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Abstract—Modern combustion technology focuses on lean pre-
mixed burners to achieve high thermal efficiency, wide operating
range, and low pollutant emissions for steady-state operation. The
corresponding applications range from boilers to gas turbines.
The present paper is a preliminary analysis of a turbulent
laboratory test burner with 30 kW combustion power by using
CFD. The reference fuel was natural gas and four biogases
were tested which were modeled as a mixture of CH4, CO2,
and H2 in various compositions. Even though the combustion is
steady, the steady solution was inappropriate due to the notable
presence of unsteady flow structures. Since the combustion in
the present case is dominated by volumetric reactions, a coarse
boundary layer could be applied near the wall. However, the
shear-dominated flow required the use of at least k-ω SST
turbulent viscosity model. The transient cases were calculated
by using Scale Adaptive Simulation. Among the fuels, natural
gas combustion showed flashback due to the bluff body present
at the center in the mixing tube inlet. Nevertheless, its extent
was low and some central purge air in the real burner will solve
this problem. All the flame shapes were V and W, meaning an
optimal condition for combustion chamber loading. Even though
the overall mass flow rates at the inlet are increasing with the
decreasing heating value of the fuel, natural gas combustion
showed the highest velocity and temperature in the flow field.
Overall, a small hydrogen dilution of the CH4-CO2 containing
fuel acted as an excellent combustion stabilizer without flashback
or too intense heat release rate. As a consequence, the presently
analyzed burner can run on low calorific value fuels without
design modifications or exposing locally high thermal load on
the combustion chamber. Since it is an initial study, validation
and the evaluation of practical relevance will be discussed in
subsequent works.

978-1-7281-3923-4/19/$31.00 ©2019 IEEE

Keywords—gas combustion, CFD, swirl combustion, flame
shape, biogas combustion

I. INTRODUCTION

Combustion has been used for thousands of years, however,

the past century was the most intense period of its application

and development. A new era has begun in the 1950s when jet

engines became available for aviation in parallel with rocket

motors allowing us to get into space. The consequent decades

were characterized by the development of low emission tech-

nologies [1] from which lean, swirl-stabilized burners became

the standard in numerous applications, resulting in a V-shaped

flame [2]. The flow field of such flames consists of an Inner

Recirculation Zone (IRZ) and an Outer Circulation Zone

(ORZ) which are formed after the breakup of the precessing

vortex core [3]. The role of the IRZ is delivering heat to

the unburnt mixture by recirculating burnt species [4] while

the ORZ is a pair of the IRZ for balancing its overall zero

momentum. The swirler vane can be either radial or axial, if

they are used in pairs, both co- and counter-rotating designs are

applied in practical applications [2]. Its design is still following

the theoretical shapes [5] except for the use of airfoils instead

of flat plates to smoothen the streamlines. Nevertheless, they

are still developed continuously in order to optimize their

combustion and fluid mechanical performance [6]. Both inlet

temperature and equivalence ratio are governing parameters

in determining the stability characteristics of the flame [7].

In the present paper, natural gas combustion at elevated inlet

temperature and slightly lean conditions were considered as

a reference case. An axial swirler was considered through

determining the velocity angle of the inlet flow.

The leading gaseous fuel today is natural gas, however, the

carbon-free economy requires alternative fuels. Their criteria

besides safe and smooth operation is similarly low emission.

The variety of these fuels is large, but they can be grouped

into synthesized and bio-derived gases [8]. The former group

consists of well-controlled compositions, hence, they are clean,

and the application can be designed around it solely. These

fuels may consist of various hydrocarbons with or without

oxygen content in their molecular structure or carbon-free

energy carriers like ammonia [9].

The present paper focuses on the second group, namely,

biogases. They are produced by anaerobic degradation of

organic compounds. Their principal components are CH4,

CO2, N2, H2, and other species in different ratios [10]. Since

the fermentation process cannot be as strictly controlled as

synthesis, the formed gas must be filtered prior to utilization

either in internal combustion engines or in gas turbines or

other combustion chambers [11]. Typically, the composition

includes CH4 (approximately 55–70% by volume) and CO2

(30–40%). Furthermore, a proportion of H2 can be added to

improve its combustions properties [12]. The development of

adsorption, absorption, membrane separation, and CO2 sepa-

ration technologies are continuous to produce higher quality

gases with less energy intensive methods [10]. CO2 is delaying

the ignition time and lowers the adiabatic flame temperature,



however, H2 is counteracting. The characteristic fuel properties

of the mixture can be derived through stoichiometric meth-

ods [13]. These parameters and components affect the NOx

emission, flame characteristics, etc. [12], [13]. The effect of

the biogas composition and equivalence ratio was investigated

for laminar flames [14] and turbulent flames [15] in both

numerical and experimental means.

The present paper is a preliminary numerical study for

a laboratory research burner for alternative fuels which is

under construction. Therefore, validation of the results will

be discussed in subsequent work. Natural gas combustion at

a fixed equivalence ratio and combustion power is used as a

reference, and various biogas compositions are evaluated based

on their effect on the flow, species, and temperature fields. All

the flames are V-shaped due to the intense swirl.

II. METHODS

The preparation of the computational mesh was performed

in Ansys ICEM CFD software. Based on previous measure-

ments [16] and numerical simulations in the literature [17], the

combustion chamber was modeled as a cylindrical body with

150 mm diameter. The mixing tube is connected to it, forming

a dump combustion configuration. At the outlet, downstream

from the reaction zone, a fictional convergent part was added

to the geometry to eliminate reverse flow, hence, stabilize the

computation. Its diameter was calculated through continuity

to ensure lower Courant numbers than it is present at the

vicinity of the burner lip. The inlet surface was trimmed to

form an inlet annulus and a dump inner circle to model the real

swirler geometry. The auxiliary air inlet is not modeled yet,

however, a small central jet will be used to prevent flashback.

Nevertheless, this jet is discharged from an airblast atomizer

nozzle since the burner can be operated with both liquid and

gaseous fuels or with even a mixture of them. The block-

structured mesh with triple O-grid structures due to the split

inlet surface with its principal geometry sizes in mm is shown

in the Fig. 1.

Due to the high calculation demand of the combustion, the

cell number should be chosen carefully. According to the mesh

sensitivity analysis, 356,000 cells were used in the presented

results. The maximum y+ was 35 close to the annular inlet and

the k-ω SST (Shear Stress Transport) turbulent viscosity model

was used. This result is acceptable according to ref. [18] and

was carefully checked during the sensitivity analysis where

y+ values close to 1 were also evaluated. However, the high

energy content of the combustion showed that the mesh quality

near the walls can be coarser than it is required in the case

Fig. 1. Inlet (left) and side view of the mesh (right).

of channel flows. It should be noted that the k-ε model has

failed to provide a realistic inlet flow, however, it is usually

acceptable for modeling the turbulent viscosity in combustion

chamber geometries in which volumetric processes dominate

[19].

The calculations were performed in Ansys Fluent 2019 R1

software environment. Beyond the steady-state analysis with

the k-ω SST turbulent viscosity model, the transient simulation

continued with Scale Adaptive Simulation model. Instead of

the addition of detailed or simplified reaction mechanisms,

the present simulations relied on a thermochemical probability

density function-based lookup table.

Table I summarizes the five investigated fuels with their

abbreviations for later use, molar composition, and lower-

heating values (LHV ). The last column indicates the total

mass flow rate of the mixture, following the target 30 kW

combustion power and λ = 1.15 air-fuel equivalence ratio. The

reference case was the combustion of natural gas (NG) since

it is well known in the literature and used extensively in the

industry. The rest of the biogas compositions were adopted

from [20]. Even though the concentrations are fixed, it should

be noted that the real-life application requires a well-controlled

dilution to ensure constant combustion properties since the

composition through anaerobic digestion might notably vary

over the seasons. Three model fuels were diluted with H2 to

evaluate its effect on the flame characteristics even though

their LHV s are less than that of NG.

The other surfaces than the annular inlet were handled

as walls, and the outlet was set to pressure outlet to the

atmosphere. As for radiation, the P-1 model was used. The

emissivity of the walls was uniformly 0.5 since the test

combustion chamber was manufactured from Stainless Steel

304 [21]. The inlet temperature was 400 ◦C and the wall

temperature was 900 ◦C, according to previous experiences

[22]. The swirling flow in the inlet annulus was set by the

velocity angle, α, calculated from tangential, vt, and axial

velocity, va, components, following (1):

tanα = vt/va. (1)

The corresponding fundamental swirler geometry is shown in

Fig. 2. In the present case, the diameters of the annulus are

40 mm and 20 mm. Since the present study is a preliminary

analysis, the control geometry is starting downstream of the

swirler, however, its effect on the flow field will be considered

TABLE I
INVESTIGATED GASEOUS FUEL COMPOSITIONS IN MOLE FRACTION AND

THEIR LHV AND INLET MASS FLOWS.

Name Component LHV ṁmixture

of fuel H2 CO2 CH4 [MJ/kg] [kg/s]
NG 0 0 1 50 0.0124

BG40 0 0.6 0.4 9.7 0.0150
BG36H10 0.10 0.54 0.36 10.6 0.0144
BG32H20 0.20 0.48 0.32 11.7 0.0138
BG54H10 0.10 0.36 0.54 18.6 0.0133



a

Fig. 2. Axial swirl vanes with a central hub [5].

in a later phase of the research work. α = 60◦ swirler was

used since it generates a strong swirl, however, a central air jet

will be able to reduce the swirl number, S, through increasing

the axial momentum. Moreover, flashback could be avoided

in this way at both the center [23] and the walls [24]. The

geometrical S is estimated as [5]:

S = tanα · 2/3 = 1.15. (2)

III. RESULTS AND DISCUSSION

Figure 3 shows a comparison of OH* distribution of steady-

state, temporally averaged transient and a current time step

of the unsteady simulations. A certain degree of asymmetry

is visible in Fig. 3a while a similar but fluctuating OH*

distribution is shown in Fig. 3c which answers the difference

between Fig. 3a and Fig. 3b where principally the magnitude

differs. Therefore, the relatively strong fluctuations present in

the flame leads to the qualitatively matching, but quantitatively

differing results. Consequently, the rest of the paper presents

the results of transient simulations.

A notable difference is a degree of flashback since the

mixture was simulated as preheated up to 400 ◦C and the

central air jet was presently omitted. This result is typical in

swirling upstream with a central bluff body since the majority

of the mass flow is passing close to the walls, hence, the central

regime has low velocity [24].

Figure 4 shows the distribution of the OH* mass fraction

since this variable closely related to the heat release rate [25]

and is easy to measure [26]. A stable V-shaped flame was

formed in each case. Flashback is only present in the case

of NG. Therefore, a degree of mixture preheating might be

advantageous if the heat engine or combustion facility allows it

without a considerable additional complexity or notable energy

Fig. 3. OH* mass fraction distribution in the case of NG combustion. (a)
steady, (b) averaged unsteady, and (c) spontaneous results at 0.2254 s.

Fig. 4. Time averaged OH* mass fraction of (a) NG, (b) BG40 biogas, (c)
BG36H10, (d) BG32H20, and (e) BG54H10 combustion.

addition. Nevertheless, combustion is concentrated well in the

combustion chamber, a partial flashback might be acceptable

from a practical point of view. This statement is supported by

the fact that there is low heat transfer via radiation between the

initial reaction zone and the burner wall since the hydrogen-

related reactions take place at first which is convected into the

combustion chamber, soot would intensively form later if the

local air-to-fuel equivalence ratio is below 0.6 at atmospheric

pressure.

In the case of Figs. 4b, c, d, and e, flashback is absent

and the CO2 dilution leads to lower OH* concentrations.

Interestingly, not necessarily the H2 dilution but the higher

CH4 content leads to elevated OH* concentration. However,

BG54H10 shows higher maximum OH* concentration than

NG, which phenomena is connected to the 10% H2 dilution

and an increased heat release rate in the V regime. The

difference between BG36H10 and BG32H20 practically shows

the effect of H2 in the case of a similar CO2 content.

The applied partially premixed thermochemical model

solves a transport equation which uses the Progress Variable,

c, to estimate the state of burning. c = 1 means complete

combustion, the c = 0 refers to the fresh mixture. Inside the

flame, the software calculates with the linear combination of

reactants (c = 0) and partially burnt mixture (0 < c < 1) [27].

In Fig. 5, a reduced tend for flashback can also be identified

quantitatively for all fuels except NG. However, this result was

less visible in Fig. 4. In addition, these cases show a W shaped

reaction zone rather than a V-shaped one based on c.

Figures 6 and 7 show the velocity magnitudes and mean

temperatures at various sections inside the mixing tube (-70–0

mm) and in the combustion chamber (0–90 mm). The effect

of flashback in the case of NG is spectacular as combustion

starts in the vicinity of the inlet. However, the rest of the fuels

begin to react close to the mixing tube outlet. The velocity

variation is mainly related to the CO2 content of the fuels.

NG is characterized by the lowest initial velocity magnitude

which also contributes to the flashback. The mean temperature

of all the fuels except NG is similar, only BG32H20 shows

a slightly reduced initial heat release rate. Since NG flashes

back, its temperature profile follows a closely linear trend in its



Fig. 5. Mean progress variable of (a) NG, (b) BG40, (c) BG36H10, (d)
BG32H20, and (e) BG54H10 combustion.

increase. Nevertheless, this boost remains for later sections of

the combustion chamber and this fuel is characterized by the

highest velocities, even though its mixture mass flow rate is the

smallest. After the V regime, the mean velocities decrease to

the same value regardless of the fuel. As for the biogases, their

trend remains similar until the downstream of the V regime.

Interestingly, the temperature distribution of the BG54H10 is

close to that of NG inside the chamber, however, the latter

one flashed back. Therefore, this biogas might be an excellent

substitute for NG. The other compositions remain about 150

K lower in their temperature trends, meaning a lower thermal

load on the combustion chamber.

Figure 8 shows the streamlines in the whole domain, fea-

turing the IRZ and ORZ in all cases. At first glance, the flow

fields are identical in every case. However, NG shows a strong

root due to flashback. BG40 has the highest overall velocity

among the biogases in the reaction zone. The V-shaped regime

of BG32H20 is confined to a relatively small volume since

the high H2 content enhances the combustion process. The

remainder cases with 10 V/V% H2 show a more uniform

velocity field where the ORZs are involved in the flow field in

a higher extent. However, also the higher CH4 concentration in
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Fig. 8. Time averaged stream lines colored by the mean velocity magnitude
(m/s) in the case of (a) NG, (b) BG40, (c) BG36H10, (d) BG32H20, (e)
BG54H10 combustion.

the fuel results in more intense combustion, hence, a stronger

V regime.

The combustion zone consists of a preheating zone, a

reaction zone, and a post-flame zone. The temperature is

continuously rising while the heat release rate is the most

intense in the middle. If the process treated as non-adiabatic,

like in the present case, the flue gas starts to cool down

due to losses via radiation which is typically originated from

the triatomic gases like CO2 and H2O to the walls. If the

local air-to-fuel equivalence ratio is low, the resulting soot

particles will be the dominant species for thermal radiation.

The corresponding temperature fields are shown in Fig. 9.

Since the fuel flow rate is proportional to the LHV , NG

is characterized by the highest temperature in the chamber

among all fuels. In the other cases, the addition of CO2

mitigates the temperature rise since it is an inert component

overall. Nevertheless, as a triatomic gas, it is an excellent

third body for trimolecular reactions and may participate in

the reactions as an oxygen carrier. The maximum temperature



Fig. 9. Time averaged temperature (K) distribution of (a) NG, (b) BG40, (c)
BG36H10, (d) BG32H20, and (e) BG54H10 combustion.

TABLE II
MAXIMUM SIMULATED, ADIABATIC FLAME, AND MASS WEIGHTED

AVERAGE TEMPERATURES AT THE MOST INTENSE SECTIONS.

Fuel Tmax [K] Tadiabatic [K] Taverage,max [K]
NG 2289 2346 2165

BG40 1979 2068 1924
BG36H10 2021 2105 1962
BG32H20 2060 2162 2002
BG54H10 2224 2232 2135

of BG54H10 approaches that of NG since H2 enhances the

process in the reaction zone. BG40 has the lowest maximum

and overall temperature among the fuels since it has the lowest

LHV . It is followed by BG36H10 and BG32H20.

The maximum non-adiabatic flame temperatures are com-

pared with the calculated adiabatic flame temperatures in

Table II. Note that the latter calculation is an overall estimate

of the process without considering heat transfer to the envi-

ronment and neglecting dissociation and hence endothermic

formation processes. In addition, the local equivalence ratio is

also omitted which might result in higher simulated maximum

temperatures than the calculated ones. To show an effective

comparison, the mass-weighted average temperatures in a

section with the highest temperature are added to the last

column which are the lowest ones for each fuel.

The Strain Rate is shown in Fig. 10 at different time

instances. The structures are similar for all fuels, i.e., the wake

of the bluff body at the inlet is notable for 40–60 mm from

the inlet face in each case. There is a strong shear on the

walls while a moderate shear characterizes the V regime from

both the inner and outer recirculation sides. Since the ORZ

is bounded by two wall surfaces, its interaction with them

is notable for all cases. Following the shear at the wall of

the mixing tube, it is continuous downstream the burner as

well. The flashback of NG combustion does not affect the

Strain Rate qualitatively, the difference is only quantitative.

The plots related to the flame shape are similar, however more

intense dissipation occurred at BG40 and decreased in the

function of CO2 content. The highest values occurred near the

wall because of the coarse mesh resolution in those regions,

Fig. 10. Strain Rate (1/s) of (a) NG, (b) BG40, (c) BG36H10, (d) BG32H20,
and (e) BG54H10 combustion.

nevertheless, these did not influence the flame zone.

IV. CONCLUSIONS

Numerical analysis of a laboratory turbulent swirl burner

was performed which is under construction. Natural gas

combustion was taken as a reference case since it is well

known in the literature. Besides that, four theoretical biogas

compositions were evaluated which were simplified to CH4,

CO2, and H2. The geometric swirl number was fixed at 1.15,

originated from the 60◦ swirl vanes. Hence, a stable V-shaped

flame was observed in all cases.

Natural gas combustion showed a slight flashback which did

not affect the V-shaped flame notably. This result is acceptable

since the present geometry has a bluff body at the center which

is actually an airblast atomizer in the real design, hence, a

small amount of air might fully put the combustion to the

chamber.

The various fuels showed qualitatively similar results in all

cases, the differences are practically negligible, and the real-

life application might add other criteria. The OH* concentra-

tions differed quantitatively with the highest concentrations of

NG and BG54H10 fuels. Actually, the averaged temperature

profiles of them were similar along the axis downstream of

the mixing tube.

As a final result, the presented analysis proved that the

analyzed biofuels can be effectively used in the designed test

equipment. Hydrogen dilution in a small quantity is highly

effective in combustion stabilization and is a crucial fuel

component to allow the present combustion appliances to run

on low calorific value fuels. However, additional investigations

are required to establish a solid background knowledge and

know-how for large-scale applications. These include exhaust-

ing tests, emission, optical, and acoustical measurements.
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[22] Viktor Józsa and Attila Kun-Balog. Stability and emission analysis of
crude rapeseed oil combustion. Fuel Processing Technology, 156:204–
210, 2017.
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