(Δgu)#−(s)2 + (Δgu)#+(Vg(Ω) − s)2 − 2(Δgu)#−(s)(Δgu)#+(Vg(Ω) − s)

]
ds

=
Vg(Ω)∫
0

[
(Δgu)#−(s)2 + (Δgu)#+(s)2 − 2(Δgu)#−(s)(Δgu)#+(Vg(Ω) − s)

]
ds.

The latter term in the above integral vanishes. Indeed, fix first 0 ≤ s < Vg({x ∈ Ω :
Δgu(x) < 0}) and let t := Vg(Ω) − s > Vg({x ∈ Ω : Δgu(x) ≥ 0}) = Vκ(dκ(r0)) for some 
r0 > 0. If t = Vκ(dκ(x)) for some x ∈ Ω� = Bκ(L) then |x| > r0, i.e. x /∈ supp(Δgu)�+ =
cl(Bκ(dκ(r0))) thus

(Δgu)#+(Vg(Ω) − s) = (Δgu)#+(t) = (Δgu)#+(Vκ(dκ(x))) = (Δgu)�+(x) = 0.

In the case when Vg({x ∈ Ω : Δgu(x) ≤ 0}) < s ≤ Vg(Ω), a similar argument yields 
(Δgu)#−(s) = 0. Therefore, by Proposition 2.1 we have

Vg(Ω)∫
0

F (s)2ds =
∫
Ω�

[
(Δgu)#−(Vκ(dκ(x)))2 + (Δgu)#+(Vκ(dκ(x)))2

]
dvκ(x)

=
∫
Ω�

[
(Δgu)�−(x)2 + (Δgu)�+(x)2

]
dvκ(x)

=
∫
Ω

[
(Δgu)2−(x) + (Δgu)2+(x)

]
dvg(x)

=
∫
Ω

(Δgu)2(x)dvg(x),

which concludes the proof. �
Proposition 3.4. Let v and w from (3.9) and (3.11), respectively. Then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v′(a)an−1 = w′(b)bn−1

if κ = 0;
v′(tanh(κa2 )) sinh(κa2 )n−1 cosh(κa2 )n−3 = w′(tanh(κb2 )) sinh(κb2 )n−1 cosh(κb2 )n−3

if κ > 0.

Proof. By the boundary condition ∂u∂n = 0 on ∂Ω, the divergence theorem implies that

∫
Δgudvg = 0.
Ω
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Therefore, the latter relation and Proposition 2.1 give

0 = −
∫
Ω

Δgudvg =
∫
Ω

(Δgu)−dvg −
∫
Ω

(Δgu)+dvg =
∫
Ω�

(Δgu)�−dvκ −
∫
Ω�

(Δgu)�+dvκ

=
∫
Ω�

(Δgu)#−(Vκ(dκ(x)))dvκ(x) −
∫
Ω�

(Δgu)#+(Vκ(dκ(x)))dvκ(x)

=
Vg(Ω)∫
0

(Δgu)#−(s)ds−
Vg(Ω)∫
0

(Δgu)#+(s)ds

=
Vg(Ω)∫
0

(Δgu)#−(s)ds−
Vg(Ω)∫
0

(Δgu)#+(Vg(Ω) − s)ds

=
Vg(Ω)∫
0

F (s)ds.

Furthermore, by Proposition 2.1 and problems (3.9) and (3.11) we have

0 =
Vg(Ω)∫
0

F (s)ds =
Vg(Ω+)∫

0

F (s)ds +
Vg(Ω)∫

Vg(Ω+)

F (s)ds =
Vg(Ω+)∫

0

F (s)ds−
Vg(Ω−)∫

0

G(s)ds

=
∫

Bκ(a)

F (Vκ(dκ(x)))dvκ(x) −
∫

Bκ(b)

G(Vκ(dκ(x)))dvκ(x)

= −
∫

Bκ(a)

Δκv(x)dvκ(x) +
∫

Bκ(b)

Δκw(x)dvκ(x).

A simple computation shows that

∫
Bκ(a)

Δκv(x)dvκ(x) = nωn

{
v′(r)rn−1 if κ = 0,
v′(r)(1 − r2)2−nrn−1 if κ > 0,

where dk(r) = a.

Similar facts also hold for w; it remains to transform the above quantities into trigono-
metric terms. �
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Summing up, Theorem 3.1 and Proposition 3.4 imply that

Γg(Ω) = min
u∈W 2,2

0 (Ω)\{0}

∫
Ω

(Δgu)2dvg

∫
Ω

u2dvg
≥ min

v,w

∫
Bκ(a)

(Δκv)2dvκ +
∫

Bκ(b)

(Δκw)2dvκ

∫
Bκ(a)

v2dvκ +
∫

Bκ(b)

w2dvκ
, (3.19)

where

Vκ(a) + Vκ(b) = Vg(Ω) = Vκ(L), (3.20)

and the minimum in the right hand side of (3.19) is taken over of all pairs of radi-
ally symmetric functions with v ∈ W 1,2

0 (Bκ(a)) ∩W 2,2(Bκ(a)) and w ∈ W 1,2
0 (Bκ(b)) ∩

W 2,2(Bκ(b)), (v, w) �= (0, 0), verifying the boundary condition
⎧⎪⎨
⎪⎩

v′(a)an−1 = w′(b)bn−1 if κ = 0;
v′(tanh(κa2 )) sinh(κa2 )n−1 cosh(κa2 )n−3

= w′(tanh(κb2 )) sinh(κb2 )n−1 cosh(κb2 )n−3 if κ > 0.
(3.21)

We notice that the minimum in the right hand side of (3.19) is achieved for every pair 
of (a, b) verifying (3.20), which can be proved similarly as in Proposition 3.1; see also 
Ashbaugh and Benguria [1, Appendix 2] for the Euclidean case.

4. McKean-type spectral gap estimate: proof of (1.7)

In this section we deal with a McKean-type lower estimate of the two-geodesic-ball 
minimization value

Rκ
ν,a,b := min

v,w

∫
Bκ(a)

(Δκv)2dvκ +
∫

Bκ(b)

(Δκw)2dvκ

∫
Bκ(a)

v2dvκ +
∫

Bκ(b)

w2dvκ
, (4.1)

subject to the conditions (3.20) and (3.21), respectively, where v ∈ W 1,2
0 (Bκ(a)) ∩

W 2,2(Bκ(a)) and w ∈ W 1,2
0 (Bκ(b)) ∩W 2,2(Bκ(b)) are radially functions, (v, w) �= (0, 0).

Since (1.7) is trivial for κ = 0, we concern with the case κ > 0. Let a, b ≥ 0 verifying 
the constraint (3.20) and

α := sinh2
(κa

2

)
, β := sinh2

(
κb

2

)
.

In terms of α and β, relation (3.20) can be rewritten into
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2
κ sinh−1(

√
α)∫

0

sinh(κρ)n−1dρ +

2
κ sinh−1(

√
β)∫

0

sinh(κρ)n−1dρ =
L∫

0

sinh(κρ)n−1dρ. (4.2)

For simplicity of notation, let

λ4 := λ(ν, κ, α, β)4 = Rκ
ν,a,b > 0,

Λ± = Λ±(λ, κ, n) :=
√

(n− 1)2 ± 4λ
2

κ2 ∈ C, (4.3)

and consider the functions

G±(ν, λ, t) := F
(

1 − Λ±
2 ,

1 + Λ±
2 ; n2 ;−t

)
, t ≥ 0,

Kν(λ, t) :=
G′
−(ν, λ, t)

G−(ν, λ, t) − G′
+(ν, λ, t)

G+(ν, λ, t) , t ≥ 0, (4.4)

respectively, where G′
±(ν, λ, t) = d

dtG±(ν, λ, t).

Proposition 4.1. For every α, β ≥ 0 verifying (4.2), λ = λ(ν, κ, α, β) fulfills the equation

(1 + α)ν+1αν+1Kν(λ, α) + (1 + β)ν+1βν+1Kν(λ, β) = 0. (4.5)

Moreover,

λ = λ(ν, κ, α, β) > n− 1
2 κ. (4.6)

Proof. We prove relation (4.5) by splitting the proof into two parts.
Case 1 : αβ > 0. Let (v, w) be the minimizer in (4.1) for Rκ

ν,a,b = λ(ν, κ, α, β)4 = λ4; 
by the Euler-Lagrange equations and divergence theorem one obtains

0 =
∫

Bκ(a)

(Δ2
κv − λ4v)φdvκ +

∫
Bκ(b)

(Δ2
κw − λ4w)ψdvκ

+
∫

∂Bκ(a)

Δκvp
n−2
κ 〈∇φ,n〉dσ +

∫
∂Bκ(b)

Δκwp
n−2
κ 〈∇ψ, n〉dσ, (4.7)

where n is the outer unit normal vector to the given surface, dσ is the induced surface 
measure and φ ∈ C2(Bκ(a)) and ψ ∈ C2(Bκ(b)) are radially symmetric test functions 
verifying the conditions

φ
(
tanh

(κa)) = ψ

(
tanh

(
κb
))

= 0, (4.8)
2 2
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φ′
(
tanh

(κa
2

))
sinh

(κa
2

)n−1
cosh

(κa
2

)n−3

= ψ′
(

tanh
(
κb

2

))
sinh

(
κb

2

)n−1

cosh
(
κb

2

)n−3

. (4.9)

Now, choosing first ψ = 0 and φ ∈ C2
0 (Bκ(a)), then ψ ∈ C2

0 (Bκ(b)) and φ = 0 in (4.7), 
we obtain

Δ2
κv = λ4v in Bκ(a), (4.10)

and

Δ2
κw = λ4w in Bκ(b), (4.11)

respectively. Usual regularity arguments imply that v ∈ C∞(Bκ(a)) and w ∈ C∞(Bκ(b)). 
By the radial symmetry of the functions v, w, φ, ψ, it follows that∫

∂Bκ(a)

Δκvp
n−2
κ 〈∇φ,n〉dσ

= nωnΔκv
(
tanh

(κa
2

))
φ′
(
tanh

(κa
2

))
sinh

(κa
2

)n−1
cosh

(κa
2

)n−3
,

and ∫
∂Bκ(b)

Δκwp
n−2
κ 〈∇ψ, n〉dσ

= nωnΔκw

(
tanh

(
κb

2

))
φ′
(

tanh
(
κb

2

))
sinh

(
κb

2

)n−1

cosh
(
κb

2

)n−3

.

By using (4.7), (4.9)-(4.11) and the latter relations, it turns out that

Δκv
(
tanh

(κa
2

))
+ Δκw

(
tanh

(
κb

2

))
= 0. (4.12)

Since v is radially symmetric, one has that

Δκv(x) = κ2
[
(1 − r2)2

4 v′′(r) + 1 − r2

4r
(
(n− 3)r2 + n− 1

)
v′(r)

]
, r = |x|.

Therefore, the fourth order ordinary differential equation (4.10), having no singularity 
at the origin, has the solution

v(r) = (1 − r2)ν
[
AG+

(
ν, λ,

r2

1 − r2

)
+ BG−

(
ν, λ,

r2

1 − r2

)]
, r ∈ [0, tanh(κa/2)],

(4.13)
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for some A, B ∈ R. In a similar way, for some C, D ∈ R, the non-singular solution of 
(4.11) is

w(r) = (1 − r2)ν
[
CG+

(
ν, λ,

r2

1 − r2

)
+ DG−

(
ν, λ,

r2

1 − r2

)]
, r ∈ [0, tanh(κb/2)].

(4.14)
By construction, both functions v and w are nonnegative, and after a suitable rescaling 
we may assume that v(0) = w(0) = 1. Since v and w vanish on ∂Bκ(a) and ∂Bκ(b), 
respectively, one has that

AG+(ν, λ, α) + BG−(ν, λ, α) = 0, (4.15)

and

CG+(ν, λ, β) + DG−(ν, λ, β) = 0. (4.16)

The boundary condition (3.21) combined with (4.15) and (4.16) takes the form

αν+1(1+α)[AG′
+(ν, λ, α)+BG′

−(ν, λ, α)]−βν+1(1+β)[CG′
+(ν, λ, β)+DG′

−(ν, λ, β)] = 0.
(4.17)

By exploring the recurrence relation for the hypergeometric function, an elementary 
computation transforms relation (4.12) into

(1 + α)−ν [AG+(ν, λ, α) −BG−(ν, λ, α)] + (1 + β)−ν [CG+(ν, λ, β) −DG−(ν, λ, β)] = 0.
(4.18)

In order to have nontrivial functions v and w, the determinant of the 4 ×4 matrix arising 
from the linear homogeneous equations given by (4.15)-(4.18) should be zero, which is 
equivalent to

(1 + α)ν+1αν+1
(G′

−(ν, λ, α)
G−(ν, λ, α) − G′

+(ν, λ, α)
G+(ν, λ, α)

)

+ (1 + β)ν+1βν+1
(G′

−(ν, λ, β)
G−(ν, λ, β) − G′

+(ν, λ, β)
G+(ν, λ, β)

)
= 0,

giving precisely relation (4.5).
Case 2 : αβ = 0. Without loss of generality, we may assume α = 0; then L̃ := β =

sinh(κL2 )2 > 0. In this case, one has that v ≡ 0, thus A = B = 0, and a simpler 
discussion than in Case 1 (which implies (4.16) and the second term in (4.17)) yields 
that Kν(λ, L̃) = 0. �
Proof of (4.6). Let us assume the contrary of (4.6), i.e. λ = λ(ν, κ, α, β) ≤ n−1

2 κ. On 

the one hand, applying Proposition 2.2/(ii) with K := λ4

κ4 ≤ (n−1)4
16 , one has that 

G+(ν, λ, α) ≥ G−(ν, λ, α) > 0 and G+(ν, λ, β) ≥ G−(ν, λ, β) > 0, respectively.
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Case 1 : αβ > 0. Since v(0) = w(0) = 1, one has by (4.13) and (4.14) that A + B =
C + D = 1. By (4.15), (4.16) and G+(ν, λ, α) ≥ G−(ν, λ, α) > 0 and G+(ν, λ, β) ≥
G−(ν, λ, β) > 0, it turns out that A < 0 < B and C < 0 < D. On the other hand, 
relation (4.18) together with (4.15) and (4.16) gives that A(1 +α)−νG+(ν, λ, α) +C(1 +
β)−νG+(ν, λ, β) = 0, thus we necessarily have AC < 0, a contradiction, which concludes 
the proof of (4.6).

Case 2 : αβ = 0. Since G± are analytical functions, by continuity reason and relation 
(4.5) we have at once (4.6) by the previous case. �
Proof of (1.7). Due to relations (3.19) and (4.6), for every α, β ≥ 0 verifying (4.2), we 

have Γg(Ω) ≥ Rκ
ν,a,b = λ(ν, κ, α, β)4 ≥ (n− 1)4

16 κ4, which is precisely relation (1.7). �
Remark 4.1. The proof of (1.8), i.e. the optimality of (1.7) in the case n ∈ {2, 3}, requires 
some specific properties of the hypergeometric function that are discussed in the next 
section; therefore, we postpone its proof to §5.3.

5. Comparison principles for fundamental tones: proof of Theorem 1.2 and (1.8)

In the first part of this section we establish a two-sided estimate for the first pos-
itive solution of the equation (4.5), valid on generic n-dimensional Cartan-Hadamard 
manifolds (verifying the κ-Cartan-Hadamard conjecture). In the second part we prove 
the sharp comparison principle for fundamental tones in 2- and 3-dimensions (proof of 
Theorem 1.2). In the third part we give the proof of (1.8) while in the last subsection 
we discuss the difficulties arising in high-dimensions. As before, let ν = n

2 − 1.

5.1. Generic scheme

The comparison Γg(Ω) ≥ Γκ(Ω�) in any dimension directly follows by

Rκ
ν,a,b ≥ Rκ

ν,0,L, (5.1)

for every a, b ≥ 0 verifying (3.20). Indeed, once we have (5.1), by (3.19) and (4.1) it 
follows that

Γg(Ω) ≥ Rκ
ν,a,b ≥ Rκ

ν,0,L = Γκ(Bκ(L)) = Γκ(Ω�). (5.2)

When κ = 0, inequality (5.1) is verified by Ashbaugh and Benguria [1] for n ∈ {2, 3}; 
moreover, Γ0(Ω�) = h

4
ν

L4 where Vg(Ω) = ωnL
n and hν is the first positive critical point of 

Jν

Iν
, i.e. the first positive zero of the cross product JνI ′ν − IνJ

′
ν = JνIν+1 + IνJν+1. For 

n ≥ 4, inequality (5.1) fails for certain choices of a and b.
Let κ > 0 be fixed and let λν(α, β) = λ(ν, κ, α, β) be the first positive zero of

λ 
→ (1 + α)ν+1αν+1Kν(λ, α) + (1 + β)ν+1βν+1Kν(λ, β) =: Fν(λ, α, β),
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Fig. 1. The first positive zero λν(α, β) of Fν(·, α, β) is between the poles gν,1(β) and gν,1(α) of Fν(·, α, β); 
in particular, when α and β approach to L̃0 = sinh(κL0

2 )2 (where 2Vκ(L0) = Vg(Ω)) it follows the limiting 
relation λν(L̃0, L̃0) = gν,1(L̃0).

see Proposition 4.1, where α, β ≥ 0 verify (4.2), and L̃ = sinh(κL2 )2 > 0. In order to 
prove (5.1), it suffices to show that

λν(α, β) ≥ λν(0, L̃). (5.3)

Due to (4.6) and Proposition 2.2/(iii), for every λ > n−1
2 κ the function t 
→ G−(ν, λ, t)

has infinitely many zeros; let gν,k(t) be the kth zero of the functions G−(ν, ·, t) and 
respectively. Thus, t 
→ Kν(λ, t) has infinitely many simple poles.

Let L0 > 0 be fixed such that 2Vκ(L0) = Vg(Ω) = Vκ(L), corresponding to the case 
a = b = L0 in (3.20), and let L̃0 = sinh(κL0

2 )2 > 0. Postponing the fact that λ 
→ Kν(λ, t)
is decreasing on (0, ∞) between any two consecutive zeros of G−(ν, ·, t) (see Step 1 below 
for ν ∈ {0, 1/2}), and limλ→0 Kν(λ, t) = 0 for every t > 0, the same properties hold 
for Fν(·, α, β) for any choice of α, β ≥ 0 verifying (4.2). Accordingly, the first positive 
zero λν(α, β) of Fν(·, α, β) will be situated between the poles of Fν(·, α, β); namely, if 
we assume without loss of generality that α ≤ β, then

gν,1(β) ≤ λν(α, β) ≤ min{gν,1(α), gν,2(β)}, (5.4)

with the convention gν,1(0) = +∞. In the limiting case when a and b approach L0 (thus, 
α and β approach L̃0), the latter relation implies that

λν(L̃0, L̃0) = gν,1(L̃0),

see Fig. 1. Therefore, a necessary condition for the validity of (5.3) is to have

gν,1(L̃0) ≥ λν(0, L̃). (5.5)
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Remark 5.1. Inequality (5.5) fails for every choice of L > 0 and κ ≥ 0 whenever n ≥ 4
(thus ν ∈ {1, 3/2, 2, ...}). However, (5.5) turns to be sufficient for the validity of (5.3)
when

• either κ = 0 and n ∈ {2, 3}, corresponding to Ashbaugh and Benguria [1];
• or κ > 0, n ∈ {2, 3} and L > 0 is sufficiently small, see §5.2.

5.2. The 2- and 3-dimensional cases: proof of Theorem 1.2

In the case κ = 0, relation (5.5) reduces to 2 1
n jν,1 ≥ hν , since gν,1(L̃0) = L̃−1

0 jν,1, 
λν(0, L̃0) = L̃−1

0 hν , and L0 = L̃0 = 2− 1
nL = 2− 1

n L̃. Clearly, inequality 2 1
n jν,1 ≥ hν holds 

only when n ∈ {2, 3}, and (1.10) immediately follows by (3.19), (4.1) and the proof of 
Ashbaugh and Benguria [1], as we described in §5.1. In addition, (1.11) trivially holds 
since Γ0(B0(L)) = h

4
ν

L4 for every L > 0.
In the sequel, we assume that κ > 0 and n ∈ {2, 3} (thus ν ∈ {0, 1/2}); the proof is 

divided into three steps.
Step 1: Monotonicity of Kν(·, t) for ν ∈ {0, 1/2}. We start with the case n = 3

(ν = 1/2); the key observation is that for every Λ, t > 0, one has

F
(

1 − iΛ
2 ,

1 + iΛ
2 ; 3

2 ;−t

)
= sin(Λ ln(

√
t +

√
1 + t))

Λ
√
t

and

F
(

1 − Λ
2 ,

1 + Λ
2 ; 3

2 ;−t

)
= sinh(Λ ln(

√
t +

√
1 + t))

Λ
√
t

,

both reduction formulas following by relation (15.4.15) of Olver et al. [33]. Taking ad-
vantage of the latter reduction forms, one has that

G−(1/2, λ, t) =

⎧⎪⎪⎨
⎪⎪⎩

sin(Λ̃− ln(
√
t+

√
1+t))

Λ̃−
√
t

if λ > κ;
ln(

√
t+

√
1+t)√

t
if λ = κ;

sinh(Λ− ln(
√
t+

√
1+t))

Λ−
√
t

if λ < κ,

and

G+(1/2, λ, t) = sinh(Λ̃+ ln(
√
t +

√
1 + t))

Λ̃+
√
t

,

where

Λ̃− := iΛ− = 2
√

λ2
− 1 and Λ̃+ := Λ+ = 2

√
λ2

+ 1. (5.6)

κ2 κ2
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Thus, by (4.4) one has for every t > 0 that

K1/2(λ, t) = 1
2
√

t(1 + t)

·

⎧⎪⎨
⎪⎩

Λ̃− cot(Λ̃− ln(
√
t +

√
1 + t)) − Λ̃+ coth(Λ̃+ ln(

√
t +

√
1 + t)) if λ > κ;

1
ln(

√
t+

√
1+t) − 2

√
2 coth(2

√
2 ln(

√
t +

√
1 + t)) if λ = κ;

Λ− coth(Λ− ln(
√
t +

√
1 + t)) − Λ̃+ coth(Λ̃+ ln(

√
t +

√
1 + t)) if λ < κ.

(5.7)

Elementary computation guarantees that λ 
→ K1/2(λ, t) is decreasing on (0, ∞) between 
any two consecutive zeros of G−(1/2, ·, t) for every t > 0 fixed; the zeros of G−(1/2, ·, t)
occur only beyond the value κ and can be explicitly given by

g1/2,k(t) = κ

√
1 +

(
kπ

2 ln(
√
t +

√
1 + t)

)2

, k ∈ N. (5.8)

In addition, since Λ−(0) = Λ+(0) = 2, we also have limλ→0 K1/2(λ, t) = 0 for every 
t > 0. In particular, relation (5.4) is justified for ν = 1/2.

When n = 2, the differentiation formula (2.5) and the connection formula (15.10.11) 
of Olver et al. [33] together with (4.4) give

K0(λ, t) = − λ2

κ2(1 + t)

⎛
⎝F

(
1+Λ+

2 , 3+Λ+
2 ; 2; t

1+t

)
F
(

1+Λ+
2 , 1+Λ+

2 ; 1; t
1+t

) +
F
(

1+Λ−
2 , 3+Λ−

2 ; 2; t
1+t

)
F
(

1+Λ−
2 , 1+Λ−

2 ; 1; t
1+t

)
⎞
⎠ , λ, t > 0,

(5.9)
where Λ± =

√
1 ± 4λ2

κ2 is from (4.3). It is clear that limλ→0 K0(λ, t) = 0 for every t > 0. 
By using the definition (2.3) of the hypergeometric functions and the continued fraction 
representation, see Cuyt et al. [17, Chapter 15](15.7.5) and Olver et al. [33], a long 
computation shows that for every fixed t > 0 the function λ 
→ K0(λ, t) is decreasing on 
(0, ∞) between any two consecutive zeros of G−(0, ·, t); see also Karp [24].

Step 2: Admissible range for L > 0 in (5.5). We are going to prove that (5.5) holds 
for small L > 0. We first give a crucial asymptotic estimate for λν(0, L̃) when L � 1, 
i.e. assume that

λν(0, L̃) ∼ κ

√
(n− 1)2

4 + C2

L2 as L → 0, (5.10)

for some C > 0, where L̃ = sinh(κL2 )2; our computations are valid for every ν ∈
{0, 1/2, 1, ...}. We observe that for every k ∈ N one has

lim
(

1 − i
C
) (

1 + i
C
)

sinh2k
(
κL
)

=
(
Cκ
)2k

.

L→0 2 L k 2 L k 2 2
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Thus, by (5.10) and uniform-convergence reasons, the latter limit implies that

lim
L→0

G−(ν, λν(0, L̃), L̃)

= lim
L→0

F

⎛
⎝1 − i

√
4λ2

ν(0,L̃)
κ2 − (n− 1)2

2 ,
1 + i

√
4λ2

ν(0,L̃)
κ2 − (n− 1)2

2 ; n2 ;− sinh2
(
κL

2

)⎞⎠

=
∑
k≥0

(−1)k

k!
(
n
2
)
k

(
Cκ

2

)2k

=
Γ
(
n
2
)

(
Cκ
2
)ν Jν(Cκ).

In a similar way, it turns out that

lim
L→0

G+(ν, λν(0, L̃), L̃) =
∑
k≥0

1
k!
(
n
2
)
k

(
Cκ

2

)2k

=
Γ
(
n
2
)

(
Cκ
2
)ν Iν(Cκ).

Moreover, the differentiation formula (2.5) provides

lim
L→0

L2G′
−(ν, λν(0, L̃), L̃) = C2 Γ

(
n
2 + 1

)
(
Cκ
2
)ν+1 Jν+1(Cκ)

and

lim
L→0

L2G′
+(ν, λν(0, L̃), L̃) = −C2 Γ

(
n
2 + 1

)
(
Cκ
2
)ν+1 Iν+1(Cκ).

Since by definition Kν(λν(0, L̃), L̃) = 0, the above four limits imply that

Jν+1(Cκ)
Jν(Cκ) + Iν+1(Cκ)

Iν(Cκ) = 0.

Accordingly, we immediately have that Cκ = hν , obtaining

λν(0, L̃) ∼
√

(n− 1)2
4 κ2 + h2

ν

L2 as L → 0, (5.11)

which is precisely (1.11).
We now provide some estimates for gν,1(L̃0) for ν ∈ {0, 1/2} whenever L0 → 0. 

Incidentally, it turns out that for n = 2 (ν = 0), the function t 
→ G−(0, λ, t) :=
F 
(

1−Λ−
2 , 1+Λ−

2 ; 1;−t
)

appears as the extremal in the second-order Rayleigh problem

(for membranes) on the geodesic ball Bκ(L0) with the initial condition F
(1−Λ− , 1+Λ− ; 1;
2 2
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−L̃0
)

= 0 where L̃0 = sinh(κL0
2 )2, see e.g. Kristály [29], while the first eigenvalue 

γg(Bκ(L0)) corresponding to (1.6) on Bκ(L0) is precisely g0,1(L̃0). Therefore, by Chavel 
[8, p.318] one has that

g0,1(L̃0) = γg(Bκ(L0)) ∼

√
1
3κ

2 +
(
j0,1
L0

)2

as L0 → 0. (5.12)

For n = 3 (thus ν = 1/2), since j1/2,1 = π, we also have by (5.8) that

g1/2,1(L̃0) =

√
κ2 +

(
j1/2,1

κL0

)2

for all L0 > 0. (5.13)

Recalling 2Vκ(L0) = Vκ(L), it follows that L0 ∼ 2− 1
nL whenever L � 1. Now, by 

combining these facts together with (5.12) and (5.13), it follows that

lim inf
L→0

gν,1(L̃0)
λν(0, L̃)

=

⎧⎪⎪⎨
⎪⎪⎩

2
1
2 j0,1
h0

≈ 2
1
2 ·2.4048
3.19622 ≈ 1.064 > 1 if n = 2,

2
1
3 j1/2,1
h1/2

≈ 2
1
3 π

3.9266 ≈ 1.008 > 1 if n = 3,

(5.14)

thus verifying (5.5) for sufficiently small L > 0.
Numerical tests show that (5.5) fails for large values of L > 0 whenever n ∈ {2, 3}; 

in the sequel we provide the precise proof for n = 3. By 2Vκ(L0) = Vκ(L) we observe 
that L0 ∼ L − ln 2

2κ whenever L � 1; in particular, (5.13) shows that g1/2,1(L̃0) ∈
(g1/2,1(L̃), g1/2,2(L̃)). Making use of (5.7) and (5.13), the latter estimate implies that

lim inf
L→∞

K1/2(g1/2,1(L̃0), L̃) = 2
(

1
ln(2) −

√
2
)

≈ 0.0569 > 0. (5.15)

If (5.5) would be true for L � 1, relation (5.15), the monotonicity of K1/2(·, L̃)
in the interval (g1/2,1(L̃), g1/2,2(L̃)), see Step 1, and the fact that λ1/2(0, L̃) ∈
(g1/2,1(L̃), g1/2,2(L̃)), see (5.4), imply that

0 < K1/2(g1/2,1(L̃0), L̃) ≤ K1/2(λ1/2(0, L̃), L̃) = 0,

a contradiction.
We now provide the approximate threshold values of L when such turnouts occur for 

n = 2 and n = 3, respectively. Numerical approximations show that (5.5) holds for n = 2
whenever 0 < L < 2.1492

κ =: l2 and for n = 3 whenever 0 < L < 0.719
κ =: l3, see Fig. 2. 

Due to its empirical nature, the latter values are not precise, but inequality (5.5) fails 
for any larger values than L = 2.1493 whenever n = 2 and L = 0.72 whenever n = 3, 
κ κ
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Fig. 2. For n ∈ {2, 3} the admissible range is 0 < L < ln with l2 = 2.1492
κ and l3 = 0.719

κ , respectively; for 
large values of L inequality (5.5) fails.

respectively. Accordingly, since Vg(Ω) = Vκ(L), the volume of Ω ⊂ M cannot exceed

Vκ(ln) = nωn

ln∫
0

sκ(ρ)n−1dρ ≈

⎧⎪⎨
⎪⎩

2π 3.34728
κ2 ≈ 21.031

κ2 if n = 2,

4π 0.137
κ3 ≈ 1.721

κ3 if n = 3,
(5.16)

which appear in the statement of the theorem.
Step 3: Concluding the proof of (1.10). Without mentioning explicitly, we assume in 

the sequel that α, β ≥ 0 verify (4.2) and α ≤ β. Furthermore, without loss of generality, 
we may consider the case when strict inequality occurs in (5.5). Since λν(L̃0, L̃0) =
gν,1(L̃0) > λν(0, L̃), by continuity reasons in (4.5), it turns out that λν(α, β) > λν(0, L̃)
for α > 0 sufficiently close to L̃0. More precisely, the full range of α with this property is 
[α0, L̃0] where α0, β0 verify (4.2) and β0 is the first positive value such that λν(0, L̃) =
gν,1(β0), i.e. the first positive zero of G−(ν, λν(0, L̃), ·), being a pole of Fν(λν(0, L̃), ·, ·), 
see Fig. 3.

We claim that for every α ∈ (0, α0), one has

Fν(λν(0, L̃), α, β) > 0. (5.17)

We immediately observe that Fν(λν(0, L̃), 0, L̃) = 0 and lim
α→α−

0

Fν(λν(0, L̃), α, β) = +∞. 

In order to check (5.17) one can prove that α 
→ Fν(λν(0, L̃), α, β(α)) is increasing on 
(0, α0), where β = β(α) is given by (4.2). We notice that β′(α) = −1 (since α + β = L̃) 
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Fig. 3. Continuity reason (when α ∈ [α0, L̃0]) and monotonicity argument for Fν (when α ∈ (0, α0)) imply 
that λν(α, β) > λν(0, L̃).

when n = 2 and 
√
α(1 + α) + β′(α)

√
β(1 + β) = 0 when n = 3. Therefore, since Fν

contains ratios of hypergeometric functions, a similar monotonicity argument as in Karp 
and Sitnik [25] implies that

d
dαFν(λν(0, L̃), α, β(α)) > 0, α ∈ (0, α0).

Now, if there exists α ∈ (0, α0) such that λν(α, β) < λν(0, L̃), the fact that Fν(·, α, β) is 
decreasing (cf. Step 1) and relation (5.17) imply that

0 < Fν(λν(0, L̃), α, β) ≤ Fν(λν(α, β), α, β) = 0,

a contradiction, which concludes the proof of (5.3), so (1.10).
If equality occurs in (1.10) then we necessarily have equality in (3.13) (relation (3.14)

being canceled, or vice-versa). In particular, for a.e. t > 0 we also have equality in 
(3.17), which implies equality in the isoperimetric inequality. According to the equality 
case in the κ-Cartan-Hadamard conjecture, the sets {x ∈ Ω : u+(x) > t} and {x ∈ Nn

κ :
u�

+(x) > t} are isometric for a.e. t > 0; in particular, Ω ⊂ M is isometric to the ball 
Ω� = Bκ(L) ⊂ Hn

−κ2 . The converse is trivial.
We conclude this subsection by showing the accuracy of the asymptotic estimate (1.11)

(see also relation (5.11) in Step 2) of the fundamental tone Γκ(Bκ(L)) for L � 1 in 2-
and 3-dimensions; by scaling reasons, we present the values Γκ(Bκ(L))1/4 (Table 1).
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Table 1
Comparison of the algebraic and approximate values of the fundamental tone Γκ(Bκ(L)) for some small
values of L > 0; the algebraic value of Γκ(Bκ(L)) is λ4 where λ > 0 is the first positive root of 
Kν

(
λ, sinh(κL

2 )2
)

= 0, while the approximate value of Γκ(Bκ(L)) is given by (1.11). For simplicity, κ = 1.

L n = 2 (ν = 0) n = 3 (ν = 1/2)
Algebraic value of 
Γκ(Bκ(L))1/4

Approximate value of 
Γκ(Bκ(L))1/4

Algebraic value of 
Γκ(Bκ(L))1/4

Approximate value of 
Γκ(Bκ(L))1/4

0.7 4.5908 4.5728 5.6761 5.6978
0.1 31.9657 31.9631 39.2755 39.2787
0.05 63.9262 63.9248 78.5368 78.5383
0.003 1065.4069 1065.4066 1308.8677 1308.8670

5.3. Proof of (1.8) and (1.9)

We distinguish two cases.
Case 1 : n = 3. Let L > 0. Applying (5.4) for α = 0 and β = L̃ = sinh(κL2 )2 and using 

(5.8), it turns out that

κ

√
1 +

( π

κL

)2
≤ λ1/2(0, L̃) ≤ κ

√
1 +

(
2π
κL

)2

. (5.18)

Therefore,

lim
L→∞

Γκ(Bκ(L)) = lim
L→∞

λ4
1/2(0, L̃) = κ4,

which proves (1.8) for n = 3.
Case 2 : n = 2. Although we have no a similar relation as (5.8), we can establish its 

approximate version for n = 2. We recall (see Step 2 from §5.2) that the zeros of

F

⎛
⎝1 −

√
1 − 4λ2

κ2

2 ,
1 +

√
1 − 4λ2

κ2

2 ; 1;−L̃

⎞
⎠ = 0

are the values g0,k(L̃), k ∈ N, and the first eigenvalue γg(Bκ(L)) corresponding to (1.6)
on Bκ(L) is g2

0,1(L̃), where L̃ = sinh(κL2 )2. Since g0,k(L̃) > κ
2 , see (1.6), let γk :=√

g0,k(L̃)2
κ2 − 1

4 ∈ R and recall that

F
(

1
2 − iγk,

1
2 + iγk; 1;− sinh

(
κL

2

)2
)

= P− 1
2+iγk

(cosh(κL)),

where P− 1
2+iγk

stands for the spherical Legendre function, see Robin [37], Zhurina and 
Karmazina [41]. By an integral representation of the spherical Legendre function, it turns 
out that for large L > 0,

κLγk ∼ kπ − arctan(vk/uk), k ∈ N,
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where

vk =
∞∫
0

sin(γky)√
ey − 1

dy and uk =
∞∫
0

cos(γky)√
ey − 1

dy,

see Zhurina and Karmazina [41, p. 24-25]. In particular, γk ∼ kπ
κL as L � 1 for every 

k ∈ N. Combining these facts, we have for every k ∈ N that

g0,k(L̃) ∼ κ

√
1
4 +

(
kπ

κL

)2

for L � 1. (5.19)

By using again (5.4) for α = 0 and β = L̃ = sinh(κL2 )2, relation (5.19) provides

κ

√
1
4 +

( π

κL

)2
≤ λ0(0, L̃) ≤ κ

√
1
4 +

(
2π
κL

)2

for L � 1.

Therefore,

lim
L→∞

Γκ(Bκ(L)) = lim
L→∞

λ4
0(0, L̃) = κ4

16 ,

which concludes the proof of (1.8) for n = 2.
We now prove (1.9). In particular, by (1.8) we have for n ∈ {2, 3} that

lim
L→∞

Γ1
κ(Bκ(L)) = lim

L→∞
Γκ(Bκ(L)) = (n− 1)4

16 κ4.

Since {Γl
κ(Ω)}l is a nondecreasing sequence which is bounded from below by (n−1)4

16 κ4

(see Proposition 4.1), the estimate of Cheng and Yang [12], i.e.

Γl+1
κ (Bκ(L)) − (n− 1)4

16 κ4 ≤ 25l12
(

Γ1
κ(Bκ(L)) − (n− 1)4

16 κ4
)

for all l ∈ N,

provides the required statement (1.9). �
Remark 5.2. (a) The precise values of g1/2,k(L̃) and the approximative values of g0,k(L̃)
are crucial in the proof of (1.8), respectively. The involved form of Kν(λ, t) for ν ∈
{1, 3/2, ...} (i.e. n ≥ 4) implies several technical difficulties to perform similar asymptotic 
estimates as above; however, we still believe such estimates are valid in high-dimensions.
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Table 2
Comparison of the algebraic and approximate values of the fundamental tone 
Γκ(Bκ(L)) for some large values of L > 0 in 3-dimension; the algebraic value of 
Γκ(Bκ(L)) is λ4 where λ > 0 is the first positive root of K1/2

(
λ, sinh(κL

2 )2
)

= 0, 
while the approximate value of Γκ(Bκ(L)) is given by (5.22). For simplicity, κ = 1.

L Algebraic value of Γκ(Bκ(L))1/4 Approximate value of Γκ(Bκ(L))1/4

50 1+3.1908·10−3 1+3.0795·10−3

100 1+5.0041·10−4 1+4.9335·10−4

5000 1+1.9745·10−7 1+1.9739·10−7

100000 1+4.71·10−10 1+4.9348·10−10

(b) When n = 3, one can give an alternative proof of (1.8). To do this, note that

Γκ(Bκ(L)) ≤ min
v

∫
Bκ(L)

(Δκv)2dvκ

∫
Bκ(L)

v2dvκ
=: cκ(L), (5.20)

where v ∈ W 2,2
0 (Bκ(L)) \ {0} is taken over of all radially symmetric functions. A varia-

tional argument similar to the one developed in §4 shows that cκ(L) = λ4 where λ > 0
is the first positive root of the transcendental equation

Λ̃− cot
(

Λ̃−
κL

2

)
− Λ̃+ coth

(
Λ̃+

κL

2

)
= 0, (5.21)

see (5.7), where Λ̃− and Λ̃+ come from (5.6). Analogously to (5.10), assume that

cκ(L) ∼ κ4
(

1 + D2

L2

)2

as L → ∞, (5.22)

for some D > 0. Inserting (5.22) into (5.21) and letting L → ∞, a simple computation 
yields that tan(κD) = 0, i.e. κD = π. We remark that (5.22) with D = π

κ is in a perfect 
concordance with (5.18); Table 2 shows its accuracy (for κ = 1).

5.4. Fundamental tones in high-dimensions: nonoptimal estimates

Our argument cannot provide sharp comparison principles for fundamental tones since 
inequality (5.5) fails for any choice of κ ≥ 0 and L > 0 in the n-dimensional case when-
ever n ≥ 4; we notice that similar phenomenon occurs also in the Euclidean setting, see 
Ashbaugh and Benguria [1]. However, in the case κ = 0 we can provide some weak com-
parison principles. To this end, if (M, g) is an n-dimensional (n ≥ 4) Cartan-Hadamard 
manifold and Ω ⊂ M a bounded domain with smooth boundary, a closer inspection of 
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the proof – based on the validity of the 0-Cartan-Hadamard conjecture proved by Ghomi 
and Spruck [20] – gives that

Γg(Ω) ≥ R0
ν,a,b ≥ DnΓ0(Ω�), (5.23)

where Dn = 2 4
n

(
jν,1
hν

)4
is the constant of Ashbaugh and Laugesen [2, Theorem 4]. 

Although lim
n→∞

Dn = 1, the estimate (5.23) is not sharp since Dn < 1 for every n ≥ 4.

6. Application: proof of Theorem 1.3

Proof of (i). Assume that μ = 0 and (P) has a nonzero solution u ∈ W 2,2
0 (Bκ(L)) \ {0}, 

i.e.

Δ2
κu + γu = up−1 in Bκ(L). (6.1)

Making use of the equation (4.10), it turns out that the function v(x) = v(|x|) given by

v(r) = AG+

(
0, λ, r2

1 − r2

)
+ BG−

(
0, λ, r2

1 − r2

)
, r ∈ [0, tanh(κL/2)],

see (4.13), is a classical solution to

Δ2
κv = Γκ(Bk(L))v in Bκ(L), (6.2)

while a suitable choice of the parameters A and B guarantees that v ∈ W 2,2
0 (Bκ(L)) and 

v > 0 in Bκ(L), respectively. Multiplication of the equations (6.1) and (6.2) by v > 0
and u ≥ 0, respectively, and integrations by parts give that

∫
Bκ(L)

ΔκuΔκvdvκ + γ

∫
Bκ(L)

uvdvκ =
∫

Bκ(L)

up−1vdvκ,

and ∫
Bκ(L)

ΔκvΔκudvκ = Γκ(Bk(L))
∫

Bκ(L)

vudvκ.

Therefore, one has

(γ + Γκ(Bk(L)))
∫

Bκ(L)

vudvκ =
∫

Bκ(L)

up−1vdvκ > 0,

which immediately implies that γ > −Γκ(Bk(L)). �
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Proof of (ii). Let us assume that μ > 0 and γ > −Γκ(Bk(L)), and define the positive 
numbers

cμ,γ = min
(
μ,

min(γ, 0) + Γκ(Bk(L))
1 + Γκ(Bk(L))

)
and Cμ,γ = max{1, μ, |γ|}.

If Tμ,γ : W 2,2
0 (Bκ(L)) → R is defined by

Tμ,γ(u) =
∫

Bκ(L)

(
(Δκu)2 + μ|∇ku|2 + γu2)dvκ,

then we have for every u ∈ W 2,2
0 (Bκ(L)) that

cμ,γ

∫
Bκ(L)

(
(Δκu)2 + |∇ku|2 + u2)dvκ

≤ Tμ,γ(u) ≤ Cμ,γ

∫
Bκ(L)

(
(Δκu)2 + |∇ku|2 + u2)dvκ,

where the key ingredients are relations (5.16) and (1.10), respectively. Therefore, u 
→
T

1
2

μ,γ(u) defines a norm on W 2,2
0 (Bκ(L)), equivalent to the usual one, see the proof of 

Proposition 3.1.
Let h, H : R → [0, ∞) be defined by h(t) = tp−1

+ and H(t) = tp+
p , where t+ = max(t, 0)

and associate with problem (P) its energy functional Eμ,γ : W 2,2
0 (Bκ(L)) → R defined 

by

Eμ,γ(u) = 1
2Tμ,γ(u) −

∫
Bκ(L)

H(u)dvκ.

One can prove in a standard way that Eμ,γ ∈ C1(W 2,2
0 (Bκ(L)); R) and its differential is

E ′
μ,γ(u)(w) = 1

2T
′
μ,γ(u)(w) −

∫
Bκ(L)

h(u)wdvκ for all u,w ∈ W 2,2
0 (Bκ(L)).

We prove that Eμ,γ satisfies the Palais-Smale condition on W 2,2
0 (Bκ(L)). To this end, 

let {ul}l ⊂ W 2,2
0 (Bκ(L)) be a sequence verifying E ′

μ,γ(ul) → 0 as l → ∞ and |Eμ,γ(ul)| ≤
C (l ∈ N) for some C > 0. The latter assumptions and relation

pEμ,γ(ul) − E ′
μ,γ(ul)(ul) = pTμ,γ(ul) −

1T ′
μ,γ(ul)(ul) ≡

(p − 1
)
Tμ,γ(ul), l ∈ N,
2 2 2
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immediately implies that {ul}l is bounded in W 2,2
0 (Bκ(L)); thus we may extract a sub-

sequence of {ul}l (denoted in the same way) which weakly converges to an element 
u ∈ W 2,2

0 (Bκ(L)). We notice that

Tμ,γ(ul−u) = E ′
μ,γ(ul)(ul−u)−E ′

μ,γ(u)(ul−u)+
∫

Bκ(L)

(h(ul)−h(u))(ul−u)dvκ, l ∈ N.

Using the fact that E ′
μ,γ(ul) → 0 as l → ∞ and {ul}l is bounded in W 2,2

0 (Bκ(L)), one has 
that E ′

μ,γ(ul)(ul−u) → 0 as l → ∞. Due to the fact that {ul}l weakly converges u, it turns 
out that E ′

μ,γ(u)(ul − u) → 0 as l → ∞. Moreover, since W 2,2
0 (Bκ(L)) ⊂ W 1,2

0 (Bκ(L)) ⊂
Lp(Bκ(L)), where the latter inclusion is compact (Bκ(L) ⊂ H2

−κ2 and p ∈ (2, 2∗) =
(2, ∞)), it follows that {ul}l strongly converges to u in Lp(Bκ(L)); therefore, Hölder’s 
inequality implies that 

∫
Bκ(L)

(h(ul) − h(u))(ul − u)dvκ → 0 as l → ∞. Accordingly,

Tμ,γ(ul − u) → 0 as l → ∞,

i.e. {ul}l strongly converges to u in W 2,2
0 (Bκ(L)).

We now prove that Eμ,γ satisfies the mountain pass geometry. First, since p > 2, it 
follows that

inf
Tμ,γ(u)=ρ

Eμ,γ(u) > 0 = Eμ,γ(0)

for sufficiently small ρ > 0. Furthermore, for sufficiently large t > 0 and for the function 
v ∈ W 2,2

0 (Bκ(L)) from (6.2) we have that

Eμ,γ(tv) = t2

2 Tμ,γ(v) − tp
∫

Bκ(L)

H(v)dvκ < 0.

The mountain pass theorem (see e.g. Rabinowitz [35]) implies the existence of a critical 
point u ∈ W 2,2

0 (Bκ(L)) of Eμ,γ with positive energy level (thus u �= 0), which is nothing 
but a weak solution to the problem

{
Δ2

κu− μΔκu + γu = up−1
+ in Bκ(L),

u ∈ W 2,2
0 (Bκ(L)).

Multiplying the above equation by u− = min(u, 0), an integration on Bκ(L) gives 
Tμ,γ(u−) = 0, which implies u− = 0. Accordingly, u ≥ 0 is a nonzero solution to the 
original problem (P), which concludes the proof. �
Remark 6.1. Under the same assumptions of Theorem 1.3/(ii), one can guarantee the 
existence of a nontrivial radially symmetric solution to problem (P). Indeed, we can 
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prove that the energy functional u 
→ Eμ,γ(u) is invariant w.r.t. the orthogonal group 
O(2), where the action of O(2) on W 2,2

0 (Bκ(L)) is defined by (g ∗ u)(x) = u(g−1x) for 
every g ∈ O(2), x ∈ Bκ(L) and u ∈ W 2,2

0 (Bκ(L)). Arguing in a similar way as above for 
the energy functional Erad

μ,γ : W 2,2
0,rad(Bκ(L)) → R instead of Eμ,γ , where

W 2,2
0,rad(Bκ(L)) =

{
u ∈ W 2,2

0 (Bκ(L)) : g ∗ u = u for all g ∈ O(2)
}

and Erad
μ,γ = Eμ,γ

∣∣
W 2,2

0,rad(Bκ(L)), we obtain a nontrivial critical point ur ∈ W 2,2
0,rad(Bκ(L))

of Erad
μ,γ . Due to the principle of symmetric criticality of Palais [34], it turns out that ur

is a critical point of the original energy functional Eμ,γ . The rest is the same as above; 
moreover, since ur ∈ W 2,2

0,rad(Bκ(L)), it follows that ur is O(2)-invariant, i.e. radially 
symmetric.
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