DIFFERENTIAL INCLUSIONS INVOLVING OSCILLATORY TERMS

ALEXANDRU KRISTÁLY, ILDIKÓ I. MEZEI, KÁROLY SZILÁK

Abstract. Motivated by mechanical problems where external forces are non-smooth, we consider the differential inclusion problem

$$
\begin{cases}-\Delta u(x) \in \partial F(u(x))+\lambda \partial G(u(x)) & \text { in } \Omega \\ u \geq 0, & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded open domain, and ∂F and ∂G stand for the generalized gradients of the locally Lipschitz functions F and G. In this paper we provide a quite complete picture on the number of solutions of $\left(\mathcal{D}_{\lambda}\right)$ whenever ∂F oscillates near the origin/infinity and ∂G is a generic perturbation of order $p>0$ at the origin/infinity, respectively. Our results extend in several aspects those of Kristály and Moroşanu [J. Math. Pures Appl., 2010].

1. Introduction

We consider the model Dirichlet problem

$$
\begin{cases}-\Delta u(x)=f(u(x)) & \text { in } \Omega \tag{0}\\ u \geq 0, & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

where Δ is the usual Laplace operator, $\Omega \subset \mathbb{R}^{n}$ is a bounded open domain $(n \geq 2)$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function verifying certain growth conditions at the origin and infinity. Usually, such a problem is studied on the Sobolev space $H_{0}^{1}(\Omega)$ and weak solutions of $\left(P_{0}\right)$ become classical/strong solutions whenever f has further regularity. There are several approaches to treat problem $\left(P_{0}\right)$, mainly depending on the behavior of the function f. When f is superlinear and subcritical at infinity (and superlinear at the origin), the seminal paper of Ambrosetti and Rabinowitz [2] guarantees the existence of at least a nontrivial solution of (P_{0}) by using variational methods. An important extension of $\left(P_{0}\right)$ is its perturbation, i.e.,

$$
\begin{cases}-\Delta u(x)=f(u(x))+\lambda g(u(x)) & \text { in } \Omega \\ u \geq 0, & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$ is another continuous function which is going to compete with the original function f. When both functions f and g are of polynomial type of sub- and super-unit degree, - the right hand side being called as a concave-convex nonlinearity - the existence of at least one or two nontrivial solutions of $\left(P_{\lambda}\right)$ is guaranteed, depending on the range of $\lambda>0$, see e.g. Ambrosetti, Brezis and Cerami [1], Autuori and Pucci [4], de Figueiredo, Gossez and Ubilla [8]. In these papers variational arguments, sub- and super-solution methods as well as fixed point arguments are employed.

[^0]Another important class of problems of the type $\left(P_{\lambda}\right)$ is studied whenever f has a certain oscillation (near the origin or at infinity) and g is a perturbation. Although oscillatory functions seemingly call forth the existence of infinitely many solutions, it turns out that 'too classical' oscillatory functions do not have such a feature. Indeed, when $f(s)=c \sin s$ and $g=0$, with $c>0$ small enough, a simple use of the Poincaré inequality implies that problem (P_{λ}) has only the zero solution. However, when f strongly oscillates, problem $\left(P_{0}\right)$ has indeed infinitely many different solutions; see e.g. Omari and Zanolin [19], Saint Raymond [21]. Furthermore, if $g(s)=s^{p}(s>0)$, a novel competition phenomena has been described for $\left(P_{\lambda}\right)$ by Kristály and Moroşanu [12]. We notice that several extensions of [12] can be found in the literature, see e.g. Ambrosio, D'Onofrio and Molica Bisci [3] and Molica Bisci and Pizzimenti [16] for nonlocal fractional Laplacians; Molica Bisci, Rădulescu and Servadei [17] for general operators in divergence form; Mălin and Rădulescu [15] for difference equations. We emphasize that in the aforementioned papers the perturbations are either zero or have a (smooth) polynomial form.

In mechanical applications, however, the perturbation may occur in a discontinuous manner as a non-regular external force, see e.g. the gluing force in von Kármán laminated plates, cf. Bocea, Panagiotopoulos and Rădulescu [5], Motreanu and Panagiotopoulos [18] and Panagiotopoulos [20]. In order to give a reasonable reformulation of problem $\left(P_{\lambda}\right)$ in such a non-regular setting, the idea is to 'fill the gaps' of the discontinuities, considering instead of the discontinuous nonlinearity a set-valued map appearing as the generalized gradient of a locally Lipschitz function. In this way, we deal with an elliptic differential inclusion problem rather than an elliptic differential equation, see e.g. Chang [6], Gazzolla and Rădulescu [9] and Kristály [10]; this problem can be formulated generically as

$$
\begin{cases}-\Delta u(x) \in \partial F(u(x))+\lambda \partial G(u(x)) & \text { in } \Omega ; \\ u \geq 0, & \text { in } \Omega ; \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

where F and G are both nonsmooth, locally Lipschitz functions having various growths, while ∂F and ∂G stand for the generalized gradients of F and G, respectively.

The main purpose of the present paper is to extend the main results of Kristály and Moroşanu [12] in two directions:
(a) to allow the presence of nonsmooth nonlinear terms - reformulated into the inclusion $\left(\mathcal{D}_{\lambda}\right)$ - which are more suitable from mechanical point of view (mostly due to the perturbation term G, although we allow non-smoothness for the oscillatory term F as well);
(b) to consider a generic p-order perturbation ∂G at the origin/infinity, not necessarily of polynomial growth as in [12], $p>0$.
In the present paper we study the inclusion $\left(\mathcal{D}_{\lambda}\right)$ in two different settings, i.e., we analyze the number of distinct solutions of $\left(\mathcal{D}_{\lambda}\right)$ whenever ∂F oscillates near the origin/infinity and ∂G is of order $p>0$ near the origin/infinity. Roughly speaking, when ∂F oscillates near the origin and ∂G is of order $p>0$ at the origin, we prove that the number of distinct, nontrivial solutions of $\left(\mathcal{D}_{\lambda}\right)$ is

- infinitely many whenever $p>1$ ($\lambda \geq 0$ is arbitrary) or $p=1$ and λ is small enough (see Theorem 2.1);
- at least (a prescribed number) $k \in \mathbb{N}$ whenever $0<p<1$ and λ is small enough (see Theorem 2.2).

As we can observe, in the first case, the term $\partial G(s) \sim s^{p}$ as $s \rightarrow 0^{+}$with $p>1$ has no effect on the number of solutions (i.e., the oscillatory term is the leading one), while in the second case, the situation changes dramatically, i.e., ∂G has a 'truth' competition with respect to the oscillatory term ∂F.

We can state a very similar result as above whenever ∂F oscillates at infinity and ∂G is of order $p>0$ at infinity by proving that the number of distinct, nontrivial solutions of the differential inclusion $\left(\mathcal{D}_{\lambda}\right)$ is

- infinitely many whenever $p<1$ ($\lambda \geq 0$ is arbitrary) or $p=1$ and λ is small enough (see Theorem 2.3);
- at least (a prescribed number) $k \in \mathbb{N}$ whenever $p>1$ and λ is small enough (see Theorem 2.4).

Contrary to the competition at the origin, in the first case the term $\partial G(s) \sim s^{p}$ as $s \rightarrow \infty$ with $p<1$ has no effect on the number of solutions (i.e., the oscillatory term is the leading one), while in the second case, the perturbation term ∂G competes with the oscillator function ∂F.

We admit that the line of the proofs is conceptually similar to that of Kristály and Moroşanu [12]; however, the presence of the nonsmooth terms ∂F and ∂G requires a deep argumentation by fully exploring the nonsmooth calculus of locally Lipschitz functions in the sense of Clarke [7]. In addition, the presence of the generic p-order perturbation ∂G needs a special attention with respect to [12]; in particular, the p-order growth of ∂G is new even in smooth settings.

The organization of the present paper is the following. In Section 2 we state our main assumptions and results, providing also some examples of functions fulfilling the assumptions. Section 3 contains a generic localization theorem for differential inclusions, while Sections 4 and 5 are devoted to the proof of our main results. In Section 6 we formulate some concluding remarks, while in the Appendix (Section 7) we collect those notions and results on locally Lipschitz functions that are used throughout our arguments.

2. MAIN THEOREMS

Let $F, G: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be locally Lipschitz functions and as usual, let us denote by ∂F and ∂G their generalized gradients in the sense of Clarke (see the Appendix). Hereafter, $\mathbb{R}_{+}=[0, \infty)$. Let $p>0, \lambda \geq 0$ and $\Omega \subset \mathbb{R}^{n}$ be a bounded open domain, and consider the elliptic differential inclusion problem

$$
\begin{cases}-\Delta u(x) \in \partial F(u(x))+\lambda \partial G(u(x)) & \text { in } \Omega \\ u \geq 0 & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

We distinguish the cases when ∂F oscillates near the origin or at infinity.
2.1. Oscillation near the origin. We assume:

$$
\begin{aligned}
& \left(F_{0}^{0}\right) F(0)=0 ; \\
& \left(F_{1}^{0}\right)-\infty<\liminf _{s \rightarrow 0^{+}} \frac{F(s)}{s^{2}} ; \limsup _{s \rightarrow 0^{+}} \frac{F(s)}{s^{2}}=+\infty ; \\
& \left(F_{2}^{0}\right) l_{0}:=\liminf _{s \rightarrow 0^{+}} \frac{\max \{\xi: \xi \in \partial F(s)\}}{s}<0 . \\
& \left(G_{0}^{0}\right) G(0)=0 ; \\
& \left(G_{1}^{0}\right) \text { There exist } p>0 \text { and } \underline{c}, \bar{c} \in \mathbb{R} \text { such that } \\
& \qquad \underline{c}=\liminf _{s \rightarrow 0^{+}} \frac{\min \{\xi: \xi \in \partial G(s)\}}{s^{p}} \leq \limsup _{s \rightarrow 0^{+}} \frac{\max \{\xi: \xi \in \partial G(s)\}}{s^{p}}=\bar{c} .
\end{aligned}
$$

Remark 2.1. Hypotheses $\left(F_{1}^{0}\right)$ and $\left(F_{2}^{0}\right)$ imply a strong oscillatory behavior of ∂F near the origin. Moreover, it turns out that $0 \in \partial F(0)$; indeed, if we assume the contrary, by the upper semicontinuity of ∂F we also have that $0 \notin \partial F(s)$ for every small $s>0$. Thus, by $\left(F_{2}^{0}\right)$ we have that $\partial F(s) \subset(-\infty, 0]$ for these values of $s>0$. By using $\left(F_{0}^{0}\right)$ and Lebourg's mean value theorem (see Proposition 7.3 in the Appendix), it follows that $F(s)=F(s)-F(0)=\xi s \leq 0$ for some $\xi \in \partial F(\theta s) \subset(-\infty, 0]$ with $\theta \in(0,1)$. The latter inequality contradicts the second assumption from $\left(F_{1}^{0}\right)$. Similarly, one obtains that $0 \in \partial G(0)$ by exploring $\left(G_{0}^{0}\right)$ and $\left(G_{1}^{0}\right)$, respectively.

In conclusion, since $0 \in \partial F(0)$ and $0 \in \partial G(0)$, it turns out that $0 \in H_{0}^{1}(\Omega)$ is a solution of the differential inclusion $\left(\mathcal{D}_{\lambda}\right)$. Clearly, we are interested in nonzero solutions of $\left(\mathcal{D}_{\lambda}\right)$.
Example 2.1. Let us consider $F_{0}(s)=\int_{0}^{s} f_{0}(t), s \geq 0$, where $f_{0}(t)=\sqrt{t}\left(\frac{1}{2}+\sin t^{-1}\right), t>0$ and $f_{0}(0)=0$, or some of its jumping variants. One can prove that $\partial F_{0}=f_{0}$ verifies the assumptions $\left(F_{0}^{0}\right)-\left(F_{2}^{0}\right)$. For a fixed $p>0$, let $G_{0}(s)=\ln \left(1+s^{p+2}\right) \max \left\{0, \cos s^{-1}\right\}, s>0$ and $G_{0}(0)=0$. It is clear that G_{0} is not of class C^{1} and verifies $\left(G_{1}^{0}\right)$ with $\underline{c}=-1$ and $\bar{c}=1$, respectively; see Figure 1 representing both f_{0} and G_{0} (for $p=2$).

Figure 1. Graphs of f_{0} and G_{0} around the origin, respectively.
In the sequel, we provide a quite complete picture about the competition concerning the terms $s \mapsto \partial F(s)$ and $s \mapsto \partial G(s)$, respectively. First, we are going to show that when $p \geq 1$ then the 'leading' term is the oscillatory function ∂F; roughly speaking, one can say that the effect of $s \mapsto \partial G(s)$ is negligible in this competition. More precisely, we prove the following result.

Theorem 2.1. (Case $p \geq 1$) Assume that $p \geq 1$ and the locally Lipschitz functions $F, G: \mathbb{R}_{+} \rightarrow$ \mathbb{R} satisfy $\left(F_{0}^{0}\right)-\left(F_{2}^{0}\right)$ and $\left(G_{0}^{0}\right)-\left(G_{1}^{0}\right)$. If
(i) either $p=1$ and $\lambda \bar{c}<-l_{0}($ with $\lambda \geq 0)$,
(ii) or $p>1$ and $\lambda \geq 0$ is arbitrary,
then the differential inclusion problem $\left(\mathcal{D}_{\lambda}\right)$ admits a sequence $\left\{u_{i}\right\}_{i} \subset H_{0}^{1}(\Omega)$ of distinct weak solutions such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|u_{i}\right\|_{H_{0}^{1}}=\lim _{\substack{i \rightarrow \infty \\ 4}}\left\|u_{i}\right\|_{L^{\infty}}=0 \tag{2.1}
\end{equation*}
$$

In the case when $p<1$, the perturbation term ∂G may compete with the oscillatory function ∂F; namely, we have:

Theorem 2.2. (Case $0<p<1$) Assume $0<p<1$ and that the locally Lipschitz functions $F, G: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfy $\left(F_{0}^{0}\right)-\left(F_{2}^{0}\right)$ and $\left(G_{0}^{0}\right)-\left(G_{1}^{0}\right)$. Then, for every $k \in \mathbb{N}$, there exists $\lambda_{k}>0$ such that the differential inclusion $\left(\mathcal{D}_{\lambda}\right)$ has at least k distinct weak solutions $\left\{u_{1, \lambda}, \ldots, u_{k, \lambda}\right\} \subset$ $H_{0}^{1}(\Omega)$ whenever $\lambda \in\left[0, \lambda_{k}\right]$. Moreover,

$$
\begin{equation*}
\left\|u_{i, \lambda}\right\|_{H_{0}^{1}}<i^{-1} \text { and }\left\|u_{i, \lambda}\right\|_{L^{\infty}}<i^{-1} \quad \text { for any } i=\overline{1, k} ; \lambda \in\left[0, \lambda_{k}\right] \tag{2.2}
\end{equation*}
$$

2.2. Oscillation at infinity. Let assume:

$$
\begin{aligned}
& \left(F_{0}^{\infty}\right) F(0)=0 ; \\
& \left(F_{1}^{\infty}\right)-\infty<\liminf _{s \rightarrow \infty} \frac{F(s)}{s^{2}} ; \limsup _{s \rightarrow \infty} \frac{F(s)}{s^{2}}=+\infty ; \\
& \left(F_{2}^{\infty}\right) l_{\infty}:=\liminf _{s \rightarrow \infty} \frac{\max \{\xi: \xi \in \partial F(s)\}}{s}<0 . \\
& \left(G_{0}^{\infty}\right) G(0)=0 ; \\
& \left(G_{1}^{\infty}\right) \text { There exist } p>0 \text { and } \underline{c}, \bar{c} \in \mathbb{R} \text { such that }
\end{aligned}
$$

$$
\underline{c}=\liminf _{s \rightarrow \infty} \frac{\min \{\xi: \xi \in \partial G(s)\}}{s^{p}} \leq \limsup _{s \rightarrow \infty} \frac{\max \{\xi: \xi \in \partial G(s)\}}{s^{p}}=\bar{c}
$$

Remark 2.2. Hypotheses $\left(F_{1}^{\infty}\right)$ and $\left(F_{2}^{\infty}\right)$ imply a strong oscillatory behavior of the set-valued map ∂F at infinity.

Example 2.2. We consider $F_{\infty}(s)=\int_{0}^{s} f_{\infty}(t), s \geq 0$, where $f_{\infty}(t)=\sqrt{t}\left(\frac{1}{2}+\sin t\right), t \geq 0$, or some of its jumping variants; one has that F_{∞} verifies the assumptions $\left(F_{0}^{\infty}\right)-\left(F_{2}^{\infty}\right)$. For a fixed $p>0$, let $G_{\infty}(s)=s^{p} \max \{0, \sin s\}, s \geq 0$; it is clear that G_{∞} is a typically locally Lipschitz function on $[0, \infty)$ (not being of class C^{1}) and verifies $\left(G_{1}^{\infty}\right)$ with $\underline{c}=-1$ and $\bar{c}=1$; see Figure 2 representing both f_{∞} and G_{∞} (for $p=2$), respectively.

Figure 2. Graphs of f_{∞} and G_{∞} at infinity, respectively.

In the sequel, we investigate the competition at infinity concerning the terms $s \mapsto \partial F(s)$ and $s \mapsto \partial G(s)$, respectively. First, we show that when $p \leq 1$ then the 'leading' term is the oscillatory function F, i.e., the effect of $s \mapsto \partial G(s)$ is negligible. More precisely, we prove the following result:

Theorem 2.3. (Case $p \leq 1$) Assume that $p \leq 1$ and the locally Lipschitz functions $F, G: \mathbb{R}_{+} \rightarrow$ \mathbb{R} satisfy $\left(F_{0}^{\infty}\right)-\left(F_{2}^{\infty}\right)$ and $\left(G_{0}^{\infty}\right)-\left(G_{1}^{\infty}\right)$. If
(i) either $p=1$ and $\lambda \bar{c} \leq-l_{0}($ with $\lambda \geq 0)$,
(ii) or $p<1$ and $\lambda \geq 0$ is arbitrary,
then the differential inclusion $\left(\mathcal{D}_{\lambda}\right)$ admits a sequence $\left\{u_{i}\right\}_{i} \subset H_{0}^{1}(\Omega)$ of distinct weak solutions such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|u_{i}^{\infty}\right\|_{L^{\infty}}=\infty \tag{2.3}
\end{equation*}
$$

Remark 2.3. Let 2^{*} be the usual critical Sobolev exponent. In addition to (2.3), we also have $\lim _{i \rightarrow \infty}\left\|u_{i}^{\infty}\right\|_{H_{0}^{1}}=\infty$ whenever

$$
\begin{equation*}
\sup _{s \in[0, \infty)} \frac{\max \{|\xi|: \xi \in \partial F(s)\}}{1+s^{2^{*}-1}}<\infty \tag{2.4}
\end{equation*}
$$

In the case when $p>1$, it turns out that the perturbation term ∂G may compete with the oscillatory function ∂F; more precisely, we have:

Theorem 2.4. (Case $p>1$) Assume that $p>1$ and the locally Lipschitz functions $F, G: \mathbb{R}_{+} \rightarrow$ \mathbb{R} satisfy $\left(F_{0}^{\infty}\right)-\left(F_{2}^{\infty}\right)$ and $\left(G_{0}^{\infty}\right)-\left(G_{1}^{\infty}\right)$. Then, for every $k \in \mathbb{N}$, there exists $\lambda_{k}^{\infty}>0$ such that the differential inclusion $\left(\mathcal{D}_{\lambda}\right)$ has at least k distinct weak solutions $\left\{u_{1, \lambda}, \ldots, u_{k, \lambda}\right\} \subset H_{0}^{1}(\Omega)$ whenever $\lambda \in\left[0, \lambda_{k}^{\infty}\right]$. Moreover,

$$
\begin{equation*}
\left\|u_{i, \lambda}\right\|_{L^{\infty}}>i-1 \quad \text { for any } i=\overline{1, k} ; \lambda \in\left[0, \lambda_{k}^{\infty}\right] . \tag{2.5}
\end{equation*}
$$

Remark 2.4. If (2.4) holds and $p \leq 2^{*}-1$ in Theorem 2.4, then we have in addition that

$$
\left\|u_{i, \lambda}^{\infty}\right\|_{H_{0}^{1}}>i-1 \text { for any } i=\overline{1, k} ; \lambda \in\left[0, \lambda_{k}^{\infty}\right]
$$

3. Localization: A GEnERIC RESUlt

We consider the following differential inclusion problem

$$
\begin{cases}-\triangle u(x)+k u(x) \in \partial A(u(x)), u(x) \geq 0 & x \in \Omega \tag{A}\\ u(x)=0 & x \in \partial \Omega\end{cases}
$$

where $k>0$ and
$\left(\mathrm{H}_{A}^{1}\right): A:[0, \infty) \rightarrow \mathbb{R}$ is a locally Lipschitz function with $A(0)=0$, and there is $M_{A}>0$ such that

$$
\max \{|\partial A(s)|\}:=\max \{|\xi|: \xi \in \partial A(s)\} \leq M_{A}
$$

for every $s \geq 0$;
$\left(\mathrm{H}_{A}^{2}\right)$: there are $0<\delta<\eta$ such that $\max \{\xi: \xi \in \partial A(s)\} \leq 0$ for every $s \in[\delta, \eta]$.
For simplicity, we extend the function A by $A(s)=0$ for $s \leq 0$; the extended function is locally Lipschitz on the whole \mathbb{R}. The natural energy functional $\mathcal{T}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ associated with the differential inclusion problem $\left(\mathrm{D}_{A}^{k}\right)$ is defined by

$$
\mathcal{T}(u)=\frac{1}{2}\|u\|_{H_{0}^{1}}^{2}+\frac{k}{2} \int_{\Omega} u^{2} d x-\int_{\Omega} A(u(x)) d x
$$

The energy functional \mathcal{T} is well defined and locally Lipschitz on $H_{0}^{1}(\Omega)$, while its critical points in the sense of Chang (see Definition 7.3 in the Appendix) are precisely the weak solutions of the differential inclusion problem

$$
\begin{cases}-\triangle u(x)+k u(x) \in \partial A(u(x)), & x \in \Omega \tag{A}\\ u(x)=0 & x \in \partial \Omega\end{cases}
$$

note that at this stage we have no information on the sign of u.
Indeed, if $0 \in \partial \mathcal{T}(u)$, then for every $v \in H_{0}^{1}(\Omega)$ we have

$$
\int_{\Omega} \nabla u(x) \nabla v(x) d x-k \int_{\Omega} u(x) v(x) d x-\int_{\Omega} \xi_{x}(x) v(x) d x=0,
$$

where $\xi_{x} \in \partial A(u(x))$ a.e. $x \in \Omega$, see e.g. Motreanu and Panagiotopoulos [18]. By using the divergence theorem for the first term at the left hand side (and exploring the Dirichlet boundary condition), we obtain that

$$
\int_{\Omega} \nabla u(x) \nabla v(x) d x=-\int_{\Omega} \operatorname{div}(\nabla u(x)) v(x) d x=-\int_{\Omega} \Delta u(x) v(x) d x .
$$

Accordingly, we have that

$$
-\int_{\Omega} \Delta u(x) v(x) d x+k \int_{\Omega} u(x) v(x)=\int_{\Omega} \xi_{x} v(x) d x
$$

for every test function $v \in H_{0}^{1}(\Omega)$ which means that $-\Delta u(x)+k u(x) \in \partial A(u(x))$ in the weak sense in Ω, as claimed before.

Let us consider the number $\eta \in \mathbb{R}$ from $\left(\mathrm{H}_{A}^{2}\right)$ and the set

$$
W^{\eta}=\left\{u \in H_{0}^{1}(\Omega):\|u\|_{L^{\infty}} \leq \eta\right\} .
$$

Our localization result reads as follows (see [12, Theorem 2.1] for its smooth form):
Theorem 3.1. Let $k>0$ and assume that hypotheses $\left(\mathrm{H}_{A}^{1}\right)$ and $\left(\mathrm{H}_{A}^{2}\right)$ hold. Then
(i) the energy functional \mathcal{T} is bounded from below on W^{η} and its infimum is attained at some $\tilde{u} \in W^{\eta}$;
(ii) $\tilde{u}(x) \in[0, \delta]$ for a.e. $x \in \Omega$;
(iii) \tilde{u} is a weak solution of the differential inclusion $\left(\mathrm{D}_{A}^{k}\right)$.

Proof. The proof is similar to that of Kristály and Moroşanu [12]; for completeness, we provide its main steps.
(i) Due to $\left(\mathrm{H}_{A}^{1}\right)$, it is clear that the energy functional \mathcal{T} is bounded from below on $H_{0}^{1}(\Omega)$. Moreover, due to the compactness of the embedding $H_{0}^{1}(\Omega) \subset L^{q}(\Omega), q \in\left[2,2^{*}\right)$, it turns out that \mathcal{T} is sequentially weak lower semi-continuous on $H_{0}^{1}(\Omega)$. In addition, the set W^{η} is weakly closed, being convex and closed in $H_{0}^{1}(\Omega)$. Thus, there is $\tilde{u} \in W^{\eta}$ which is a minimum point of \mathcal{T} on the set W^{η}, cf. Zeidler [24].
(ii) We introduce the set $L=\{x \in \Omega: \tilde{u}(x) \notin[0, \delta]\}$ and suppose indirectly that $m(L)>0$. Define the function $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ by $\gamma(s)=\min \left(s_{+}, \delta\right)$, where $s_{+}=\max (s, 0)$. Now, set $w=\gamma \circ \tilde{u}$. It is clear that γ is a Lipschitz function and $\gamma(0)=0$. Accordingly, based on the superposition theorem of Marcus and Mizel [14], one has that $w \in H_{0}^{1}(\Omega)$. Moreover, $0 \leq w(x) \leq \delta$ for a.e. Ω. Consequently, $w \in W^{\eta}$.

Let us introduce the sets

$$
L_{1}=\{x \in L: \tilde{u}(x)<0\} \text { and } L_{2}=\{x \in L: \tilde{u}(x)>\delta\} .
$$

In particular, $L=L_{1} \cup L_{2}$, and by definition, it follows that $w(x)=\tilde{u}(x)$ for all $x \in \Omega \backslash L$, $w(x)=0$ for all $x \in L_{1}$, and $w(x)=\delta$ for all $x \in L_{2}$. In addition, one has

$$
\begin{aligned}
\mathcal{T}(w)-\mathcal{T}(\tilde{u}) & =\frac{1}{2}\left[\|w\|_{H_{0}^{1}}^{2}-\|\tilde{u}\|_{H_{0}^{1}}^{2}\right]+\frac{k}{2} \int_{\Omega}\left[w^{2}-\tilde{u}^{2}\right]-\int_{\Omega}[A(w(x))-A(\tilde{u}(x))] \\
& =-\frac{1}{2} \int_{L}|\nabla \tilde{u}|^{2}+\frac{k}{2} \int_{L}\left[w^{2}-\tilde{u}^{2}\right]-\int_{L}[A(w(x))-A(\tilde{u}(x))] .
\end{aligned}
$$

On account of $k>0$, we have

$$
k \int_{L}\left[w^{2}-\tilde{u}^{2}\right]=-k \int_{L_{1}} \tilde{u}^{2}+k \int_{L_{2}}\left[\delta^{2}-\tilde{u}^{2}\right] \leq 0 .
$$

Since $A(s)=0$ for all $s \leq 0$, we have

$$
\int_{L_{1}}[A(w(x))-A(\tilde{u}(x))]=0 .
$$

By means of the Lebourg's mean value theorem, for a.e. $x \in L_{2}$, there exists $\theta(x) \in[\delta, \tilde{u}(x)] \subseteq$ $[\delta, \eta]$ such that

$$
A(w(x))-A(\tilde{u}(x))=A(\delta)-A(\tilde{u}(x))=a(\theta(x))(\delta-\tilde{u}(x)),
$$

where $a(\theta(x)) \in \partial A(\theta(x))$. Due to $\left(\mathrm{H}_{A}^{2}\right)$, it turns out that

$$
\int_{L_{2}}[A(w(x))-A(\tilde{u}(x))] \geq 0
$$

Therefore, we obtain that $\mathcal{T}(w)-\mathcal{T}(\tilde{u}) \leq 0$. On the other hand, since $w \in W^{\eta}$, then $\mathcal{T}(w) \geq$ $\mathcal{T}(\tilde{u})=\inf _{W^{\eta}} \mathcal{T}$, thus every term in the difference $\mathcal{T}(w)-\mathcal{T}(\tilde{u})$ should be zero; in particular,

$$
\int_{L_{1}} \tilde{u}^{2}=\int_{L_{2}}\left[\tilde{u}^{2}-\delta^{2}\right]=0 .
$$

The latter relation implies in particular that $m(L)=0$, which is a contradiction, completing the proof of (ii).
(iii) Since $\tilde{u}(x) \in[0, \delta]$ for a.e. $x \in \Omega$, an arbitrarily small perturbation $\tilde{u}+\epsilon v$ of \tilde{u} with $0<\epsilon \ll 1$ and $v \in C_{0}^{\infty}(\Omega)$ still implies that $\mathcal{T}(\tilde{u}+\varepsilon v) \geq \mathcal{T}(\tilde{u})$; accordingly, \tilde{u} is a minimum point for \mathcal{T} in the strong topology of $H_{0}^{1}(\Omega)$, thus $0 \in \partial \mathcal{T}(\tilde{u})$, cf. Remark 7.1 in the Appendix. Consequently, it follows that \tilde{u} is a weak solution of the differential inclusion $\left(\mathrm{D}_{A}^{k}\right)$.

In the sequel, we need a truncation function of $H_{0}^{1}(\Omega)$, see also [12]. To construct this function, let $B\left(x_{0}, r\right) \subset \Omega$ be the n-dimensional ball with radius $r>0$ and center $x_{0} \in \Omega$. For $s>0$, define

$$
w_{s}(x)=\left\{\begin{array}{lll}
0, & \text { if } & x \in \Omega \backslash B\left(x_{0}, r\right) ; \tag{3.1}\\
s, & \text { if } & x \in B\left(x_{0}, r / 2\right) ; \\
\frac{2 s}{r}\left(r-\left|x-x_{0}\right|\right), & \text { if } & x \in B\left(x_{0}, r\right) \backslash B\left(x_{0}, r / 2\right)
\end{array}\right.
$$

Note that that $w_{s} \in H_{0}^{1}(\Omega),\left\|w_{s}\right\|_{L^{\infty}}=s$ and

$$
\begin{equation*}
\left\|w_{s}\right\|_{H_{0}^{1}}^{2}=\int_{\Omega}\left|\nabla w_{s}\right|^{2}=4 r^{n-2}\left(1-2^{-n}\right) \omega_{n} s^{2} \equiv C(r, n) s^{2}>0 \tag{3.2}
\end{equation*}
$$

hereafter ω_{n} stands for the volume of $B(0,1) \subset \mathbb{R}^{n}$.

4. Proof of Theorems 2.1 and 2.2

Before giving the proof of Theorems 2.1 and 2.2, in the first part of this section we study the differential inclusion problem

$$
\begin{cases}-\triangle u(x)+k u(x) \in \partial A(u(x)), \quad u(x) \geq 0 & x \in \Omega \tag{A}\\ u(x)=0 & x \in \partial \Omega\end{cases}
$$

where $k>0$ and the locally Lipschitz function $A: \mathbb{R}_{+} \rightarrow \mathbb{R}$ verifies
$\left(\mathrm{H}_{0}^{0}\right): A(0)=0$;
$\left(\mathrm{H}_{1}^{0}\right):-\infty<\liminf _{s \rightarrow 0^{+}} \frac{A(s)}{s^{2}}$ and $\limsup \sup _{s \rightarrow 0^{+}} \frac{A(s)}{s^{2}}=+\infty$;
$\left(\mathrm{H}_{2}^{0}\right)$: there are two sequences $\left\{\delta_{i}\right\},\left\{\eta_{i}\right\}$ with $0<\eta_{i+1}<\delta_{i}<\eta_{i}, \lim _{i \rightarrow \infty} \eta_{i}=0$, and

$$
\max \{\partial A(s)\}:=\max \{\xi: \xi \in \partial A(s)\} \leq 0
$$

for every $s \in\left[\delta_{i}, \eta_{i}\right], i \in \mathbb{N}$.
Theorem 4.1. Let $k>0$ and assume hypotheses $\left(\mathrm{H}_{0}^{0}\right)$, $\left(\mathrm{H}_{1}^{0}\right)$ and $\left(\mathrm{H}_{2}^{0}\right)$ hold. Then there exists a sequence $\left\{u_{i}^{0}\right\}_{i} \subset H_{0}^{1}(\Omega)$ of distinct weak solutions of the differential inclusion problem $\left(\mathrm{D}_{A}^{k}\right)$ such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|u_{i}^{0}\right\|_{H_{0}^{1}}=\lim _{i \rightarrow \infty}\left\|u_{i}^{0}\right\|_{L^{\infty}}=0 \tag{4.1}
\end{equation*}
$$

Proof. We may assume that $\left\{\delta_{i}\right\}_{i},\left\{\eta_{i}\right\}_{i} \subset(0,1)$. For any fixed number $i \in \mathbb{N}$, we define the locally Lipschitz function $A_{i}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
A_{i}(s)=A\left(\tau_{\eta_{i}}(s)\right) \tag{4.2}
\end{equation*}
$$

where $A(s)=0$ for $s \leq 0$ and $\tau_{\eta}: \mathbb{R} \rightarrow \mathbb{R}$ denotes the truncation function $\tau_{\eta}(s)=\min (\eta, s)$, $\eta>0$. For further use, we introduce the energy functional $\mathcal{T}_{i}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ associated with problem ($\mathrm{D}_{A_{i}}^{k}$).

We notice that for $s \geq 0$, the chain rule (see Proposition 7.4 in the Appendix) gives

$$
\partial A_{i}(s)= \begin{cases}\partial A(s) & \text { if } s<\eta_{i} \\ \overline{\operatorname{co}}\left\{0, \partial A\left(\eta_{i}\right)\right\} & \text { if } s=\eta_{i} \\ \{0\} & \text { if } s>\eta_{i}\end{cases}
$$

It turns out that on the compact set $\left[0, \eta_{i}\right]$, the upper semicontinuous set-valued map $s \mapsto \partial A_{i}(s)$ attains its supremum (see Proposition 7.1 in the Appendix); therefore, there exists $M_{A_{i}}>0$ such that

$$
\max \left|\partial A_{i}(s)\right|:=\max \left\{|\xi|: \xi \in \partial A_{i}(s)\right\} \leq M_{A_{i}}
$$

for every $s \geq 0$, i.e., $\left(\mathrm{H}_{A_{i}}^{1}\right)$ holds. The same is true for $\left(\mathrm{H}_{A_{i}}^{2}\right)$ by using $\left(\mathrm{H}_{2}^{0}\right)$ on $\left[\delta_{i}, \eta_{i}\right], i \in \mathbb{N}$.
Accordingly, the assumptions of Theorem 3.1 are verified for every $i \in \mathbb{N}$ with $\left[\delta_{i}, \eta_{i}\right]$, thus there exists $u_{i}^{0} \in W^{\eta_{i}}$ such that

$$
\begin{align*}
& u_{i}^{0} \text { is the minimum point of the functional } \mathcal{T}_{i} \text { on } W^{\eta_{i}}, \tag{4.3}\\
& \qquad u_{i}^{0}(x) \in\left[0, \delta_{i}\right] \text { for a.e. } x \in \Omega \tag{4.4}\\
& u_{i}^{0} \text { is a solution of }\left(\mathrm{D}_{A_{i}}^{k}\right) \tag{4.5}
\end{align*}
$$

On account of relations (4.2), (4.4) and (4.5), u_{i}^{0} is a weak solution also for the differential inclusion problem $\left(\mathrm{D}_{A}^{k}\right)$.

We are going to prove that there are infinitely many distinct elements in the sequence $\left\{u_{i}^{0}\right\}_{i}$. To conclude it, we first prove that

$$
\begin{gather*}
\mathcal{T}_{i}\left(u_{i}^{0}\right)<0 \text { for all } i \in \mathbb{N} ; \text { and } \tag{4.6}\\
\lim _{i \rightarrow \infty} \mathcal{T}_{i}\left(u_{i}^{0}\right)=0 \tag{4.7}
\end{gather*}
$$

The left part of $\left(\mathrm{H}_{1}^{0}\right)$ implies the existence of some $l_{0}>0$ and $\zeta \in\left(0, \eta_{1}\right)$ such that

$$
\begin{equation*}
A(s) \geq-l_{0} s^{2} \text { for all } s \in(0, \zeta) \tag{4.8}
\end{equation*}
$$

One can choose $L_{0}>0$ such that

$$
\begin{equation*}
\frac{1}{2} C(r, n)+\left(\frac{k}{2}+l_{0}\right) m(\Omega)<L_{0}(r / 2)^{n} \omega_{n}, \tag{4.9}
\end{equation*}
$$

where $r>0$ and $C(r, n)>0$ come from (3.2). Based on the right part of $\left(\mathrm{H}_{1}^{0}\right)$, one can find a sequence $\left\{\tilde{s}_{i}\right\}_{i} \subset(0, \zeta)$ such that $\tilde{s}_{i} \leq \delta_{i}$ and

$$
\begin{equation*}
A\left(\tilde{s}_{i}\right)>L_{0} \tilde{s}_{i}^{2} \text { for all } i \in \mathbb{N} . \tag{4.10}
\end{equation*}
$$

Let $i \in \mathbb{N}$ be a fixed number and let $w_{\tilde{s}_{i}} \in H_{0}^{1}(\Omega)$ be the function from (3.1) corresponding to the value $\tilde{s}_{i}>0$. Then $w_{\tilde{s}_{i}} \in W^{\eta_{i}}$, and due to (4.8), (4.10) and (3.2) one has

$$
\begin{aligned}
\mathcal{T}_{i}\left(w_{\tilde{s}_{i}}\right) & =\frac{1}{2}\left\|w_{\tilde{s}_{i}}\right\|_{H_{0}^{1}}^{2}+\frac{k}{2} \int_{\Omega} w_{\tilde{s}_{i}}^{2}-\int_{\Omega} A_{i}\left(w_{\tilde{s}_{i}}(x)\right) d x \\
& =\frac{1}{2} C(r, n) \tilde{s}_{i}^{2}+\frac{k}{2} \int_{\Omega} w_{\tilde{s}_{i}}^{2}-\int_{B\left(x_{0}, r / 2\right)} A\left(\tilde{s}_{i}\right) d x-\int_{B\left(x_{0}, r\right) \backslash B\left(x_{0}, r / 2\right)} A\left(w_{\tilde{s}_{i}}(x)\right) d x \\
& \leq\left[\frac{1}{2} C(r, n)+\frac{k}{2} m(\Omega)-L_{0}(r / 2)^{n} \omega_{n}+l_{0} m(\Omega)\right] \tilde{s}_{i}^{2} .
\end{aligned}
$$

Accordingly, with (4.3) and (4.9), we conclude that

$$
\begin{equation*}
\mathcal{T}_{i}\left(u_{i}^{0}\right)=\min _{W^{n_{i}}} \mathcal{T}_{i} \leq \mathcal{T}_{i}\left(w_{\tilde{s}_{i}}\right)<0 \tag{4.11}
\end{equation*}
$$

which completes the proof of (4.6).
Now, we prove (4.7). For every $i \in \mathbb{N}$, by using the Lebourg's mean value theorem, relations (4.2) and (4.4) and (H_{0}^{0}), we have

$$
\mathcal{T}_{i}\left(u_{i}^{0}\right) \geq-\int_{\Omega} A_{i}\left(u_{i}^{0}(x)\right) d x=-\int_{\Omega} A_{1}\left(u_{i}^{0}(x)\right) d x \geq-M_{A_{1}} m(\Omega) \delta_{i} .
$$

Since $\lim _{i \rightarrow \infty} \delta_{i}=0$, the latter estimate and (4.11) provides relation (4.7).
Based on (4.2) and (4.4), we have that $\mathcal{T}_{i}\left(u_{i}^{0}\right)=\mathcal{T}_{1}\left(u_{i}^{0}\right)$ for all $i \in \mathbb{N}$. This relation with (4.6) and (4.7) means that the sequence $\left\{u_{i}^{0}\right\}_{i}$ contains infinitely many distinct elements.

We now prove (4.1). One can prove the former limit by (4.4), i.e. $\left\|u_{i}^{0}\right\|_{L^{\infty}} \leq \delta_{i}$ for all $i \in \mathbb{N}$, combined with $\lim _{i \rightarrow \infty} \delta_{i}=0$. For the latter limit, we use $k>0$, (4.11), (4.2) and (4.4) to get for all $i \in \mathbb{N}$ that

$$
\frac{1}{2}\left\|u_{i}^{0}\right\|_{H_{0}^{1}}^{2} \leq \frac{1}{2}\left\|u_{i}^{0}\right\|_{H_{0}^{1}}^{2}+\frac{k}{2} \int_{\Omega}\left(u_{i}^{0}\right)^{2}<\int_{\Omega} A_{i}\left(u_{i}^{0}(x)\right)=\int_{\Omega} A_{1}\left(u_{i}^{0}(x)\right) \leq M_{A_{1}} m(\Omega) \delta_{i},
$$

which completes the proof.

Proof of Theorem 2.1. We split the proof into two parts.
(i) Case $p=1$. Let $\lambda \geq 0$ with $\lambda \bar{c}<-l_{0}$ and fix $\tilde{\lambda}_{0} \in \mathbb{R}$ such that $\lambda \bar{c}<\tilde{\lambda}_{0}<-l_{0}$. With these choices we define

$$
\begin{equation*}
k:=\tilde{\lambda}_{0}-\lambda \bar{c}>0 \text { and } A(s):=F(s)+\frac{\tilde{\lambda}_{0}}{2} s^{2}+\lambda\left(G(s)-\frac{\bar{c}}{2} s^{2}\right) \text { for every } s \in[0, \infty) \tag{4.12}
\end{equation*}
$$

It is clear that $A(0)=0$, i.e., $\left(\mathrm{H}_{0}^{0}\right)$ is verified. Since $p=1$, by $\left(G_{1}^{0}\right)$ one has

$$
\underline{c}=\liminf _{s \rightarrow 0^{+}} \frac{\min \{\partial G(s)\}}{s} \leq \limsup _{s \rightarrow 0^{+}} \frac{\max \{\partial G(s)\}}{s}=\bar{c}
$$

In particular, for sufficiently small $\epsilon>0$ there exists $\gamma=\gamma(\epsilon)>0$ such that

$$
\max \{\partial G(s)\}-\bar{c} s<\epsilon s, \forall s \in[0, \gamma]
$$

and

$$
\min \{\partial G(s)\}-\underline{c} s>-\epsilon s, \forall s \in[0, \gamma]
$$

For $s \in[0, \gamma]$, Lebourg's mean value theorem and $G(0)=0$ implies that there exists $\xi_{s} \in \partial G\left(\theta_{s} s\right)$ for some $\theta_{s} \in[0,1]$ such that $G(s)-G(0)=\xi_{s} s$. Accordingly, for every $s \in[0, \gamma]$ we have that

$$
\begin{equation*}
(\underline{c}-\epsilon) s^{2} \leq G(s) \leq(\bar{c}+\epsilon) s^{2} \tag{4.13}
\end{equation*}
$$

By (4.13) and $\left(F_{1}^{0}\right)$ we have that

$$
\liminf _{s \rightarrow 0^{+}} \frac{A(s)}{s^{2}} \geq \liminf _{s \rightarrow 0^{+}} \frac{F(s)}{s^{2}}+\frac{\tilde{\lambda}_{0}-\lambda \bar{c}}{2}+\lambda \liminf _{s \rightarrow 0^{+}} \frac{G(s)}{s^{2}} \geq \liminf _{s \rightarrow 0^{+}} \frac{F(s)}{s^{2}}+\frac{\tilde{\lambda}_{0}-\lambda \bar{c}}{2}+\lambda \underline{c}>-\infty
$$

and

$$
\limsup _{s \rightarrow 0^{+}} \frac{A(s)}{s^{2}} \geq \limsup _{s \rightarrow 0^{+}} \frac{F(s)}{s^{2}}+\frac{\tilde{\lambda}_{0}-\lambda \bar{c}}{2}+\lambda \liminf _{s \rightarrow 0^{+}} \frac{G(s)}{s^{2}}=+\infty
$$

i.e., $\left(\mathrm{H}_{1}^{0}\right)$ is verified.

Since

$$
\begin{equation*}
\partial A(s) \subseteq \partial F(s)+\tilde{\lambda}_{0} s+\lambda(\partial G(s)-\bar{c} s) \tag{4.14}
\end{equation*}
$$

and $\lambda \geq 0$, we have that

$$
\begin{equation*}
\max \{\partial A(s)\} \leq \max \left\{\partial F(s)+\tilde{\lambda}_{0} s\right\}+\lambda \max \{\partial G(s)-\bar{c} s\} \tag{4.15}
\end{equation*}
$$

Since

$$
\limsup _{s \rightarrow 0^{+}} \frac{\max \{\partial G(s)\}}{s}=\bar{c}
$$

cf. $\left(G_{1}^{0}\right)$, and

$$
\liminf _{s \rightarrow 0^{+}} \frac{\max \{\partial F(s)\}}{s}=l_{0}<0
$$

cf. $\left(F_{2}^{0}\right)$, it turns out by (4.15) that

$$
\liminf _{s \rightarrow 0^{+}} \frac{\max \{\partial A(s)\}}{s} \leq \liminf _{s \rightarrow 0^{+}} \frac{\max \{\partial F(s)\}}{s}+\tilde{\lambda}_{0}-\lambda \bar{c}+\lambda \limsup _{s \rightarrow 0^{+}} \frac{\max \{\partial G(s)\}}{s} \leq l_{0}+\tilde{\lambda}_{0}<0
$$

Therefore, one has a sequence $\left\{s_{i}\right\}_{i} \subset(0,1)$ converging to 0 such that $\frac{\max \left\{\partial A\left(s_{i}\right)\right\}}{s_{i}}<0$ i.e., $\max \left\{\partial A\left(s_{i}\right)\right\}<0$ for all $i \in \mathbb{N}$. By using the upper semicontinuity of $s \mapsto \partial A(s)$, we may choose two numbers $\delta_{i}, \eta_{i} \in(0,1)$ with $\delta_{i}<s_{i}<\eta_{i}$ such that $\partial A(s) \subset \partial A\left(s_{i}\right)+\left[-\epsilon_{i}, \epsilon_{i}\right]$ for every $s \in\left[\delta_{i}, \eta_{i}\right]$, where $\epsilon_{i}:=-\max \left\{\partial A\left(s_{i}\right)\right\} / 2>0$. In particular, $\max \{\partial A(s)\} \leq 0$ for all $s \in\left[\delta_{i}, \eta_{i}\right]$. Thus, one may fix two sequences $\left\{\delta_{i}\right\}_{i},\left\{\eta_{i}\right\}_{i} \subset(0,1)$ such that $0<\eta_{i+1}<\delta_{i}<s_{i}<\eta_{i}$, $\lim _{i \rightarrow \infty} \eta_{i}=0$, and $\max \{\partial A(s)\} \leq 0$ for all $s \in\left[\delta_{i}, \eta_{i}\right]$ and $i \in \mathbb{N}$. Accordingly, $\left(\mathrm{H}_{2}^{0}\right)$ is verified as
well. Let us apply Theorem 4.1 with the choice (4.12), i.e., there exists a sequence $\left\{u_{i}\right\}_{i} \subset H_{0}^{1}(\Omega)$ of different elements such that

$$
\begin{cases}-\triangle u_{i}(x)+\left(\tilde{\lambda}_{0}-\lambda \bar{c}\right) u_{i}(x) \in \partial F\left(u_{i}(x)\right)+\tilde{\lambda}_{0} u_{i}(x)+\lambda\left(\partial G\left(u_{i}(x)\right)-\bar{c} u_{i}(x)\right) & x \in \Omega \\ u_{i}(x) \geq 0 & x \in \Omega \\ u_{i}(x)=0 & x \in \partial \Omega\end{cases}
$$

where we used the inclusion (4.14). In particular, u_{i} solves problem $\left(\mathcal{D}_{\lambda}\right), i \in \mathbb{N}$, which completes the proof of (i).
(ii) Case $p>1$. Let $\lambda \geq 0$ be arbitrary fixed and choose a number $\lambda_{0} \in\left(0,-l_{0}\right)$. Let

$$
\begin{equation*}
k:=\lambda_{0}>0 \text { and } A(s):=F(s)+\lambda G(s)+\lambda_{0} \frac{s^{2}}{2} \text { for every } s \in[0, \infty) \tag{4.16}
\end{equation*}
$$

Since $F(0)=G(0)=0$, hypothesis $\left(\mathrm{H}_{0}^{0}\right)$ clearly holds. By $\left(G_{1}^{0}\right)$ one has

$$
\underline{c}=\liminf _{s \rightarrow 0^{+}} \frac{\min \{\partial G(s)\}}{s^{p}} \leq \limsup _{s \rightarrow 0^{+}} \frac{\max \{\partial G(s)\}}{s^{p}}=\bar{c}
$$

In particular, since $p>1$, then

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \frac{\min \{\partial G(s)\}}{s}=\lim _{s \rightarrow 0^{+}} \frac{\max \{\partial G(s)\}}{s}=0 \tag{4.17}
\end{equation*}
$$

and for sufficiently small $\epsilon>0$ there exists $\gamma=\gamma(\epsilon)>0$ such that

$$
\max \{\partial G(s)\}-\bar{c} s^{p}<\epsilon s^{p}, \forall s \in[0, \gamma]
$$

and

$$
\min \{\partial G(s)\}-\underline{c} s^{p}>-\epsilon s^{p}, \forall s \in[0, \gamma]
$$

For a fixed $s \in[0, \gamma]$, by Lebourg's mean value theorem and $G(0)=0$ we conclude again that $G(s)-G(0)=\xi_{s} s$. Accordingly, for sufficiently small $\epsilon>0$ there exists $\gamma=\gamma(\epsilon)>0$ such that $(\underline{c}-\epsilon) s^{p+1} \leq G(s) \leq(\bar{c}+\epsilon) s^{p+1}$ for every $s \in[0, \gamma]$. Thus, since $p>1$,

$$
\lim _{s \rightarrow 0^{+}} \frac{G(s)}{s^{2}}=\lim _{s \rightarrow 0^{+}} \frac{G(s)}{s^{p+1}} s^{p-1}=0
$$

Therefore, by using (4.16) and $\left(F_{1}^{0}\right)$, we conclude that

$$
\liminf _{s \rightarrow 0^{+}} \frac{A(s)}{s^{2}}=\liminf _{s \rightarrow 0^{+}} \frac{F(s)}{s^{2}}+\lambda \lim _{s \rightarrow 0^{+}} \frac{G(s)}{s^{2}}+\frac{\lambda_{0}}{2}>-\infty
$$

and

$$
\limsup _{s \rightarrow 0^{+}} \frac{A(s)}{s^{2}}=\infty
$$

i.e., $\left(\mathrm{H}_{0}^{1}\right)$ holds. Since

$$
\partial A(s) \subseteq \partial F(s)+\lambda \partial G(s)+\lambda_{0} s
$$

and $\lambda \geq 0$, we have that

$$
\max \{\partial A(s)\} \leq \max \{\partial F(s)\}+\max \left\{\lambda \partial G(s)+\lambda_{0} s\right\}
$$

Since

$$
\limsup _{s \rightarrow 0^{+}} \frac{\max \{\partial G(s)\}}{s^{p}}=\bar{c}
$$

cf. $\left(\mathrm{G}_{1}^{0}\right)$, and

$$
\liminf _{s \rightarrow 0^{+}} \frac{\max \{\partial F(s)\}}{s}=l_{0}
$$

cf. $\left(\mathrm{F}_{2}^{0}\right)$, by relation (4.17) it turns out that

$$
\liminf _{s \rightarrow 0^{+}} \frac{\max \{\partial A(s)\}}{s}=\liminf _{s \rightarrow 0^{+}} \frac{\max \{\partial F(s)\}}{s}+\lambda \lim _{s \rightarrow 0^{+}} \frac{\max \{\partial G(s)\}}{s}+\lambda_{0}=l_{0}+\lambda_{0}<0
$$

and the upper semicontinuity of ∂A implies the existence of two sequences $\left\{\delta_{i}\right\}_{i}$ and $\left\{\eta_{i}\right\}_{i} \subset(0,1)$ such that $0<\eta_{i+1}<\delta_{i}<s_{i}<\eta_{i}, \lim _{i \rightarrow \infty} \eta_{i}=0$, and $\max \{\partial A(s)\} \leq 0$ for all $s \in\left[\delta_{i}, \eta_{i}\right]$ and $i \in \mathbb{N}$. Therefore, hypothesis $\left(\mathrm{H}_{2}^{0}\right)$ holds. Now, we can apply Theorem 4.1, i.e., there is a sequence $\left\{u_{i}\right\}_{i} \subset H_{0}^{1}(\Omega)$ of different elements such that

$$
\begin{cases}-\triangle u_{i}(x)+\lambda_{0} u_{i}(x) \in \partial A\left(u_{i}(x)\right) \subseteq \partial F\left(u_{i}(x)\right)+\lambda \partial G\left(u_{i}(x)\right)+\lambda_{0} u_{i}(x) & x \in \Omega \\ u_{i}(x) \geq 0 & x \in \Omega \\ u_{i}(x)=0 & x \in \partial \Omega\end{cases}
$$

which means that u_{i} solves problem $\left(\mathcal{D}_{\lambda}\right), i \in \mathbb{N}$. This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. The proof is done in two steps:
(i) Let $\lambda_{0} \in\left(0,-l_{0}\right), \lambda \geq 0$ and define

$$
\begin{equation*}
k:=\lambda_{0}>0 \text { and } A^{\lambda}(s):=F(s)+\lambda G(s)+\lambda_{0} \frac{s^{2}}{2} \text { for every } s \in[0, \infty) \tag{4.18}
\end{equation*}
$$

One can observe that $\partial A^{\lambda}(s) \subseteq \partial F(s)+\lambda_{0} s+\lambda \partial G(s)$ for every $s \geq 0$. On account of $\left(F_{2}^{0}\right)$, there is a sequence $\left\{s_{i}\right\}_{i} \subset(0,1)$ converging to 0 such that

$$
\max \left\{\partial A^{\lambda=0}\left(s_{i}\right)\right\} \leq \max \left\{\partial F\left(s_{i}\right)\right\}+\lambda_{0} s_{i}<0
$$

Thus, due to the upper semicontinuity of $(s, \lambda) \mapsto \partial A^{\lambda}(s)$, we can choose three sequences $\left\{\delta_{i}\right\}_{i},\left\{\eta_{i}\right\}_{i},\left\{\lambda_{i}\right\}_{i} \subset(0,1)$ such that $0<\eta_{i+1}<\delta_{i}<s_{i}<\eta_{i}, \lim _{i \rightarrow \infty} \eta_{i}=0$, and

$$
\max \left\{\partial A^{\lambda}(s)\right\} \leq 0 \text { for all } \lambda \in\left[0, \lambda_{i}\right], s \in\left[\delta_{i}, \eta_{i}\right], i \in \mathbb{N}
$$

Without any loss of generality, we may choose

$$
\begin{equation*}
\delta_{i} \leq \min \left\{i^{-1}, 2^{-1} i^{-2}\left[1+m(\Omega)\left(\max _{s \in[0,1]}|\partial F(s)|+\max _{s \in[0,1]}|\partial G(s)|\right)\right]^{-1}\right\} \tag{4.19}
\end{equation*}
$$

For every $i \in \mathbb{N}$ and $\lambda \in\left[0, \lambda_{i}\right]$, let $A_{i}^{\lambda}:[0, \infty) \rightarrow \mathbb{R}$ be defined as

$$
\begin{equation*}
A_{i}^{\lambda}(s)=A^{\lambda}\left(\tau_{\eta_{i}}(s)\right) \tag{4.20}
\end{equation*}
$$

and the energy functional $\mathcal{T}_{i, \lambda}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ associated with the differential inclusion problem $\left(\mathrm{D}_{A_{i}^{\lambda}}^{k}\right)$ is given by

$$
\mathcal{T}_{i, \lambda}(u)=\frac{1}{2}\|u\|_{H_{0}^{1}}^{2}+\frac{k}{2} \int_{\Omega} u^{2} d x-\int_{\Omega} A_{i}^{\lambda}(u(x)) d x .
$$

One can easily check that for every $i \in \mathbb{N}$ and $\lambda \in\left[0, \lambda_{i}\right]$, the function A_{i}^{λ} verifies the hypotheses of Theorem 3.1. Accordingly, for every $i \in \mathbb{N}$ and $\lambda \in\left[0, \lambda_{i}\right]$:

$$
\begin{gather*}
\mathcal{T}_{i, \lambda} \text { attains its infinum on } W^{\eta_{i}} \text { at some } u_{i, \lambda}^{0} \in W^{\eta_{i}} \tag{4.21}\\
u_{i, \lambda}^{0}(x) \in\left[0, \delta_{i}\right] \text { for a.e. } x \in \Omega \tag{4.22}\\
u_{i, \lambda}^{0} \text { is a weak solution of }\left(\mathrm{D}_{A_{i}^{\lambda}}^{k}\right) . \tag{4.23}
\end{gather*}
$$

By the choice of the function A^{λ} and $k>0, u_{i, \lambda}^{0}$ is also a solution to the differential inclusion problem $\left(\mathrm{D}_{A^{\lambda}}^{k}\right)$, so $\left(\mathcal{D}_{\lambda}\right)$.
(ii) It is clear that for $\lambda=0$, the set-valued map $\partial A_{i}^{\lambda}=\partial A_{i}^{0}$ verifies the hypotheses of Theorem 4.1. In particular, $\mathcal{T}_{i}:=\mathcal{T}_{i, 0}$ is the energy functional associated with problem $\left(\mathrm{D}_{A_{i}^{0}}^{k}\right)$. Consequently, the elements $u_{i}^{0}:=u_{i, 0}^{0}$ verify not only (4.21)-(4.23) but also

$$
\begin{equation*}
\mathcal{T}_{i}\left(u_{i}^{0}\right)=\min _{W^{\eta_{i}}} \mathcal{T}_{i} \leq \mathcal{T}_{i}\left(w_{\tilde{s}_{i}}\right)<0 \text { for all } i \in \mathbb{N} \tag{4.24}
\end{equation*}
$$

Similarly to Kristály and Moroşanu [12], let $\left\{\theta_{i}\right\}_{i}$ be a sequence with negative terms such that $\lim _{i \rightarrow \infty} \theta_{i}=0$. Due to (4.24) we may assume that

$$
\begin{equation*}
\theta_{i}<\mathcal{T}_{i}\left(u_{i}^{0}\right) \leq \mathcal{T}_{i}\left(w_{\tilde{s}_{i}}\right)<\theta_{i+1} \tag{4.25}
\end{equation*}
$$

Let us choose

$$
\begin{equation*}
\lambda_{i}^{\prime}=\frac{\theta_{i+1}-\mathcal{T}_{i}\left(w_{\tilde{s}_{i}}\right)}{m(\Omega) \max _{s \in[0,1]}|G(s)|+1} \text { and } \lambda_{i}^{\prime \prime}=\frac{\mathcal{T}_{i}\left(u_{i}^{0}\right)-\theta_{i}}{m(\Omega) \max _{s \in[0,1]}|G(s)|+1}, i \in \mathbb{N} \tag{4.26}
\end{equation*}
$$

and for a fixed $k \in \mathbb{N}$, set

$$
\begin{equation*}
\lambda_{k}^{0}=\min \left(1, \lambda_{1}, \ldots, \lambda_{k}, \lambda_{1}{ }^{\prime}, \ldots, \lambda_{k}{ }^{\prime}, \lambda_{1}{ }^{\prime \prime}, \ldots, \lambda_{k}{ }^{\prime \prime}\right)>0 \tag{4.27}
\end{equation*}
$$

Having in our mind these choices, for every $i \in\{1, \ldots, k\}$ and $\lambda \in\left[0, \lambda_{k}^{0}\right]$ one has

$$
\begin{align*}
\mathcal{T}_{i, \lambda}\left(u_{i, \lambda}^{0}\right) & \leq \mathcal{T}_{i, \lambda}\left(w_{\tilde{s}_{i}}\right)=\frac{1}{2}\left\|w_{\tilde{s}_{i}}\right\|_{H_{0}^{1}}^{2}-\int_{\Omega} F\left(w_{\tilde{s}_{i}}(x)\right) d x-\lambda \int_{\Omega} G\left(w_{\tilde{s}_{i}}(x)\right) d x \\
& =\mathcal{T}_{i}\left(w_{\tilde{s}_{i}}\right)-\lambda \int_{\Omega} G\left(w_{\tilde{s}_{i}}(x)\right) d x \\
& <\theta_{i+1}, \tag{4.28}
\end{align*}
$$

and due to $u_{i, \lambda}^{0} \in W^{\eta i}$ and to the fact that u_{i}^{0} is the minimum point of \mathcal{T}_{i} on the set $W^{\eta i}$, by (4.25) we also have

$$
\begin{equation*}
\mathcal{T}_{i, \lambda}\left(u_{i, \lambda}^{0}\right)=\mathcal{T}_{i}\left(u_{i, \lambda}^{0}\right)-\lambda \int_{\Omega} G\left(u_{i, \lambda}^{0}(x)\right) d x \geq \mathcal{T}_{i}\left(u_{i}^{0}\right)-\lambda \int_{\Omega} G\left(u_{i, \lambda}^{0}(x)\right) d x>\theta_{i} \tag{4.29}
\end{equation*}
$$

Therefore, by (4.28) and (4.29), for every $i \in\{1, \ldots, k\}$ and $\lambda \in\left[0, \lambda_{k}^{0}\right]$, one has

$$
\theta_{i}<\mathcal{T}_{i, \lambda}\left(u_{i, \lambda}^{0}\right)<\theta_{i+1}
$$

thus

$$
\mathcal{T}_{1, \lambda}\left(u_{1, \lambda}^{0}\right)<\ldots<\mathcal{T}_{k, \lambda}\left(u_{k, \lambda}^{0}\right)<0
$$

We notice that $u_{i}^{0} \in W^{\eta_{1}}$ for every $i \in\{1, \ldots, k\}$, so $\mathcal{T}_{i, \lambda}\left(u_{i, \lambda}^{0}\right)=\mathcal{T}_{1, \lambda}\left(u_{i, \lambda}^{0}\right)$ because of (4.20). Therefore, we conclude that for every $\lambda \in\left[0, \lambda_{k}^{0}\right]$,

$$
\mathcal{T}_{1, \lambda}\left(u_{1, \lambda}^{0}\right)<\ldots<\mathcal{T}_{1, \lambda}\left(u_{k, \lambda}^{0}\right)<0=\mathcal{T}_{1, \lambda}(0) .
$$

Based on these inequalities, it turns out that the elements $u_{1, \lambda}^{0}, \ldots, u_{k, \lambda}^{0}$ are distinct and nontrivial whenever $\lambda \in\left[0, \lambda_{k}^{0}\right]$.

Now, we are going to prove the estimate (2.2). We have for every $i \in\{1, \ldots, k\}$ and $\lambda \in\left[0, \lambda_{k}^{0}\right]$:

$$
\mathcal{T}_{1, \lambda}\left(u_{i, \lambda}^{0}\right)=\underset{14}{\mathcal{T}_{i, \lambda}\left(u_{i, \lambda}^{0}\right)<\theta_{i+1}<0 .}
$$

By Lebourg's mean value theorem and (4.19), we have for every $i \in\{1, \ldots, k\}$ and $\lambda \in\left[0, \lambda_{k}^{0}\right]$ that

$$
\begin{aligned}
\frac{1}{2}\left\|u_{i, \lambda}^{0}\right\|_{H_{0}^{1}}^{2} & <\int_{\Omega} F\left(u_{i, \lambda}^{0}(x)\right) d x+\lambda \int_{\Omega} G\left(u_{i, \lambda}^{0}(x)\right) d x \\
& \leq m(\Omega) \delta_{i}\left[\max _{s \in[0,1]}|\partial F(s)|+\max _{s \in[0,1]}|\partial G(s)|\right] \\
& \leq \frac{1}{2 i^{2}}
\end{aligned}
$$

This completes the proof of Theorem 2.2.

5. Proof of Theorems 2.3 and 2.4

We consider again the differential inclusion problem

$$
\begin{cases}-\triangle u(x)+k u(x) \in \partial A(u(x)), \quad u(x) \geq 0 & x \in \Omega \tag{A}\\ u(x)=0 & x \in \partial \Omega\end{cases}
$$

where $k>0$ and the locally Lipschitz function $A: \mathbb{R}_{+} \rightarrow \mathbb{R}$ verifies
$\left(\mathrm{H}_{0}^{\infty}\right): A(0)=0 ;$
$\left(\mathrm{H}_{1}^{\infty}\right):-\infty<\liminf _{s \rightarrow \infty} \frac{A(s)}{s^{2}}$ and $\lim \sup _{s \rightarrow \infty} \frac{A(s)}{s^{2}}=+\infty$;
$\left(\mathrm{H}_{2}^{\infty}\right)$: there are two sequences $\left\{\delta_{i}\right\},\left\{\eta_{i}\right\}$ with $0<\delta_{i}<\eta_{i}<\delta_{i+1}, \lim _{i \rightarrow \infty} \delta_{i}=\infty$, and

$$
\max \{\partial A(s)\}:=\max \{\xi: \xi \in \partial A(s)\} \leq 0
$$

for every $s \in\left[\delta_{i}, \eta_{i}\right], i \in \mathbb{N}$.
The counterpart of Theorem 4.1 reads as follows.
Theorem 5.1. Let $k>0$ and assume the hypotheses $\left(\mathrm{H}_{0}^{\infty}\right),\left(\mathrm{H}_{1}^{\infty}\right)$ and $\left(\mathrm{H}_{2}^{\infty}\right)$ hold. Then the differential inclusion problem $\left(\mathrm{D}_{A}^{k}\right)$ admits a sequence $\left\{u_{i}^{\infty}\right\}_{i} \subset H_{0}^{1}(\Omega)$ of distinct weak solutions such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|u_{i}^{\infty}\right\|_{L^{\infty}}=\infty \tag{5.1}
\end{equation*}
$$

Proof. The proof is similar to the one performed in Theorem 4.1; we shall show the differences only. We associate the energy functional $\mathcal{T}_{i}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ with problem $\left(\mathrm{D}_{A_{i}}^{k}\right)$, where $A_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
\begin{equation*}
A_{i}(s)=A\left(\tau_{\eta_{i}}(s)\right) \tag{5.2}
\end{equation*}
$$

with $A(s)=0$ for $s \leq 0$. One can show that there exists $M_{A_{i}}>0$ such that

$$
\max \left|\partial A_{i}(s)\right|:=\max \left\{|\xi|: \xi \in \partial A_{i}(s)\right\} \leq M_{A_{i}}
$$

for all $s \geq 0$, i.e, hypothesis $\left(\mathrm{H}_{A_{i}}^{1}\right)$ holds. Moreover, $\left(\mathrm{H}_{A_{i}}^{2}\right)$ follows by $\left(\mathrm{H}_{2}^{\infty}\right)$. Thus Theorem 4.1 can be applied for all $i \in \mathbb{N}$, i.e., we have an element $u_{i}^{\infty} \in W^{\eta_{i}}$ such that

$$
\begin{align*}
& u_{i}^{\infty} \text { is the minimum point of the functional } \mathcal{T}_{i} \text { on } W^{\eta_{i}}, \tag{5.3}\\
& \qquad u_{i}^{\infty}(x) \in\left[0, \delta_{i}\right] \text { for a.e. } x \in \Omega \tag{5.4}\\
& u_{i}^{\infty} \text { is a weak solution of }\left(\mathrm{D}_{A_{i}}^{k}\right) \tag{5.5}
\end{align*}
$$

By (5.2), u_{i}^{∞} turns to be a weak solution also for differential inclusion problem $\left(\mathrm{D}_{A}^{k}\right)$.
We shall prove that there are infinitely many distinct elements in the sequence $\left\{u_{i}^{\infty}\right\}_{i}$ by showing that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \mathcal{T}_{i}\left(u_{i}^{\infty}\right)=-\infty \tag{5.6}
\end{equation*}
$$

By the left part of $\left(\mathrm{H}_{1}^{\infty}\right)$ we can find $l_{\infty}^{A}>0$ and $\zeta>0$ such that

$$
\begin{equation*}
A(s) \geq-l_{\infty}^{A} \text { for all } s>\zeta \tag{5.7}
\end{equation*}
$$

Let us choose $L_{\infty}^{A}>0$ large enough such that

$$
\begin{equation*}
\frac{1}{2} C(r, n)+\left(\frac{k}{2}+l_{\infty}^{A}\right) m(\Omega)<L_{\infty}^{A}(r / 2)^{n} \omega_{n} \tag{5.8}
\end{equation*}
$$

On account of the right part of $\left(\mathrm{H}_{1}^{\infty}\right)$, one can fix a sequence $\left\{\tilde{s}_{i}\right\}_{i} \subset(0, \infty)$ such that $\lim _{i \rightarrow \infty} \tilde{s_{i}}=$ ∞ and

$$
\begin{equation*}
A\left(\tilde{s}_{i}\right)>L_{\infty}^{A} \tilde{s}_{i}^{2} \text { for every } i \in \mathbb{N} \tag{5.9}
\end{equation*}
$$

We know from $\left(\mathrm{H}_{2}^{\infty}\right)$ that $\lim _{i \rightarrow \infty} \delta_{i}=\infty$, therefore one has a subsequence $\left\{\delta_{m_{i}}\right\}_{i}$ of $\left\{\delta_{i}\right\}_{i}$ such that $\tilde{s}_{i} \leq \delta_{m_{i}}$ for all $i \in \mathbb{N}$. Let $i \in \mathbb{N}$, and recall $w_{s i} \in H_{0}^{1}(\Omega)$ from (3.1) with $s_{i}:=\tilde{s}_{i}>0$. Then $w_{\tilde{s} i} \in W^{\eta_{m_{i}}}$ and according to (3.2), (5.7) and (5.9) we have

$$
\begin{aligned}
\mathcal{T}_{m i}\left(w_{\tilde{s}_{i}}\right)= & \frac{1}{2}\left\|w_{\tilde{s}_{i}}\right\|_{H_{0}^{1}}^{2}+\frac{k}{2} \int_{\Omega} w_{\tilde{s}_{i}}^{2}-\int_{\Omega} A_{m_{i}}\left(w_{\tilde{s}_{i}}(x)\right) d x \\
= & \frac{1}{2} C(r, n) \tilde{s}_{i}^{2}+\frac{k}{2} \int_{\Omega} w_{\tilde{s}_{i}}^{2}-\int_{B\left(x_{0}, r / 2\right)} A\left(\tilde{s}_{i}\right) d x \\
& -\int_{\left(B\left(x_{0}, r\right) \backslash B\left(x_{0}, r / 2\right)\right) \cap\left\{w_{\tilde{s}_{i}}>\zeta\right\}} A\left(w_{\tilde{s}_{i}}(x)\right) d x \\
& -\int_{\left(B\left(x_{0}, r\right) \backslash B\left(x_{0}, r / 2\right)\right) \cap\left\{w_{\tilde{s}_{i}} \leq \zeta\right\}} A\left(w_{\tilde{s}_{i}}(x)\right) d x \\
\leq & {\left[\frac{1}{2} C(r, n)+\frac{k}{2} m(\Omega)-L_{\infty}^{A}(r / 2)^{n} \omega_{n}+l_{\infty}^{A} m(\Omega)\right] \tilde{s}_{i}^{2}+\tilde{M}_{A} m(\Omega) \zeta }
\end{aligned}
$$

where $\tilde{M}_{A}=\max \{|A(s)|: s \in[0, \zeta]\}$ does not depend on $i \in \mathbb{N}$. This estimate combined by (5.8) and $\lim _{i \rightarrow \infty} \tilde{s}_{i}=\infty$ yields that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \mathcal{T}_{m_{i}}\left(w_{\tilde{s}_{i}}\right)=-\infty \tag{5.10}
\end{equation*}
$$

By equation (5.3), one has

$$
\begin{equation*}
\mathcal{T}_{m_{i}}\left(u_{m_{i}}^{\infty}\right)=\min _{W^{\eta m_{i}}} \mathcal{T}_{m_{i}} \leq \mathcal{T}_{m_{i}}\left(w_{\tilde{s}_{i}}\right) \tag{5.11}
\end{equation*}
$$

It follows by (5.10) that $\lim _{i \rightarrow \infty} \mathcal{T}_{m_{i}}\left(u_{m_{i}}^{\infty}\right)=-\infty$.
We notice that the sequence $\left\{\mathcal{T}_{i}\left(u_{i}^{\infty}\right)\right\}_{i}$ is non-increasing. Indeed, let $i<k$; due to (5.2) one has that

$$
\begin{equation*}
\mathcal{T}_{i}\left(u_{i}^{\infty}\right)=\min _{W^{\eta_{i}}} \mathcal{T}_{i}=\min _{W^{\eta_{i}}} \mathcal{T}_{k} \geq \min _{W^{\eta_{k}}} \mathcal{T}_{k}=\mathcal{T}_{k}\left(u_{k}^{\infty}\right) \tag{5.12}
\end{equation*}
$$

which completes the proof of (5.6).
The proof of (5.1) goes in a similar way as in [12].

Proof of Theorem 2.3. We split the proof into two parts.
(i) Case $p=1$. Let $\lambda \geq 0$ with $\lambda \bar{c}<-l_{\infty}$ and fix $\tilde{\lambda}_{\infty} \in \mathbb{R}$ such that $\lambda \bar{c}<\tilde{\lambda}_{\infty}<-l_{\infty}$. With these choices, we define

$$
\begin{equation*}
k:=\tilde{\lambda}_{\infty}-\lambda \bar{c}>0 \text { and } A(s):=F(s)+\frac{\tilde{\lambda}_{\infty}}{2} s^{2}+\lambda\left(G(s)-\frac{\bar{c}}{2} s^{2}\right) \text { for every } s \in[0, \infty) \tag{5.13}
\end{equation*}
$$

It is clear that $A(0)=0$, i.e., $\left(\mathrm{H}_{0}^{\infty}\right)$ is verified. A similar argument for the p-order perturbation ∂G as before shows that
$\liminf _{s \rightarrow \infty} \frac{A(s)}{s^{2}} \geq \liminf _{s \rightarrow \infty} \frac{F(s)}{s^{2}}+\frac{\tilde{\lambda}_{\infty}-\lambda \bar{c}}{2}+\lambda \liminf _{s \rightarrow \infty} \frac{G(s)}{s^{2}} \geq \liminf _{s \rightarrow \infty} \frac{F(s)}{s^{2}}+\frac{\tilde{\lambda}_{\infty}-\lambda \bar{c}}{2}+\lambda \underline{c}>-\infty$, and

$$
\limsup _{s \rightarrow \infty} \frac{A(s)}{s^{2}} \geq \limsup _{s \rightarrow \infty} \frac{F(s)}{s^{2}}+\frac{\tilde{\lambda}_{\infty}-\lambda \bar{c}}{2}+\lambda \liminf _{s \rightarrow \infty} \frac{G(s)}{s^{2}}=+\infty
$$

i.e., $\left(\mathrm{H}_{1}^{\infty}\right)$ is verified.

Since

$$
\begin{equation*}
\partial A(s) \subseteq \partial F(s)+\tilde{\lambda}_{\infty} s+\lambda(\partial G(s)-\bar{c} s), \quad s \geq 0 \tag{5.14}
\end{equation*}
$$

it turns out that

$$
\liminf _{s \rightarrow \infty} \frac{\max \{\partial A(s)\}}{s} \leq \liminf _{s \rightarrow \infty} \frac{\max \{\partial F(s)\}}{s}+\tilde{\lambda}_{\infty}-\lambda \bar{c}+\lambda \limsup _{s \rightarrow \infty} \frac{\max \{\partial G(s)\}}{s}=l_{\infty}+\tilde{\lambda}_{\infty}<0 .
$$

By using the upper semicontinuity of $s \mapsto \partial A(s)$, one may fix two sequences $\left\{\delta_{i}\right\}_{i},\left\{\eta_{i}\right\}_{i} \subset$ $(0, \infty)$ such that $0<\delta_{i}<s_{i}<\eta_{i}<\delta_{i+1}, \lim _{i \rightarrow \infty} \delta_{i}=\infty$, and $\max \{\partial A(s)\} \leq 0$ for all $s \in\left[\delta_{i}, \eta_{i}\right]$ and $i \in \mathbb{N}$. Thus, $\left(\mathrm{H}_{2}^{\infty}\right)$ is verified as well. By applying the inclusion (5.14) and Theorem 4.1 with the choice (5.13), there exists a sequence $\left\{u_{i}\right\}_{i} \subset H_{0}^{1}(\Omega)$ of different elements such that

$$
\begin{cases}-\triangle u_{i}(x)+\left(\tilde{\lambda}_{\infty}-\lambda \bar{c}\right) u_{i}(x) \in \partial F\left(u_{i}(x)\right)+\tilde{\lambda}_{\infty} u_{i}(x)+\lambda\left(\partial G\left(u_{i}(x)\right)-\bar{c} u_{i}(x)\right) & x \in \Omega, \\ u_{i}(x) \geq 0 & x \in \Omega, \\ u_{i}(x)=0 & x \in \partial \Omega\end{cases}
$$

i.e., u_{i} solves problem $\left(\mathcal{D}_{\lambda}\right), i \in \mathbb{N}$.
(ii) Case $p<1$. Let $\lambda \geq 0$ be arbitrary fixed and choose a number $\lambda_{\infty} \in\left(0,-l_{\infty}\right)$. Let

$$
\begin{equation*}
k:=\lambda_{\infty}>0 \text { and } A(s):=F(s)+\lambda G(s)+\lambda_{\infty} \frac{s^{2}}{2} \text { for every } s \in[0, \infty) \tag{5.15}
\end{equation*}
$$

Since $F(0)=G(0)=0$, hypothesis $\left(\mathrm{H}_{0}^{\infty}\right)$ clearly holds. Moreover, by $\left(G_{1}^{\infty}\right)$, for sufficiently small $\epsilon>0$ there exists $s_{0}>0$, such that $(\underline{c}-\epsilon) s^{p+1} \leq G(s) \leq(\bar{c}+\epsilon) s^{p+1}$ for every $s>s_{0}$. Thus, since $p<1$,

$$
\lim _{s \rightarrow \infty} \frac{G(s)}{s^{2}}=\lim _{s \rightarrow \infty} \frac{G(s)}{s^{p+1}} s^{p-1}=0 .
$$

Accordingly, by using (5.15) we obtain that hypothesis $\left(\mathrm{H}_{1}^{\infty}\right)$ holds. A similar argument as above implies that

$$
\liminf _{s \rightarrow \infty} \frac{\max \{\partial A(s)\}}{s} \leq l_{0}+\lambda_{\infty}<0,
$$

and the upper semicontinuity of ∂A implies the existence of two sequences $\left\{\delta_{i}\right\}_{i}$ and $\left\{\eta_{i}\right\}_{i} \subset(0,1)$ such that $0<\delta_{i}<s_{i}<\eta_{i}<\delta_{i+1}, \lim _{i \rightarrow \infty} \delta_{i}=\infty$, and $\max \{\partial A(s)\} \leq 0$ for all $s \in\left[\delta_{i}, \eta_{i}\right]$ and $i \in \mathbb{N}$. Therefore, hypothesis $\left(\mathrm{H}_{2}^{\infty}\right)$ holds. Now, we can apply Theorem 4.1, i.e., there is a sequence $\left\{u_{i}\right\}_{i} \subset H_{0}^{1}(\Omega)$ of different elements such that

$$
\begin{cases}-\triangle u_{i}(x)+\lambda_{\infty} u_{i}(x) \in \partial A\left(u_{i}(x)\right) \subseteq \partial F\left(u_{i}(x)\right)+\lambda \partial G\left(u_{i}(x)\right)+\lambda_{\infty} u_{i}(x) & x \in \Omega \\ u_{i}(x) \geq 0 & x \in \Omega \\ u_{i}(x)=0 & x \in \partial \Omega\end{cases}
$$

which means that u_{i} solves problem $\left(\mathcal{D}_{\lambda}\right), i \in \mathbb{N}$, which completes the proof.

Proof of Theorem 2.4. The proof is done in two steps:
(i) Let $\lambda_{\infty} \in\left(0,-l_{\infty}\right), \lambda \geq 0$ and define

$$
\begin{equation*}
k:=\lambda_{\infty}>0 \text { and } A^{\lambda}(s):=F(s)+\lambda G(s)+\lambda_{\infty} \frac{s^{2}}{2} \text { for every } s \in[0, \infty) \tag{5.16}
\end{equation*}
$$

One has clearly that $\partial A^{\lambda}(s) \subseteq \partial F(s)+\lambda_{\infty} s+\lambda \partial G(s)$ for every $s \in \mathbb{R}$. On account of $\left(F_{2}^{\infty}\right)$, there is a sequence $\left\{s_{i}\right\}_{i} \subset(0, \infty)$ converging to ∞ such that

$$
\max \left\{\partial A^{\lambda=0}\left(s_{i}\right)\right\} \leq \max \left\{\partial F\left(s_{i}\right)\right\}+\lambda_{\infty} s_{i}<0
$$

By the upper semicontinuity of $(s, \lambda) \mapsto \partial A^{\lambda}(s)$, we can choose the sequences $\left\{\delta_{i}\right\}_{i},\left\{\eta_{i}\right\}_{i},\left\{\lambda_{i}\right\}_{i} \subset$ $(0, \infty)$ such that $0<\delta_{i}<s_{i}<\eta_{i}<\delta_{i+1}, \lim _{i \rightarrow \infty} \delta_{i}=\infty$, and

$$
\max \left\{\partial A^{\lambda}(s)\right\} \leq 0
$$

for all $\lambda \in\left[0, \lambda_{i}\right], s \in\left[\delta_{i}, \eta_{i}\right]$ and $i \in \mathbb{N}$.
For every $i \in \mathbb{N}$ and $\lambda \in\left[0, \lambda_{i}\right]$, let $A_{i}^{\lambda}:[0, \infty) \rightarrow \mathbb{R}$ be defined by

$$
\begin{equation*}
A_{i}^{\lambda}(s)=A^{\lambda}\left(\tau_{\eta_{i}}(s)\right) \tag{5.17}
\end{equation*}
$$

and accordingly, the energy functional $\mathcal{T}_{i, \lambda}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ associated with the differential inclusion $\operatorname{problem}\left(\mathrm{D}_{A_{i}^{\lambda}}^{k}\right)$ is

$$
\mathcal{T}_{i, \lambda}(u)=\frac{1}{2}\|u\|_{H_{0}^{1}}^{2}+\frac{k}{2} \int_{\Omega} u^{2} d x-\int_{\Omega} A_{i}^{\lambda}(u(x)) d x
$$

Then for every $i \in \mathbb{N}$ and $\lambda \in\left[0, \lambda_{i}\right]$, the function A_{i}^{λ} clearly verifies the hypotheses of Theorem 3.1. Accordingly, for every $i \in \mathbb{N}$ and $\lambda \in\left[0, \lambda_{i}\right]$ there exists

$$
\begin{gather*}
\mathcal{T}_{i, \lambda} \text { attains its infimum at some } \tilde{u}_{i, \lambda}^{\infty} \in W^{\eta_{i}} \tag{5.18}\\
\tilde{u}_{i, \lambda}^{\infty} \in\left[0, \delta_{i}\right] \text { for a.e. } x \in \Omega \tag{5.19}\\
\tilde{u}_{i, \lambda}^{\infty}(x) \text { is a weak solution of }\left(\mathrm{D}_{A_{i}^{\lambda}}^{k}\right) \tag{5.20}
\end{gather*}
$$

Due to (5.17), $\tilde{u}_{i, \lambda}^{\infty}$ is not only a solution to $\left(\mathrm{D}_{A_{i}^{\lambda}}^{k}\right)$ but also to the differential inclusion problem $\left(\mathrm{D}_{A^{\lambda}}^{k}\right)$, so $\left(\mathcal{D}_{\lambda}\right)$.
(ii) For $\lambda=0$, the function $\partial A_{i}^{\lambda}=\partial A_{i}^{0}$ verifies the hypotheses of Theorem 4.1. Moreover, $\mathcal{T}_{i}:=\mathcal{T}_{i, 0}$ is the energy functional associated with problem $\left(\mathrm{D}_{A_{i}^{0}}^{k}\right)$. Consequently, the elements $u_{i}^{\infty}:=u_{i, 0}^{\infty}$ verify not only (5.18)-(5.20) but also

$$
\begin{equation*}
\mathcal{T}_{m_{i}}\left(u_{m_{i}}^{\infty}\right)=\min _{W^{\eta_{m_{i}}}}\left(\mathcal{T}_{m_{i}}\right) \leq \mathcal{T}_{m_{i}}\left(w_{\tilde{s}_{i}}\right) \text { for all } i \in \mathbb{N} \tag{5.21}
\end{equation*}
$$

where the subsequence $\left\{u_{m_{i}}^{\infty}\right\}_{i}$ of $\left\{u_{i}^{\infty}\right\}_{i}$ and $w_{\tilde{s}_{i}} \in W^{\eta_{i}}$ appear in the proof of Theorem 5.1.
Similarly to Kristály and Moroşanu [12], let $\left\{\theta_{i}\right\}_{i}$ be a sequence with negative terms such that $\lim _{i \rightarrow \infty} \theta_{i}=-\infty$. On account of (5.21) we may assume that

$$
\begin{equation*}
\theta_{i+1}<\mathcal{T}_{m_{i}}\left(u_{m_{i}}^{\infty}\right) \leq \mathcal{T}_{m_{i}}\left(w_{\tilde{s}_{i}}\right)<\theta_{i} \tag{5.22}
\end{equation*}
$$

Let

$$
\begin{equation*}
\lambda_{i}^{\prime}=\frac{\theta_{i}-\mathcal{T}_{m_{i}}\left(w_{\tilde{s}_{i}}\right)}{m(\Omega) \max _{s \in[0,1]}|G(s)|+1} \text { and } \lambda_{i}^{\prime \prime}=\frac{\mathcal{T}_{m_{i}}\left(u_{m_{i}}^{\infty}\right)-\theta_{i+1}}{m(\Omega) \max _{s \in[0,1]}|G(s)|+1}, i \in \mathbb{N} \tag{5.23}
\end{equation*}
$$

and for a fixed $k \in \mathbb{N}$, we set

$$
\begin{equation*}
\lambda_{k}^{\infty}=\min \left(1, \lambda_{1}, \ldots, \lambda_{k}, \lambda_{1}{ }^{\prime}, \ldots, \lambda_{k}{ }^{\prime}, \lambda_{1}{ }^{\prime \prime}, \ldots, \lambda_{k}{ }^{\prime \prime}\right)>0 \tag{5.24}
\end{equation*}
$$

Then, for every $i \in\{1, \ldots, k\}$ and $\lambda \in\left[0, \lambda_{k}^{\infty}\right]$, due to (5.22) we have that

$$
\begin{align*}
\mathcal{T}_{m_{i}, \lambda}\left(\tilde{u}_{m_{i}, \lambda}^{\infty}\right) & \leq \mathcal{T}_{m_{i}, \lambda}\left(w_{\tilde{s}_{i}}\right)=\frac{1}{2}\left\|w_{\tilde{s}_{i}}\right\|_{H_{0}^{1}}^{2}-\int_{\Omega} F\left(w_{\tilde{s}_{i}}(x)\right) d x-\lambda \int_{\Omega} G\left(w_{\tilde{s}_{i}}(x)\right) d x \\
& =\mathcal{T}_{m_{i}}\left(w_{\tilde{s}_{i}}\right)-\lambda \int_{\Omega} G\left(w_{\tilde{s}_{i}}(x)\right) d x \\
& <\theta_{i} \tag{5.25}
\end{align*}
$$

Similarly, since $\tilde{u}_{m_{i}, \lambda}^{\infty} \in W^{\eta_{m_{i}}}$ and $u_{m_{i}}^{\infty}$ is the minimum point of \mathcal{T}_{i} on the set $W^{\eta_{m_{i}}}$, on account of (5.22) we have

$$
\begin{equation*}
\mathcal{T}_{m_{i}, \lambda}\left(\tilde{u}_{m_{i}, \lambda}^{\infty}\right)=\mathcal{T}_{m_{i}}\left(\tilde{u}_{m_{i}, \lambda}^{\infty}\right)-\lambda \int_{\Omega} G\left(\tilde{u}_{m_{i}, \lambda}^{\infty}\right) d x \geq \mathcal{T}_{m_{i}}\left(u_{m_{i}}^{\infty}\right)-\lambda \int_{\Omega} G\left(\tilde{u}_{m_{i}, \lambda}^{\infty}\right) d x>\theta_{i+1} \tag{5.26}
\end{equation*}
$$

Therefore, for every $i \in\{1, \ldots, k\}$ and $\lambda \in\left[0, \lambda_{k}^{\infty}\right]$,

$$
\begin{equation*}
\theta_{i+1}<\mathcal{T}_{m_{i}, \lambda}\left(\tilde{u}_{m_{i}, \lambda}^{\infty}\right)<\theta_{i}<0 \tag{5.27}
\end{equation*}
$$

thus

$$
\begin{equation*}
\mathcal{T}_{m_{k}, \lambda}\left(\tilde{u}_{m_{k}, \lambda}^{\infty}\right)<\ldots<\mathcal{T}_{m_{1}, \lambda}\left(\tilde{u}_{m_{1}, \lambda}^{\infty}\right)<0 \tag{5.28}
\end{equation*}
$$

Because of (5.17), we notice that $\tilde{u}_{m_{i}, \lambda}^{\infty} \in W^{\eta_{m_{k}}}$ for every $i \in\{1, \ldots, k\}$, thus $\mathcal{T}_{m_{i}, \lambda}\left(\tilde{u}_{m_{i}, \lambda}^{\infty}\right)=$ $\mathcal{T}_{m_{k}, \lambda}\left(\tilde{u}_{i, \lambda}^{\infty}\right)$. Therefore, for every $\lambda \in\left[0, \lambda_{k}^{\infty}\right]$,

$$
\mathcal{T}_{m_{k}, \lambda}\left(\tilde{u}_{m_{k}, \lambda}^{\infty}\right)<\ldots<\mathcal{T}_{m_{k}, \lambda}\left(\tilde{u}_{m_{1}, \lambda}^{\infty}\right)<0=\mathcal{T}_{m_{k}, \lambda}(0)
$$

i.e, the elements $\tilde{u}_{m_{1}, \lambda}^{\infty}, \ldots, \tilde{u}_{m_{k}, \lambda}^{\infty}$ are distinct and non-trivial whenever $\lambda \in\left[0, \lambda_{k}^{\infty}\right]$. The estimate (2.5) follows in a similar manner as in [12].

6. Concluding Remarks

1. Suitable modification of our arguments provide multiplicity results for the differential inclusion problem

$$
\begin{cases}-\Delta u(x)+u(x) \in \partial F(u(x))+\lambda \partial G(u(x)) & \text { in } \mathbb{R}^{n} ; \tag{D}\\ u \geq 0, & \text { in } \mathbb{R}^{n}\end{cases}
$$

where ∂F and ∂G behave in a similar manner as before. The main difficulty in the investigation of ($\tilde{\mathcal{D}}_{\lambda}$) is the lack of compact embedding of the Sobolev space $H^{1}\left(\mathbb{R}^{n}\right)$ into the Lebesgue spaces $L^{q}\left(\mathbb{R}^{n}\right), n \geq 2, q \in\left[2,2^{*}\right)$. However, by using Strauss-type estimates and Lions-type embedding results for radially symmetric functions of $H^{1}\left(\mathbb{R}^{n}\right)$ (see e.g. Willem [23]), the principle of symmetric criticality for non-smooth functionals (see Kobayashi and Ôtani [13] and Squassina [22]) provides the expected results. A related result in the smooth setting can be found in Kristály [11].
2. Assume that ∂F oscillates at a point $l \in[0,+\infty]$ and ∂G has a p-order growth at l. We are wondering if our results, valid for $l=0$ and $l=+\infty$, can be extended to any $l \in(0, \infty)$, even in the smooth framework.

7. Appendix: Locally Lipschitz functions

In this part we collect those notions and properties of locally Lipschitz functions which are used in the proofs; for details, see Clarke [7] and Chang [6]. Let $(X,\|\cdot\|)$ be a real Banach space and $U \subset X$ be an open set; we denote by $\langle\cdot, \cdot\rangle$ the duality mapping between X^{\star} and X.

Definition 7.1. (see [7]) A function $f: X \rightarrow \mathbb{R}$ is locally Lipschitz if, for every $x \in X$, there exist a neighborhood U of x and a constant $L>0$ such that

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq L\left\|x_{1}-x_{2}\right\| \quad \text { for all } \quad x_{1}, x_{2} \in U
$$

Definition 7.2. (see [7]) Let f be a locally Lipschitz function near the point x and let v be any arbitrary vector in X. The generalized directional derivative in the sense of Clarke of f at the point $x \in X$ in the direction $v \in X$ is

$$
f^{\circ}(x ; v)=\limsup _{z \rightarrow x, \tau \rightarrow 0^{+}} \frac{f(z+\tau v)-f(z)}{\tau}
$$

The generalized gradient of f at $x \in X$ is the set

$$
\partial f(x)=\left\{x^{\star} \in X^{\star}:\left\langle x^{\star}, v\right\rangle \leq f^{\circ}(x ; v) \text { for all } v \in X\right\} .
$$

For all $x \in X$, the functional $f^{\circ}(x, \cdot)$ is finite and positively homogeneous. Moreover, we have the following properties.

Proposition 7.1. (see [7]) Let X be a real Banach space, $U \subset X$ an open subset and $f, g: U \rightarrow$ \mathbb{R} be locally Lipschitz functions. The following properties hold:
(a) For every $x \in U, \partial f(x)$ is a nonempty, convex and weakly ${ }^{\star}$-compact subset of X^{\star} which is bounded by the Lipschitz constant $L>0$ of f near x;
(b) $f^{\circ}(x ; v)=\max \{\langle\xi, v\rangle: \xi \in \partial f(x)\}$ for all $v \in X$;
(c) $(f+g)^{\circ}(x ; v) \leq f^{\circ}(x ; v)+g^{\circ}(x ; v)$ for all $x \in U, v \in X$;
(d) $\partial(f+g)(u) \subset \partial f(u)+\partial g(u)$ for all $u \in U$;
(e) $(-f)^{\circ}(x ; v)=f^{\circ}(x ;-v)$ for all $x \in U$;
(f) The function $(x, v) \mapsto f^{\circ}(x ; v)$ is upper semicontinuous;
(g) The set-valued map $\partial f: U \rightarrow 2^{X^{\star}}$ is weakly${ }^{\star}$-closed, that is, if $\left\{x_{i}\right\} \subset U$ and $\left\{w_{i}\right\} \subset X^{*}$ are sequences such that $x_{i} \rightarrow x$ strongly in X and $w_{i} \in \partial f\left(x_{i}\right)$ with $w_{i} \rightharpoonup z$ weakly ${ }^{\star}$ in X^{*}, then $z \in \partial f(x)$. In particular, if X is finite dimensional, then ∂f is upper semicontinuous, i.e., for every $\epsilon>0$ there exists $\gamma>0$ such that $\partial f\left(x^{\prime}\right) \subseteq \partial f(x)+$ $B_{X^{*}}(0, \epsilon), \forall x^{\prime} \in B_{X}(x, \gamma) ;$

Proposition 7.2. (see [6]) The number $\lambda_{f}(u)=\inf _{w \in \partial f(u)}\|w\|_{X^{\star}}$ is well defined and

$$
\liminf _{u \rightarrow u_{0}} \lambda_{f}(u) \geq \lambda_{f}\left(u_{0}\right)
$$

Definition 7.3. (see [6]) Let $f: X \rightarrow \mathbb{R}$ be a locally Lipschitz function. We say that $u \in X$ is a critical point (in the sense of Chang) of f, if $\lambda_{f}(u)=0$, i.e., $0 \in \partial f(u)$.

Remark 7.1. (see [7]) (a) $u \in X$ is a critical point of f if $f^{\circ}(u ; v) \geq 0$ for all $v \in X$.
(b) If $x \in U$ is a local minimum or maximum of the locally Lipschitz function $f: X \rightarrow \mathbb{R}$ on an open set of a Banach space, then x is a critical point of f.

Proposition 7.3. (see [7]) (Lebourg's mean value theorem) Let X be a Banach space, $x, y \in X$ and $f: X \rightarrow \mathbb{R}$ be Lipschitz on an open set containing the line segment $[x, y]$. Then there is a point $a \in(x, y)$ such that

$$
f(y)-f(x) \in\langle\partial f(a), y-x\rangle
$$

Proposition 7.4. (see [7]) (Chain Rule) Let X be Banach space, let us consider the composite function $f=g \circ h$ where $h: X \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are given functions. Let denote h_{i}, $i \in\{1, \ldots, n\}$ be the component functions of h. We assume h_{i} is locally Lipschitz near x and g is too near $h(x)$. Then f is locally Lipschitz near x as well. Let us denote by α_{i} the elements of ∂g, and let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$; then

$$
\partial f(x) \subset \overline{\operatorname{co}}\left\{\sum \alpha_{i} \xi_{i}: \xi_{i} \in \partial h_{i}(x), \alpha \in \partial g(h(x))\right\}
$$

where $\overline{\mathrm{co}}$ denotes the weak-closed convex hull.

References

[1] A. Ambrosetti, H. Brezis, G. Cerami: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(1994), no. 2, 519-543.
[2] A. Ambrosetti, P. Rabinowitz: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14(1973), 349-381.
[3] V. Ambrosio, L. D'Onofrio, G. Molica Bisci: On nonlocal fractional Laplacian problems with oscillating potentials. Rocky Mountain J. Math. 48(2018), no. 5, 1399-1436.
[4] G. Autuori, P. Pucci: Elliptic problems involving the fractional Laplacian in \mathbb{R}^{N}. J. Differential Equations 255(2013), no. 8, 2340-2362.
[5] M. F. Bocea, P. D. Panagiotopoulos, V. D. Rădulescu: A perturbation result for a double eigenvalue hemivariational inequality with constraints and applications. J. Global Optim. 14(1999), 137-156.
[6] K.-C. Chang: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80(1981), 102-129.
[7] F.H. Clarke: Optimization and Nonsmooth Analysis. Wiley, 1983.
[8] D.G. De Figueiredo, J.-P. Gossez, P. Ubilla: Local superlinearity and sublinearity for indefinite semilinear elliptic problems. J. Funct. Anal. 199(2003), no. 2, 452-467.
[9] F. Gazzola, V. Rădulescu: A nonsmooth critical point theory approach to some nonlinear elliptic equations in \mathbb{R}^{N}. Differential Integral Equations, 13(2000), 47-60.
[10] A. Kristály: Infinitely many solutions for a differential inclusion problem in \mathbb{R}^{n}, J. Differential Equations, 220(2006), no. 2, 511-530.
[11] A. Kristály: Detection of arbitrarily many solutions for perturbed elliptic problems involving oscillatory terms. J. Differential Equations 245(2008), no. 12, 3849-3868.
[12] A. Kristály, G. Moroşanu: New competition phenomena in Dirichlet problems. J. Math. Pures Appl. 94(2010) no. 6, 555-570.
[13] J. Kobayashi, M. Ôtani: The principle of symmetric criticality for non-differentiable mappings. J. Funct. Anal. 214(2004), no. 2, 428-449.
[14] M. Marcus, V. Mizel: Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 33(1979), 217-229.
[15] M. Mălin, V. Rădulescu: Infinitely many solutions for a nonlinear difference equation with oscillatory nonlinearity. Ric. Mat. 65(2016), no. 1, 193-208.
[16] G. Molica Bisci, P. F. Pizzimenti: Sequences of weak solutions for non-local elliptic problems with Dirichlet boundary condition. Proc. Edinb. Math. Soc. 57(2014), no. 3, 779-809.
[17] G. Molica Bisci, V. Rădulescu, R. Servadei: Competition phenomena for elliptic equations involving a general operator in divergence form. Anal. Appl. (Singap.) 15(2017), no. 1, 51-82.
[18] D. Motreanu, P.D. Panagiotopoulos: Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities. Springer-Science Business Media, B.V., 1999.
[19] P. Omari, F. Zanolin: Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential. Comm. Partial Differential Equations, 21(1996), 721-733.
[20] P.D. Panagiotopoulos: Inequality problems in mechanics and applications. Convex and nonconvex energy functionals. Birkhäuser-Verlag, Basel, 1985.
[21] J. Saint Raymond: On the multiplicity of the solutions of the equation $-\Delta u=\lambda f(u)$. J. Differential Equations, 180(2002), 65-88.
[22] M. Squassina: On Palais' principle for non-smooth functionals. Nonlinear Anal. 74(2011), no. 11, 3786-3804.
[23] M. Willem: Minimax Theorems. Birkhäuser Boston, 1996.
[24] E. Zeidler: Nonlinear functional analysis and its applications. vol. III, Springer, 1985.

Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Hungary \& Department of Economics, Babeş-Bolyai University, 400591 Cluj-Napoca, Romania

E-mail address: kristaly.alexandru@nik.uni-obuda.hu; alex.kristaly@econ.ubbcluj.ro
Department of Mathematics and Informatics Babeş-Bolyai University 400084 Cluj-Napoca, RoMANIA

E-mail address: ildiko.mezei@math.ubbcluj.ro
Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Hungary
E-mail address: karoly.szilak@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 35R70, Secondary 35J61, 35A15.
 Key words and phrases. Differential inclusions; competition; oscillation; Clarke's calculus.
 A. Kristály was supported by the National Research, Development and Innovation Office, Hungary, K-18, project no. 127926.

 Dedicated to Professor Gheorghe Moroşanu on the occasion of his 70th birthday.

