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Generalized Turán problems for even cycles
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Abstract

Given a graphH and a set of graphs F , let ex(n,H,F) denote the maximum possible number
of copies ofH in an F -free graph on n vertices. We investigate the function ex(n,H,F), when H
and members of F are cycles. Let Ck denote the cycle of length k and let Ck = {C3, C4, . . . , Ck}.
We highlight the main results below.

(i) We show that ex(n,C2l, C2k) = Θ(nl) for any l, k ≥ 2. Moreover, in some cases we

determine it asymptotically: We show that ex(n,C4, C2k) = (1 + o(1)) (k−1)(k−2)
4 n2 and

that the maximum possible number of C6’s in a C8-free bipartite graph is n3 +O(n5/2).

(ii) Erdős’s Girth Conjecture states that for any positive integer k, there exist a constant c > 0
depending only on k, and a family of graphs {Gn} such that |V (Gn)|= n, |E(Gn)|≥ cn1+1/k

with girth more than 2k.

Solymosi and Wong [38] proved that if this conjecture holds, then for any l ≥ 3 we
have ex(n,C2l,C2l−1) = Θ(n2l/(l−1)). We prove that their result is sharp in the sense that
forbidding any other even cycle decreases the number of C2l’s significantly: For any k > l,
we have ex(n,C2l,C2l−1 ∪ {C2k}) = Θ(n2). More generally, we show that for any k > l
and m ≥ 2 such that 2k 6= ml, we have ex(n,Cml,C2l−1 ∪ {C2k}) = Θ(nm).

(iii) We prove ex(n,C2l+1,C2l) = Θ(n2+1/l), provided a stronger version of Erdős’s Girth
Conjecture holds (which is known to be true when l = 2, 3, 5). This result is also sharp
in the sense that forbidding one more cycle decreases the number of C2l+1’s significantly:

More precisely, we have ex(n,C2l+1,C2l ∪ {C2k}) = O(n2− 1
l+1 ), and ex(n,C2l+1,C2l ∪

{C2k+1}) = O(n2) for l > k ≥ 2.

(iv) We also study the maximum number of paths of given length in a Ck-free graph, and prove
asymptotically sharp bounds in some cases.
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‡École Polytechnique Fédérale de Lausanne and Central European University. e-mail: abhishek-

methuku@gmail.com
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1 Introduction

The Turán problem for a set of graphs F asks the following. What is the maximum number ex(n,F)
of edges that a graph on n vertices can have without containing any F ∈ F as a subgraph? When
F contains a single graph F , we simply write ex(n, F ). This function has been intensively studied,
starting with Mantel [31] and Turán [40] who determined ex(n,Kr) where Kr denotes the complete
graph on r vertices with r ≥ 3. See [15, 37] for surveys on this topic.

Let Ck denote a cycle on k vertices and let Pk denote a path on k vertices. Length of a path
Pk is k − 1, the number of edges in it and length of a cycle Ck is k. A theorem of Simonovits [36]
implies that for odd cycles, we have ex(n,C2k+1) = ⌊n2/4⌋ for any k ≥ 1 and n large enough. For
even cycles C2k, Bondy and Simonovits [6] proved the following upper bound.

Theorem 1 (Bondy, Simonovits [6]). For k ≥ 2 we have

ex(n,C2k) = O(n1+1/k).

The order of magnitude in the above theorem is known to be sharp only for k = 2, 3, 5. The
case when all cycles longer than a given length are forbidden, was considered by Erdős and Gallai
[10].

Theorem 2 (Erdős, Gallai [10]). If a graph does not contain any cycle of length more than k, then

it has at most (k−1)n
2 edges.

On the other hand, if all the short cycles are forbidden, Alon, Hoory and Linial [1] proved the
following. To state their result let us introduce the following notation: let A be a set of integers,
each at least 3. Then let the set of cycles CA = {Ca : a ∈ A}. If A = {3, 4, ..., k} for some integer
k, then we denote the corresponding set of cycles by Ck.

Theorem 3 (Alon, Hoory, Linial [1]). For any k ≥ 2 we have

(i) ex(n,C2k) <
1
2n

1+1/k + 1
2n,

(ii) ex(n,C2k+1) <
1

21+1/kn
1+1/k + 1

2n.

For more information on Turán number of cycles one can consult the survey [41].

Notation and definitions

The girth of a graph is the length of a shortest cycle in it. We say a graph has even girth if its
girth is of even length, otherwise we say it has odd girth. Now we introduce basic notation that we
will use throughout the paper.

• We will denote by v1v2 . . . vk−1vkv1 a cycle Ck with vertices v1, v2, . . . , vk and edges vivi+1

(i = 1, . . . , k − 1) and vkv1. Similarly v1v2 . . . vk−1vk denotes a path Pk with vertices
v1, v2, . . . , vk and edges vivi+1 (i = 1, . . . , k − 1).

• For two graphs H and G, let N (H,G) denote the number of copies of H in G.

• For a vertex v in G, let Ni(v) denote the set of vertices at distance exactly i from v.

• For any two positive integers n and l, let (n)l denote the product

n(n− 1)(n − 2) . . . (n− (l − 1)).
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1.1 Generalized Turán problems

Given a graph H and a set of graphs F , let

ex(n,H,F) = max
G

{N (H,G) : G is an F-free graph on n vertices.}

If F = {F}, we simply denote it by ex(n,H,F ). This problem was initiated by Erdős [9], who
determined ex(n,Ks,Kt) exactly. Concerning cycles, Bollobás and Győri [4] proved that

(1 + o(1))
1

3
√
3
n3/2 ≤ ex(n,C3, C5) ≤ (1 + o(1))

5

4
n3/2

and this result was extended by Győri and Li [25] showing that

ex(n,C3, C2k+1) ≤
(2k − 1)(16k − 2)

3
· ex(n,C2k)

for k ≥ 2. This was later improved by Füredi and Özkahya [14] by a factor of Ω(k).
The systematic study of the function ex(n,H,F ) was initiated by Alon and Shikhelman in

[2], where they improved the result of Bollobás and Győri by showing that ex(n,C3, C5) ≤ (1 +

o(1))
√
3
2 n3/2. This bound was further improved in [12] and then very recently in [13] by Ergemlidze

and Methuku who showed that ex(n,C3, C5) < (1 + o(1))0.232n3/2 . Another notable result is
the exact computation of ex(n,C5, C3) by Hatami, Hladký, Král, Norine, and Razborov [28] and
independently by Grzesik [21], where they showed that it is equal to (n5 )

5. Very recently, the
asymptotic value of ex(n,Ck, Ck−2) was determined for every odd k by Grzesik and Kielak in [22].
Concerning paths, Győri, Salia, Tompkins and Zamora [26] determined ex(n, Pl, Pk) asymptotically.

In [2], Alon and Shikhelman characterized the graphs F with ex(n,C3, F ) = O(n) and more
recently, Gerbner and Palmer [18] showed that for every l ≥ 4 and every graph F we have either
ex(n,Cl, F ) = Ω(n2) or ex(n,Cl, F ) = O(n), and characterized the graphs F for which the latter
bound holds. They also showed

Theorem 4 (Gerbner, Palmer [18]). For t ≥ 2 and l ≥ 4 we have

ex(n,Cl,K2,t) =
1

2l
(t− 1)l/2nl/2, ex(n, Pl,K2,t) =

1

2
(t− 1)(l−1)/2n(l+1)/2.

Note that the case t = 2 was proved independently by Gishboliner and Shapira [20].

In this paper, we mainly focus on the case when H is an even cycle of given length and F is a
family of cycles.

The function ex(n,H,F ) is closely related to the area of Berge hypergraphs, see e.g. [17, 19].
Let k ≥ 2 be an integer. A Berge cycle of length k is an alternating sequence of distinct vertices and
hyperedges of the form v1,h1,v2,h2, . . . , vk,hk,v1 where vi, vi+1 ∈ hi for each i ∈ {1, 2, . . . , k−1} and
vk, v1 ∈ hk and is denoted by Berge-Ck. Győri and Lemons [24] proved the following two theorems.

Theorem 5 (Győri, Lemons [24]). Let r ≥ 3 be a positive integer. If H is an r-uniform Berge-

C2k-free hypergraph on n vertices, then it has at most O(n1+ 1

k ) hyperedges.

Theorem 6 (Győri, Lemons [24]). If H is a Berge-C2k-free hypergraph on n vertices, such that

3



|e|≥ 4k2 for every hyperedge e, then we have:

∑

e∈E(H)

|e|= O(n1+ 1

k ).

The previous two theorems easily imply the following corollary that we will use later.

Corollary 7. If H is a Berge-C4-free hypergraph on n vertices, then we have

∑

e∈E(H)

|e|= O(n1.5).

1.2 Forbidding a set of cycles

The famous Girth Conjecture of Erdős [8] asserts the following.

Conjecture 8 (Erdős’s Girth Conjecture [8] for k). For any positive integer k, there exist a constant
c > 0 depending only on k, and a family of graphs {Gn} such that |V (Gn)|= n, |E(Gn)|≥ cn1+1/k

and the girth of Gn is more than 2k.

This conjecture has been verified for k = 2, 3, 5, see [3, 5, 35, 42]. For a general k, Sudakov and
Verstraëte [39] showed that if such graphs exist, then they contain a C2l for any l with k < l ≤ Cn,
for some constant C > 0. More recently, Solymosi and Wong [38] proved that if such graphs exist,
then in fact, they contain many C2l’s for any fixed l > k. More precisely they proved:

Theorem 9 (Solymosi, Wong [38]). If Erdős’s Girth Conjecture holds for k, then for every l > k
we have

ex(n,C2l,C2k) = Ω(n2l/k).

The following remark shows that in many cases this bound is sharp.

Remark 1. If k + 1 divides 2l, then

ex(n,C2l,C2k) = O(n2l/k).

Indeed, let us associate to each C2l, one fixed ordered list of 2l/(k + 1) edges (e1, ek+1, e2k+1, . . .),
where e1 appears as the first edge (chosen arbitrarily) on the C2l, ek+1 as the (k+1)-th edge, e2k+1

as the (2k + 1)-th edge and so on. Note that at most one C2l is associated to an ordered tuple
(e1, ek+1, e2k+1, . . .), because there is at most one path of length k − 1 connecting the endpoints of
any two edges (as all the short cycles are forbidden). Since there are at most O(n1+1/k) ways to
select each edge, this shows the number of C2l’s is at most O((n1+1/k)2l/(k+1)) = O(n2l/k), showing
that the bound in Theorem 9 is sharp when k + 1 divides 2l.

It is worth mentioning that Gerbner, Keszegh, Palmer and Patkós [16] considered a similar
problem, where a finite list of allowed cycle lengths is given (thus the list of forbidden cycle lengths
is infinite). Another main difference is that in [16], all cycles of allowed lengths are counted, as
opposed to only counting the number of cycles of a given length like in this paper.
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Constructions

Before mentioning our results in the next section, we present typical constructions of graphs (with
many copies of a cycle) that we will refer to, in the rest of the paper.

• For l, t ≥ 1 the (l, t)-theta-graph with endpoints x and y is the graph obtained by joining two
vertices x and y, by t internally disjoint paths of length l.

• For a simple graph F and n, l ≥ 1 the theta-(n, F, l) graph is a graph on n vertices obtained by
replacing every edge xy of F by an (l, t)-theta-graph with endpoints x and y, where t is chosen

as large as possible, with some isolated vertices if needed. More precisely let t = ⌊ n−|V (F )|
|E(F )|(l−1)⌋,

and we add n− (t|E(F )|(l − 1) + |V (F )|) isolated vertices.

2 Our results

2.1 Forbidding a cycle of given length

We determine the order of magnitude of ex(n,C2l, C2k) below.

Theorem 10. For any l ≥ 3 and k ≥ 2 we have

ex(n,C2l, C2k) ≤ (1 + o(1))
2l−2(k − 1)l

2l
nl.

For any k > l ≥ 2 we have

ex(n,C2l, C2k) ≥ (1 + o(1))
(k − 1)l

2l
nl.

For any l > k ≥ 3 we have

ex(n,C2l, C2k) ≥ (1 + o(1))
1

ll
nl.

Theorem 10 and Theorem 11 (stated below) show that ex(n,C2l, C2k) = Θ(nl) for any k, l ≥ 2,
except for the lower bound in the case k = 2, which can be easily shown by counting cycles in the
well-known C4-free graph constructed by Erdős and Rényi [11] (See Theorem 4 and [20]).

This theorem has recently been proven independently by Gishboliner and Shapira [20]. Our
proof is different from theirs, and it gives a better bound if k is fixed (moreover, if l is fixed, then
their bound and our bound are both tight). They study odd cycles as well, determining the order
of magnitude of ex(n,Cl, Ck) for every l > 3 and k, and also provide interesting applications of
these results in the study of the graph removal lemma and graph property testing.

Solymosi and Wong [38] asked whether a similar lower bound (to that of Theorem 9) on the
number of C2l’s holds, if just C2k is forbidden instead of forbidding C2k. Theorem 10 answers this
question in the negative.

Asymptotic results

If we go beyond determining the order of magnitude we can ask the asymptotics of these functions.
In many cases it is a much harder question than the order of magnitude question [2, 4, 12, 30].

We determine ex(n,C4, C2k) asymptotically.

5



Theorem 11. For k ≥ 2 we have

ex(n,C4, C2k) = (1 + o(1))
(k − 1)(k − 2)

4
n2.

Since most constructions are bipartite, it is natural to consider the bipartite version of the
generalized Turán function: Let exbip(n,C2l, C2k) denote the maximum number of copies of a C2l

in a bipartite C2k-free graph on n vertices. Our methods give sharper bounds for exbip(n,C2l, C2k)
compared to the bounds in Theorem 10 (see Remark 2). In the case l = 3, k = 4 we can determine
the asymptotics.

Theorem 12. We have
exbip(n,C6, C8) = n3 +O(n5/2).

We prove this theorem in Subsection 4.2. Interestingly, the proof makes use of Corollary 7
concerning Berge-C4-free hypergraphs. We leave open the question of determining the asymptotics
of ex(n,C6, C8), which we believe to be the same as that of exbip(n,C6, C8).

2.2 Forbidding a set of cycles

Theorem 9 implies that if Erdős’s Girth Conjecture is true (recall that it is known to be true for
l = 2, 3, 5), then ex(n,C2l,C2l−2) = Ω(n2l/(l−1)) for any l ≥ 3. On the other hand, by Remark 1,
this number is at most O(n2l/(l−1)). This implies ex(n,C2l,C2l−2) = Θ(n2l/(l−1)). By Lemma 25
(which is straightforward to prove), we know that when counting copies of an even cycle, forbidding
an odd cycle does not change the order of magnitude. Therefore, we have

Corollary 13. Suppose l ≥ 3 and Erdős’s Girth Conjecture is true for l − 1. Then we have

ex(n,C2l,C2l−1) = Θ(n2l/(l−1)).

In other words, the maximum number of C2l’s in a graph of girth 2l is Θ(n2l/(l−1)). We prove
that the previous theorem is sharp in the sense that forbidding one more even cycle decreases the
order of magnitude significantly: The maximum number of C2l’s in a C2k-free graph with girth 2l
is Θ(n2). That is,

ex(n,C2l,C2l−1 ∪ {C2k}) = Θ(n2).

More generally, we show the following.

Theorem 14. For any k > l and m ≥ 2 such that 2k 6= ml we have

ex(n,Cml,C2l−1 ∪ {C2k}) = Θ(nm).

Observe that forbidding even more cycles does not decrease the order of magnitude, as long as
we do not forbid C2l itself, as shown by (l, ⌊n/l⌋)-theta graph and some isolated vertices (i.e. the
theta-(n,K2, l) graph). On the other hand it is easy to see that if we forbid every cycle of length
other than 2l + 1, then there are O(n) copies of C2l+1.

Corollary 13 determines the order of magnitude of maximum number of C2l’s in a graph of girth
2l. It is then very natural to consider the analogous question for odd cycles: What is the maximum
number of C2k+1’s in a graph of girth 2k + 1? Before answering this question, we state a strong
form of Erdős’s Girth Conjecture that is known to be true for small values of k.
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A graph G on n vertices, with average degree d, is called almost-regular if the degree of every
vertex of G is d+O(1).

Conjecture 15 (Strong form of Erdős’s Girth Conjecture). For any positive integer k, there ex-

ist a family of almost-regular graphs {Gn} such that |V (Gn)|= n, |E(Gn)|≥ n1+1/k

2 and Gn is
{C4, C6, . . . , C2k}-free.

Lazebnik, Ustimenko and Woldar [29] showed Conjecture 15 is true when k ∈ {2, 3, 5} using the
existence of polarities of generalized polygons. We show the following that can be seen as the ‘odd
cycle analogue’ of Theorem 9.

Theorem 16. Suppose k ≥ 2 and Strong form of Erdős’s Girth Conjecture is true for k. Then we
have

ex(n,C2k+1,C2k) = (1 + o(1))
n2+ 1

k

4k + 2
.

To show that Theorem 16 is sharp and to give an analogue of Theorem 14 (in the case of m = 2)
for odd cycles, we prove that if we forbid one more even cycle, then the order of magnitude goes
down significantly:

Theorem 17. For any integers k > l ≥ 2, we have

Ω(n1+ 1

2k+1 ) = ex(n,C2l+1,C2l ∪ {C2k}) = O(n1+ l
l+1 ).

However, if the additional forbidden cycle is of odd length, we can only prove a quadratic upper
bound. We conjecture that the truth is also sub-quadratic here (see Section 8, Theorem 35).

Theorem 18. For any integers k > l ≥ 2, we have

Ω(n1+ 1

2k+2 ) = ex(n,C2l+1,C2l ∪ {C2k+1}) = O(n2).

Concerning forbidding a set of cycles we also determine the asymptotics of ex(n,C4,CA) for
every possible set A. Let Ae be the set of even numbers in A and Ao be the set of odd numbers in
A.

Theorem 19. For any k ≥ 3, we have

ex(n,C4,CA) =











0 if 4 ∈ A

(1 + o(1)) (k−1)(k−2)
4 n2 if 4 6∈ A and 2k is the smallest element of Ae

(1 + o(1)) 1
64n

4 if Ae = ∅.

We also determine the order of magnitude of ex(n,C6,CA) by proving

Theorem 20.

ex(n,C6,CA) =



















0 if 6 ∈ A,
Θ(n2) if 6 6∈ A, 4 ∈ A and |Ae|≥ 2,
Θ(n3) if 4, 6 6∈ A and Ae 6= ∅, or if Ae = {4},
Θ(n6) if Ae = ∅.
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2.3 Maximum number of Pl’s in a graph avoiding a cycle of given length

We study the maximum possible number of paths in a C2k-free graph and prove the following
results.

Theorem 21. For l, k ≥ 2, we have

ex(n, Pl, C2k) ≤ (1 + o(1))
1

2
(k − 1)

l−1

2 n
l+1

2 .

Theorem 22. If 2 ≤ l < 2k, then

ex(n, Pl, C2k) ≥ (1 + o(1))
1

2
(k − 1)⌊ l

2
⌋n

⌈ l
2
⌉.

If l ≥ 2k, then

ex(n, Pl, C2k) ≥ (1 + o(1))max







Ç

n

⌊l/2⌋

å⌈l/2⌉
,

Ç

(k − 1)

4(k − 2)k+2

å⌈ l
2
⌉
(k − 1)⌊ l

2
⌋n

⌈ l
2
⌉







.

Note that if l < 2k and l is odd, Theorem 21 and Theorem 22 show that ex(n, Pl, C2k) is equal

to (1 + o(1))12 (k − 1)
l−1

2 n
l+1

2 as k and n tend to infinity.
Finally, we determine the maximum number of copies of Pl in a C2k+1-free graph, asymptotically.

Theorem 23. For k ≥ 1 and l ≥ 2, we have

ex(n, Pl, C2k+1) = (1 + o(1))

Å

n

2

ãl

.

Structure of the paper: In Section 3 we prove Theorem 10, determining the order of mag-
nitude of ex(n,C2l, C2k)

In Section 4 we determine the asymptotics of ex(n,C4, C2k) and exbip(n,C6, C8) (Theorem 11
and Theorem 12).

In Section 5 we prove some basic lemmas for the case when a set of cycles are forbidden and
prove Theorem 14 concerning graphs of even girth, along with results about ex(n,C4,CA) and
ex(n,C6,CA) for every possible set A (i.e., Theorem 19 and Theorem 20).

In Section 6 we prove the theorems concerning graphs of odd girth: Theorem 16, Theorem 17
and Theorem 18.

In Section 7 we count number of copies of Pl in a Ck-free graph and prove Theorem 21, Theorem
22 and Theorem 23.

Finally in Section 8, we make some remarks and pose questions.

3 Maximum number of C2l’s in a C2k-free graph

Below we prove Theorem 10. Note that the case l = 2 of Theorem 14 gives back Theorem 10, and
the proof here is also a special case of the proof of that more general statement. We decided to
include it here separately for two reasons. On the one hand, this is an important special case. On

8



the other hand, it serves as an introduction to the similar, but more complicated proof of Theorem
14.

Proof of Theorem 10. Let us start with the lower bound and assume first that 2 ≤ l < k. Then
Kk−1,n−k+1 is C2k-free and it contains

1

2l

Ç

k − 1

l

åÇ

n− k + 1

l

å

l! l! = (1 + o(1))
(k − 1)(k − 2) . . . (k − l)

2l
nl = (1 + o(1))

(k − 1)l
2l

nl

copies of C2l.
Let us now assume l > k ≥ 3. Consider a copy of C2l and replace every second vertex u by

⌊n/l−1⌋ or ⌈n/l−1⌉ copies of it, each connected to the two neighbors of u in the C2l. The resulting
graph only contains cycles of length 4 and 2l, thus it is C2k-free and it contains

(1 + o(1))
1

ll
nl

copies of C2l.
Let us continue with the upper bound. Consider a C2k-free graph G. First we introduce the

following notation. For two distinct vertices a, b ∈ V (G), let

f(a, b) := number of common neighbors of a and b.

Then we have
1

2

∑

a6=b, a,b∈V (G)

Ç

f(a, b)

2

å

≤ (1 + o(1))
(k − 1)(k − 2)

4
n2, (1)

by Theorem 11, since the left-hand-side is equal to the number of C4’s in G.

Claim 1. For every a ∈ V (G) we have

∑

b∈V (G)\{a}
f(a, b) ≤ (2k − 2)n.

Note that the left-hand side of the above inequality is the number of P3’s starting at a.

Proof. Recall that N1(a) is the set of vertices adjacent to a and N2(a) is the set of vertices at
distance exactly 2 from a. Let E1 be the set of edges induced by N1(a) and E2 be the set of edges
uv with u ∈ N1(a) and v ∈ N2(a). It is easy to see that

∑

b∈V (G)\{a} f(a, b) = 2|E1|+|E2|.
We claim that there is no cycle of length longer that 2k − 2 in E1 ∪E2.
First suppose by contradiction that there is a cycle C of length 2k − 1 in E1 ∪ E2. Since the

cycle is of odd length it must contain an edge uv ∈ E1. The subpath of length 2k − 2 between the
vertices u and v in C together with the edges ua and va forms a C2k in G, a contradiction.

Now suppose that there is a cycle C of length at least 2k in E1 ∪ E2. Observe first that a
subpath of length 2k − 2 of C starting from a vertex in N1(a) cannot have its other endpoint in
N1(a), as that would form a C2k together with the vertex a. Thus there has to be an edge v1v2 of
E1 in C. Consider the subpath v1, v2, . . . , v2k−1v2k of C. The vertices v2k−1 and v2k are both in
N2(a) because they are endpoints of paths of length 2k − 2 starting in v1 and v2 respectively. But
then, the edge v2k−1v2k ∈ E(C) is not in E1 ∪ E2, a contradiction again.

9



Then by Theorem 2 we have |E1|+|E2|= |E1 ∪ E2| ≤ (k − 1)n, which implies the claim.

The above claim implies that we have

∑

a6=b, a,b∈V (G)

f(a, b) ≤ (k − 1)n2. (2)

Let us fix vertices v1, v2, . . . , vl and let g(v1, v2, . . . , vl) be the number of C2l’s in G where vi
is the 2i-th vertex (i ≤ l). Clearly g(v1, v2, . . . , vl) ≤ ∏l

j=1 f(vj, vj+1) (where vl+1 = v1 in the
product). If we add up g(v1, v2, . . . , vl) for all possible l-tuples (v1, v2, . . . , vl) of l distinct vertices
in V (G), we count every C2l exactly 4l times. It means the number of C2l’s is at most

1

4l

∑

(v1,v2,...,vl)

l
∏

j=1

f(vjvj+1) ≤
1

4l

∑

(v1,v2,...,vl)

f2(v1, v2) + f2(v2, v3)

2

l
∏

j=3

f(vjvj+1). (3)

Fix two vertices u, v ∈ V (G) and let us examine what factor f2(u, v) is multiplied with in
(3). It is easy to see that f2(u, v) appears in (3) whenever u = v1, v = v2 or u = v2, v = v1 or
u = v2, v = v3 or u = v3, v = v2. Let us start with the case u = v1 and v = v2. Then f2(u, v) is
multiplied with

1

8l

Ñ

l−1
∏

j=3

f(vjvj+1)

é

f(vl, u) =
1

8l
f(u, vl)

l−1
∏

j=3

f(vjvj+1)

for all the choices of tuples (v3, v4, . . . , vl) (where these are all different vertices). We claim that

∑

(v3,v4,...,vl)

1

8l
f(u, vl)

l−1
∏

j=3

f(vjvj+1) ≤
(2k − 2)l−2nl−2

8l
.

Indeed, we can rewrite the left-hand side as

1

8l

∑

vl∈V (G)

f(u, vl)
∑

vl−1∈V (G)

f(vl, vl−1) . . .
∑

v3∈V (G)

f(v4, v3),

and each factor is at most (2k − 2)n by Claim 15.
Similar calculation in the other three cases gives the same upper bound, so adding up all four

cases, we get an additional factor of 4, showing that the number of copies of C2l is at most

1

2l

∑

u 6=v,u,v∈V
f2(u, v)(2k − 2)l−2nl−2.

Finally observe that,

∑

u 6=v,u,v∈V
f2(u, v) = 2

∑

u 6=v,u,v∈V

Ç

f(u, v)

2

å

+
∑

u 6=v,u,v∈V
f(u, v) ≤ (1+o(1))(k−1)(k−2)n2+(k−1)n2,

which is at most (1 + o(1))(k − 1)2n2. Note that the above inequality follows from (1) and (2).
This finishes the proof.
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Remark 2. Note that if G is bipartite, or even just triangle-free, then in Claim 15, E1 is empty.
Therefore the same proof gives the better upper bound

∑

b∈V (G)\{a} f(a, b) ≤ (k − 1)n. So we get

∑

a6=b, a,b∈V (G)

f(a, b) ≤ k − 1

2
n2

instead of (5). Hence we can obtain

exbip(n,C2l, C2k) ≤ ex(n,C2l, {C3, C2k}) ≤ (1 + o(1))
(k − 3

2)(k − 1)l−1

2l
nl.

Observe that the construction given in Theorem 10 is bipartite. Thus the ratio of the upper and
lower bounds of exbip(n,C2l, C2k) is

(k − 3
2)(k − 1)l−2

(k − 1)l
,

which goes to 1 as k increases.

4 Asymptotic results

We will first prove the following simple result and use it in the proof of Theorem 19.

Theorem 24. For any k, l, we have

ex(n,C2l, C2k+1) = (1 + o(1))
1

2l

Ç

n2

4

ål

.

Proof. The lower bound is given by the complete bipartite graph Kn/2,n/2.
Let G be a graph which is C2k+1-free. By a theorem of Győri and Li [25] there are at most

O(n1+1/k) triangles in G, so let us delete an edge from each of them and call the resulting triangle-
free graph G′. This way we delete at most O(n1+1/k)n2l−2 = o(n2l) copies of C2l. So it suffices to
estimate the number of C2l’s in G′.

First we count the number of ordered tuples of l independent edges Ml = (e1, e2, . . . , el) in G′.
As the maximum number of edges in a triangle-free graph is at most ⌊n2/4⌋ by Mantel’s theorem,
we can pick an edge e1 = uv of G in at most ⌊n2/4⌋ ways. Then we can pick the edge e2 disjoint
from e1 in at most ⌊(n−2)2/4⌋ ways as the subgraph of G induced by V (G)\{u, v} is also triangle-
free. We can pick e3 in at most ⌊(n − 4)2/4⌋ ways, e4 at most ⌊(n− 6)2/4⌋ ways and so on. Thus
G′ contains at most

ön2

4

ùö(n− 2)2

4

ùö(n− 4)2

4

ù

. . .
ö(n− 2l + 2)2

4

ù

= (1 + o(1))

Ç

n2

4

ål

copies of Ml.
Now we count the number of C2l’s containing a fixed copy of Ml = (e1, e2, . . . , el), where

ei = uivi. To obtain a cycle C2l from Ml, we decide for every i, whether ui follows vi or vi follows
ui in a clock-wise ordering. However, for any given i, after deciding the order for ui and vi, we
claim that the order for ui+1, vi+1 is determined. Indeed, suppose w.l.o.g that vi follows ui. Then

11



vi can be adjacent to at most one of the vertices ui+1, vi+1 because G′ is triangle-free. Thus the
order of ui+1, vi+1 is determined. So once the order of u1 and v1 is fixed (in two ways) the cycle
C2l is determined. Thus the number of C2l’s obtained from a fixed copy of Ml is at most 2. Note
that in this way each copy of C2l in G′ is obtained exactly 4l times. So the total number of C2l’s
in G′ is at most

(1 + o(1))

Ç

n2

4

ål

· 2

4l
= (1 + o(1))

1

2l

Ç

n2

4

ål

as required.

4.1 Proof of Theorem 11: Maximum number of C4’s in a C2k-free graph

We restate Theorem 11 below for convenience.

Theorem. For k ≥ 2 we have:

ex(n,C4, C2k) = (1 + o(1))
(k − 1)(k − 2)

4
n2.

Proof. For the lower bound consider the complete bipartite graph Kk−1,n−k+1.

For the upper bound consider a C2k-free graph G. We call a pair of vertices fat if they have at
least k common neighbors, otherwise it is called non-fat. We call a C4 fat if both pairs of opposite
vertices in that C4 are fat. First we claim that the number of non-fat C4’s is at most

(k−1
2

)(n
2

)

.

Indeed, there are at most
(n
2

)

non-fat pairs, and each of them is contained in at most
(k−1

2

)

C4’s as
an opposite pair.

In the remaining part of the proof we will prove that the number of fat C4’s is O(n1+1/k), by
using an argument inspired by the reduction lemma of Győri and Lemons [23]. We go through the
fat C4’s in an arbitrary order, one by one, and pick exactly one edge (from the four edges of the
C4); we always pick the edge which was picked the smallest number of times before (in case there
is more than one such edge, then we pick one of them arbitrarily).

After this procedure, every edge e is picked a certain number of times. Let us denote this
number by m(e), and we call it the multiplicity of e. Note that

∑

e∈E(G)m(e) is equal to the
number of fat C4’s in G.

If

m(e) < 2(k − 2)k2
Ç

2k

k

å

for each edge e, then the number of fat C4’s in G is at most

2(k − 2)k2
Ç

2k

k

å

|E(G)| = O(n1+1/k)

by Theorem 1, as desired.
Hence we can assume there is an edge e with m(e) ≥ 2(k − 2)k2

(2k
k

)

. In this case we will find
a C2k in G, which will lead to a contradiction, finishing the proof. More precisely, we are going to
prove the following statement:

12



Claim 2. For every 2 ≤ l ≤ k there is a C2l in G, that contains an edge el with

m(el) ≥ 2(k − l)k2
Ç

2k

k

å

.

Proof. We prove it by induction on l. For the base case l = 2, consider any C4 containing e = e2.
Let us assume now we have found a cycle C of length 2l in G and one of its edges el = uv has

m(el) ≥ 2(k − l)k2
Ç

2k

k

å

.

For any i ≤ 2(k − l)k2
(2k
k

)

, when el was picked for the ith time, the corresponding fat C4

contained four edges each of which had been picked earlier at least i − 1 times, thus they have
multiplicity at least i − 1. Let Fl be the set of those fat C4’s where el was picked for the last
2k2

(2k
k

)− 1 times. All the three other edges of each of these fat C4’s have multiplicity at least

2(k − l)k2
Ç

2k

k

å

− 2k2
Ç

2k

k

å

= 2(k − l − 1)k2
Ç

2k

k

å

.

At most
(2l−2

2

)

of the C4’s in Fl have all four of their vertices in C (note that they all contain
the edge el).

Observe that G is Kk,k-free, as C2k is a subgraph of Kk,k. This means that any k vertices in

C have at most k − 1 common neighbors. We claim that there are at most (k − 1)
(2l
k

)

vertices
in V (G) \ V (C) that are connected to at least k vertices in C. Indeed, otherwise by pigeon hole
principle, there are k vertices in C such that each of them is connected to the same k vertices in
V (G) \ V (C), a contradiction. Therefore, at most (2l− 2)(k − 1)

(2l
k

)

C4’s have a vertex in C and a
vertex w outside C such that w is connected to at least k vertices in C.

Thus, there are at least

(2k2
Ç

2k

k

å

− 1)−
Ç

2l − 2

2

å

− (2l − 2)(k − 1)

Ç

2l

k

å

≥ 1

four-cycle(s) in Fl such that one of the following two cases hold. Let uvxyu be one such four-cycle
(recall that el = uv).

Case 1. x, y ∈ V (G) \ V (C).
We replace the edge el of C by the path consisting of the edges vx, xy, yu, thus obtaining a cycle

of length 2l + 2. The edges vx, xy, yu have multiplicity at least 2(k − l − 1)k2
(2k
k

)

, which finishes
the proof in this case.

Case 2. x ∈ V (C), y 6∈ V (C) and y has less than k neighbors in C.
Note that in this case {y, v} is a fat pair, thus y and v have at least k common neighbors. At

least one of those, say w, is not in C. Let us replace the edge el of C by the path consisting of
the edges uy, yw, wv. This way we obtain a cycle of length 2l + 2, and one of its edges uy has
m(uy) ≥ 2(k − l − 1)k2

(2k
k

)

, which finishes the proof of the claim and the theorem.
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4.2 Proof of Theorem 12: Maximum number of C6’s in a bipartite C8-free graph

Let us recall that Theorem 12 states exbip(n,C6, C8) = n3 +O(n5/2).
Let G be a C8-free bipartite graph with classes A and B. Let us define a pair of vertices u, v

from the same class fat, if there are four different vertices w1, w2, w3, w4 from the other class such
that uw1, uw2, uw3, uw4, vw1, vw2, vw3 and vw4 are edges of the graph.

Claim 3. Suppose v1v2v3v4v5v6v1 is a 6-cycle and v1, v3 is a fat pair. Then neither v2, v4 nor v2, v6
is a fat pair.

Proof. We prove it by contradiction. Let w be a neighbor of both v1 and v3 with w 6∈ {v2, v4, v6}
and let u be a be a neighbor of both vertices in the other fat pair (either v2 and v4, or v2 and
v6) with u 6∈ {v1, v3, v5}. We can find such w and u because of the definition of fatness. Then
v1wv3v2uv4v5v6v1 or v1v2uv6v5v4v3wv1 is a C8, a contradiction.

So by Claim 3 we can suppose that if v1v2v3v4v5v6v1 is a 6-cycle and v1, v3 is a fat pair, then
there can be only one fat pair among v2, v4, v6 and it is v4, v6. This means that if there are two fat
pairs among the vertices of a 6-cycle in different classes then (up to permutation of vertices) they
should be v1, v3 and v4, v6. Let us call a 6-cycle fat if it contains fat edges from both classes A and
B. First we are going to prove that there are O(n2.5) fat 6-cycles in G.

Let v1v2v3v4v5v6v1 and v1v
′
2v3v

′
4v

′
5v

′
6v1 be two different fat 6-cycles (i.e., their fat pairs coincide

in one of the classes). Claim 3 implies that v4, v6 and v′4, v
′
6 are the other fat pairs in these cycles.

Claim 4. We have {v4, v6} ∩ {v′4, v′6} 6= ∅.

Proof. Let us suppose by contradiction that {v4, v6}∩{v′4, v′6} = ∅. Then by the definition of fatness
we can choose u 6∈ {v1, v3} and w 6∈ {v1, v3, u} such that u is connected to both v4 and v6, and w
is connected to both v′4 and v′6. Then v1v6uv4v3v

′
4wv

′
6v1 is a C8, a contradiction.

Let N(u, v) := {w : uw, vw ∈ E(G)}. We prove that for distinct fat pairs these sets of common
neighborhoods are almost disjoint.

Claim 5. Let v1, v3, v
′
1, v

′
3 ∈ A with {v1, v3} 6= {v′1, v′3} such that {v1, v3} and {v′1, v′3} are fat pairs

of two fat 6-cycles. Then we have

|N(v1, v3) ∩N(v′1, v
′
3)| ≤ 1.

Proof. We prove it by contradiction, let us suppose that we have different vertices x, y ∈ N(v1, v3)∩
N(v′1, v

′
3). By our assumption we can suppose that v′1 6∈ {v1, v3}. Let v1v2v3v4v5v6v1 be a fat cycle.

Assume first {x, y} ∩ {v4, v6} = ∅. As the pair v4, v6 is fat, we can find u 6∈ {v′1, v1, v3} that is
connected to both v4 and v6. Then xv′1yv3v4uv6v1 is a C8, a contradiction.

Hence we can assume x = v4. Consider now the case v6 6= y. By the fatness of v1, v3 there
is a u 6∈ {x, y, v6} connected to both v1 and v3. By the fatness of v4, v6 there is w 6∈ {v1, v3, v′1}
connected to both v4 and v6. Then v1uv3yv

′
1v4wv6v1 is a C8, a contradiction.

Thus we have x = v4, y = v6. Assume first v′3 6∈ {v1, v3}. By the fatness of v′1, v
′
3 we have

w 6∈ {x, y, v2} connected to both v′1 and v′3. Then v1v2v3v4v
′
1wv

′
3v6v1 is a C8, a contradiction.

Finally, if v′3 ∈ {v1, v3}, then the 6-cycle v1uv3v4v
′
1v6v1 contains two fat pairs in one class and

a fat pair in the other class, contradicting Claim 3.

14



Let us fix a fat pair v1, v3 in one of the parts, A and consider the union of the neighborhoods
of the corresponding fat pairs in the other part, B. Let g(v1, v3) denote its cardinality, i.e.

g(v1, v3) :=
∑

v4,v6 is a fat pair in B
v1,v3,v4,v6 are contained in a fat C6

|N(v4, v6)|.

Claim 6. For any fat pair v1, v3 we have

g(v1, v3) ≤ 4n.

Proof. By Claim 4 we know that the fat pairs v4, v6 from B that are contained in a fat 6-cycle
v1v2v3v4v5v6v1 must pairwise intersect, so the auxiliary graph G0 containing these fat pairs as edges
is either a star or a triangle.

• If G0 is a triangle, we are done by using that |N(u, v)|≤ n for any u, v.

• If G0 is a star with center x, then for every fat pair v4, v6 either x = v4 or x = v6. Let G1

be the graph consisting of those edges where x = v4 and G2 be the graph consisting of those edges
where x = v6.

Observation 1. Suppose that v1, v3 is a fat pair in class A, while v4, v6 and v4, v
′
6 are distinct fat

pairs from class B such that v1v2v3v4v5v6v1 and v1v
′
2v3v4v

′
5v

′
6 are fat 6-cycles. Then we have

(N(v4, v6) ∩N(v′4, v
′
6)) \ {v1, v3} = ∅.

Proof. Let us suppose by contradiction that there is x ∈ (N(v4, v6) ∩N(v4, v
′
6)) \ {v1, v3}. By the

fatness of the pair v1, v3 there is z ∈ N(v1, v3) \ {v4, v6, v′6} and by the fatness of the pair v4, v6, we
can find y ∈ N(v6, v4) \ {v1, v3, x}. Then v1zv3v4yv6xv

′
6v1 is a C8, a contradiction.

This implies that for the fat pairs in G1 we have

∑

v4,v6 is a fat pair in G1

v1,v3,v4,v6 are contained in a fat C6

|N(v4, v6) \ {v1, v3}|≤ n,

as we add up the cardinalities of disjoint sets. The same statement is true for G2. This implies

∑

v4,v6 is a fat pair in G0

v1,v3,v4,v6 are contained in a fat C6

|N(v4, v6) \ {v1, v3}|≤ 2n.

Observe that there are less than n edges in the star G0, thus we subtract the two elements v1
and v3 less than n times altogether. This finishes the proof.

Now consider the hypergraph H whose vertex set is B and its edge set is

{N(v1, v3) : {v1, v3} ⊂ A is a fat pair that is contained in at least one fat C6}.
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Recall that a Berge-C4 in a hypergraph is an alternating sequence of distinct vertices and
hyperedges of the form v1,h1,v2,h2,v3,h3,v4,h4,v1 where vi, vi+1 ∈ hi for each i ∈ {1, 2, 3} and
v4, v1 ∈ h4.

Claim 7. H is Berge-C4-free.

Proof. We prove it by contradiction. Let us suppose that we have a Berge-C4 in H that is a
sequence

x,N(a(x, y), b(x, y)), y,N(a(y, z), b(y, z)), z, N(a(z, w), b(z, w)), w,N(a(w, x), b(w, x)),

where we have:

(1) x, y, z, w ∈ B are distinct vertices,

(2) a(x, y), b(x, y), a(y, z), b(y, z), a(z, w), b(z, w), a(w, x), b(w, x) ∈ A, and

(3) xa(x, y)y, xb(x, y)y, ya(y, z)z, yb(y, z)z, za(z, w)w, zb(z, w)w,wa(w, x)x,wb(w, x)x are all cher-
ries.

Let us consider the subgraph G′ of our original graph G that is spanned by the vertices x, y, z, w,
a(x, y), b(x, y), a(y, z), b(y, z), a(z, w), b(z, w), a(w, x), b(w, x). If one can find a matching in this
bipartite graph that covers x, y, z and w, that would immediately give a C8, which is a contradiction.
So to get the desired contradiction we apply Hall’s theorem [27] and check Hall’s condition holds
for the set of vertices {x, y, z, w}.

Let us consider a subset X ⊆ {x, y, z, w}. Each vertex in {x, y, z, w} is connected to at least two
vertices in G′, so we are done if |X|≤ 2. If |X|= 3, we can assume without loss of generality that
X = {x, y, z}. Then x, y and z are connected to the same 2 vertices. This implies {a(x, y), b(x, y)} =
{a(y, z), b(y, z)}, thus two hyperedges of the Berge-C4 coincide, a contradiction. Finally, if |X|= 4,
then there are at most three vertices in the other part of G′, thus there are at most 3 different
hyperedges in the Berge-C4, a contradiction.

The above claim together with Corollary 7 implies that

∑

v1,v3 is a fat pair in A that is
contained in at least one fat C6

|N(v1, v3)|= O(n1.5). (4)

Claim 8. There are O(n2.5) fat 6-cycles in G.

Proof. Observe first that we obtain an upper bound on the number of fat 6-cycles if we pick the
fat pairs v1, v3 and v4, v6, then multiply the number of vertices that can be v2 with the number of
vertices that can be v5. These later quantities we can upper bound by |N(v1, v3)| and |N(v4, v6)|,
as v2 is connected to both v1 and v3, while v5 is connected to both v4 and v6. Thus the number of
fat 6-cycles is at most

∑

v1,v3 and v4,v6 are fat
v1,v3,v4,v6 are contained in a fat C6

|N(v1, v3)||N(v4, v6)|=
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∑

v1,v3 is a fat pair in A

|N(v1, v3)| ·
∑

v4,v6 is a fat pair
v1,v3,v4,v6 are contained in a fat C6

|N(v4, v6)| ≤

4n ·
∑

v1,v3 is a fat pair in A that is
contained in at least one fat C6

|N(v1, v3)|= 4n · O(n1.5),

where we use (4) in the last inequality.

Now we start to analyze those 6-cycles that contain fat pairs just from one side, say B. We
show that the number of these 6-cycles is at most 6

(|A|
3

)

+O(|A|2.5). By symmetry it is enough to

finish the proof of Theorem 12, since |A|+|B| ≤ n implies 6
(|A|

3

)

+ 6
(|B|

3

) ≤ 6
(n
3

)

= n3 +O(n2).
For x, y, z ∈ A let h(x, y, z) denote the number of 6-cycles containing them in G. We call a set

{x, y, z} ⊂ A good if h(x, y, z) ≤ 6, and bad otherwise. Note that if there are no fat pairs among
x, y, z, then h(x, y, z) ≤ 27. We say that a 4-set F ⊂ A is nice if the four vertices have three
common neighbors in B, forming a copy of K4,3 in G. It is easy to see that two vertices from a
nice set having another common neighbor would create a C8. This implies that 3-subsets of a nice
set are good.

We say a pair x, y ∈ A is marked, if they have exactly three common neighbors.

Claim 9. Let us assume there is a six-cycle xv1yv2zv3x that contains a marked pair x, y, such that
x and y are contained in a nice set S, but z is not contained in S. Then {x, y, z} is a good triple.

Proof. Let us pick s ∈ S \{x, y}. By the definition of the nice set, there is a 3-set S′ ⊂ B consisting
of the common neighbors of the vertices in S. If v3 6∈ S′, then yv3zv2xtst

′y is a C8, where t and
t′ are arbitrary elements of S′, different from v2. This is a contradiction. Similarly we can obtain
a contradiction if v2 6∈ S′ by symmetry. If v3 ∈ S′ but v1 6∈ S′, then v3zv2xv1ytsv3 is a C8, where
t ∈ S′ \ {v2, v3}.

Thus we have S′ = {v1, v2, v3}. Let us assume there is w ∈ B \ S′ that is connected to both
z and x. Then zwxv1sv2yv3z is a C8, a contradiction. Similarly z and y cannot have another
common neighbor, just like x and y. Thus all the 6-cycles containing x, y and z have to contain
v1, v2, v3, so there are at most 6 of them.

Claim 10. The number of marked pairs that are not in a nice set is O(|A|1.5).

Proof. We prove this by showing that there is no C4 in the auxiliary graph consisting of marked
edges that are not in nice sets. Indeed, assume there is a C4, xyzwx. Let us consider the auxiliary
bipartite graph consisting of the marked pairs xy, yz, zw,wx on one side and the common neighbors
of these pairs on the other side, where a marked edge is connected to the three common neighbors
defining it. A matching covering xy, yz, zw,wx would correspond to a C8 xvyv2zv3wv4 in G,
where the vis are the other vertices in the matching. If there is no such matching, then by Hall’s
condition the four vertices x, y, z, w have the same three common neighbors, thus they form a nice
set, a contradiction.
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This implies that there are O(|A|2.5) copies of C6 containing any marked pairs not in a nice set.
Hence from now on we consider only non-marked pairs. Let us consider a triple in A not containing
any fat or marked pair.

Claim 11. There are O(|A|2) bad triples containing neither a fat, nor a marked pair.

Proof. Let {x, y, z} be such a triple. In every 6-cycle containing x, y, z, there is a vertex connected
to both x and y, another connected to both y and z and a third one connected to both z and x.
As none of these pairs is marked, there are at most two candidates for each position. If any of
them would coincide, the number of 6-cycles containing x, y, z would be at most 4. Thus there
are 6 vertices in B a1, a2, b1, b2, c1, c2 such that a1 and a2 are connected to x and y, b1 and b2 are
connected to y and z, while c1 and c2 are connected to z and x.

Let us consider the auxiliary 3-uniform hypergraph H0 of bad triples containing no marked
pair. We claim it is a linear hypergraph, finishing the proof. Indeed, otherwise without loss of
generality there is another bad triple {x′, y, z} with the corresponding vertices a′1, a

′
2, b1, b2, c

′
1, c

′
2 in

B. We can assume that a1 6= a′1 and c1 6= c′1, and we have a1 6= c′1 (similarly a′1 6= c1), as otherwise
x, y and z (or x′, y and z) would have a common neighbor. Then xa1ya

′
1x

′c′1zc1x is a C8 in G, a
contradiction.

The above claims together imply that there are O(|A|2.5) bad triples. Indeed, there are O(|A|2)
containing no marked pair by Claim 11. There are two kinds of marked pairs. There are O(|A|1.5)
of those that are not in a nice set by Claim 10, thus they are contained in at most O(|A|2.5) triples.
Finally, if a marked pair is contained in a nice set, then it is not contained in a bad triple.

The total number of 6-cycles that do not contain a fat pair from part A is

∑

x,y,z∈A
h(x, y, z) =

∑

x,y,z∈A is a good triple

h(x, y, z) +
∑

x,y,z∈A is a bad triple

h(x, y, z) ≤

∑

x,y,z∈A is a good triple

6 +
∑

x,y,z∈A is a bad triple

27 ≤ 6

Ç|A|
3

å

+ 27 ·O(|A|2.5).

This finishes the proof of the theorem.

5 Forbidding a set of cycles

In this section we study the case when multiple cycles are forbidden. Recall that if A is a set of
integers, such that each integer is at least 3, then the set of cycles CA = {Ca : a ∈ A}, Ae is the
set of even numbers in A and Ao is the set of odd numbers in A.

5.1 Basic Lemmas

The following simple lemma shows that if we count copies of an even cycle of given length, then
forbidding odd cycles does not change the order of magnitude.

Lemma 25. If 2k 6∈ A, then

ex(n,C2k,CA) = Θ(ex(n,C2k,CAe)).
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Proof. It is obvious that ex(n,C2k,CA) ≤ ex(n,C2k,CAe), as a CA-free graph is also CAe-free. Let
G be a CAe-free graph. We are going to show that it has a CA-free subgraph G′ that contains at
least 1/22k−1 fraction of the 2k-cycles of G, finishing the proof.

Let us consider a random 2-coloring of the vertices of G, where every vertex becomes blue with
probability 1/2, and red otherwise. Let us delete the edges inside the color classes, and let G′ be
the resulting graph. As G′ is bipartite, it does not contain any cycle in CAo. The probability that
a 2k-cycle of G is also in G′ is 1/22k−1, as the first vertex can be of any color, but then the color
of all the other vertices is determined. Thus the expected number of 2k-cycles in G′ is 1/22k−1

fraction of the 2k-cycles in G, hence there is a 2-coloring with at least that many 2k-cycles.

Next we show that if we count copies of an odd cycle of given length, then forbidding shorter
odd cycles does not change the order of magnitude.

Lemma 26. Let Ok be the set of odd integers less than 2k + 1. Then

ex(n,C2k+1,CA) = Θ(ex(n,C2k+1,CA\Ok
)).

Proof. The proof goes similarly to that of the previous lemma, one of the directions is again trivial.
Let G be a CA\Ok

-free graph. We are going to show that it has a CA-free subgraph G′ that contains
at least a constant fraction of the 2k-cycles of G.

Let us consider a random partition of the vertices of G into 2k + 1 classes V1, . . . , V2k+1, where
each vertex goes to each class with the same probability 1/(2k+1). We keep the edges between Vi

and Vi+1 for i ≤ 2k, and the edges between V2k+1 and V1. We delete all the other edges and let G′

be the resulting graph. It is easy to see that if we delete Vi from G′, we obtain a bipartite graph,
hence an odd cycle has to contain a vertex from Vi, for every i ≤ 2k + 1. This means every odd
cycle has length at least 2k + 1.

It is left to prove that G′ contains many (2k + 1)-cycles. An arbitrary cycle in G is a cycle in
G′ with probability 1/(2k + 1)2k, finishing the proof.

Lemma 27. Let m and s be fixed positive integers, and let G be a graph on n vertices. Suppose
there is a partition of V (G) into sets V1, . . . , Vs satisfying the following properties:

(i) there is no P3 with both endpoints in Vi for i < s,
(ii) there is no Pm+1 with endpoints in Vi and Vj if i 6= j, and
(iii) Vs is an independent set.

Then |E(G)|= O(n).

Proof. Let us first delete every vertex with degree at most m. Then repeat this procedure until we
obtain a graph with minimum degree greater than m, or a graph with no vertices. We will show
that the resulting graph has no vertices, which would imply that G has at most mn = O(n) edges,
since obviously at most mn edges were deleted.

If the resulting graph contains a vertex, it has to contain a vertex x1 ∈ Vj with j 6= s (because
Vs is an independent set). Starting from x1, we build a path Pm greedily. First we pick a neighbor
x2 of x1. For each 2 ≤ i ≤ m − 1, after picking xi, we pick a neighbor xi+1 of it that has not
appeared in the path; it forbids at most i − 1 < m neighbors, thus we can pick such a neighbor.
After picking xm, we add one more condition: the neighbor of xm we pick as xm+1 should not be
in Vj . As xm has at most one neighbor in Vj by (i), this is at most one more forbidden neighbor,
so we can still find one satisfying all these conditions. This way we obtain a Pm+1 with endpoints
in different parts, a contradiction with (ii).
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5.2 Proof of Theorem 14: Forbidding an additional cycle in a graph of given

even girth

Now we prove Theorem 14. We restate it here for convenience.

Theorem. For any k > l and m ≥ 2 such that 2k 6= ml we have

ex(n,Cml,C2l−1 ∪ {C2k}) = Θ(nm)

Proof. By Lemma 26 and 25 it is enough to prove

ex(n,Cml,C2l−2 ∪ {C2k}) = Θ(nm).

The lower bound is given by the theta-(n,Cm, l) graph. It contains Ω(nm) cycles of length ml,
and additionally contains only cycles of length 2l.

First we prove the upper bound for m = 2. We consider a graph G on n vertices that does not
contain any of the forbidden cycles. We can assume it is bipartite by Lemma 25. Then G has girth
at least 2l, thus it is easy to see that for any vertices u, v and any length i ≤ l− 1, there is at most
one path of length i between u and v.

Claim 12. If C and C ′ are 2l-cycles in G sharing a path of length l− 1, then their intersection is
exactly a path of length l − 1 or l.

Proof. Observe that if we can find a closed walk of length less than 2l which is not contained in a
tree, then it implies the existence of a cycle of length less than 2l, a contradiction.

Let us consider the longest path Q = u1 . . . ui shared by C and C ′. If Q has length more than
l, then there are paths of length less than l in both C and C ′ with endpoints u1 and ui, and these
two paths cannot be the same. Thus they form a closed walk of length less than 2l.

Let v ∈ (V (C) ∩ V (C ′)) \ V (Q) be the vertex that is the closest to u1 in C. Let x (resp. x′)
be the distance between v and u1 in C (resp. C ′). Suppose first that x 6= x′. Without loss of
generality, we may suppose x < x′. Then the subpath of length x between u1 and v in C, the
subpath of length 2l− (i− 1)− x′ between v and ui in C ′, and the path Q of length i− 1 between
ui and u1 form a closed walk of length less than 2l.

Hence we can assume x = x′. If x < l, then the paths of length x between u1 and v in C and
C ′ form a closed walk of length less than 2l. If x ≥ l, then either v ∈ V (Q) or is adjacent to ul,
contradicting either our assumption that v ∈ (V (C)∩V (C ′))\V (Q) or our assumption that Q was
the longest shared path.

The proof of Theorem 14 goes similarly to the proof of Theorem 11 from here. We call a pair
of vertices fat if there are at least 4l2 paths, each of length l (i.e., l edges) between them. We call
a copy of C2l fat if all the l pairs of opposite vertices are fat.

Claim 13. Let {u, v} be a fat pair and X be a set of at most 4l vertices. Then there is a path P
of length l between u and v such that (V (P ) \ {u, v}) ∩X = ∅.

Proof. For every i ≤ l − 1, there are at most 4l paths uu1 . . . ui . . . ul−1v such that ui is in X.
Indeed, there are at most 4l ways to choose ui from X, and after that there is only one choice for
the remaining vertices, because there is at most one path of length i from u to ui, and at most one
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path of length l − i from ui to v. Since there are l − 1 ways to choose i, altogether there are at
most 4l(l − 1) paths intersecting X, finishing the proof.

Observe now that the number of non-fat C2l’s is at most
(4l2−1

2

)(n
2

)

, as there are at most
(n
2

)

non-fat pairs and each of them is contained in at most
(4l2−1

2

)

C2l’s as an opposite pair. This way
we count every non-fat C2l at least once.

Let us only consider fat C2l’s from now on. We go through them in an arbitrary order, one by
one, and pick exactly one path u1u2 . . . ul of length l − 1 from each of them (from the 2l paths of
length l − 1 in the C2l); we always pick the path which was picked the smallest number of times
before (in case there is more than one such path, then we pick one of them arbitrarily).

After this procedure, every path Q of length l − 1 is picked a certain number of times. Let us
denote this number by m(Q), and we call it the multiplicity of Q. Note that adding up m(Q) for
all the paths Q of length l − 1 gives the number of fat C2l’s in G. Assume first that at the end of
this algorithm m(Q) ≤ 2k(k−l)

l−2 for every path Q of length l− 1. Then the number of fat C2l’s is at

most 2k(k−l)
l−2 times the number of the paths of length l− 1, which is at most 2k(k−l)

l−2

(n
2

)

, as there is
at most one path of length l − 1 between any two vertices.

Hence we can assume there is a path Q of length l − 1 with multiplicity greater than 2k(k−l)
l−2 .

We claim that in this case there is a copy of C2k in G, which leads to a contradiction, finishing the
proof. More precisely, we are going to prove the following statement:

Claim 14. For every l ≤ r ≤ k there is a C2r in G, that contains a path Qr of length l − 1 with

m(Qr) ≥
2k(k − r)

l − 2
.

Proof. We prove it by induction on r. More precisely, are going to assume that the statement is
true for r and show that it is true for r + l − 1. Therefore, we need to start with the base cases
l ≤ r ≤ 2l−2. For the base case r = l, consider any C2l containing Q = Ql. For the other base cases
consider Q = u1u2 . . . ul with m(Q) ≥ 2k(k−l)

(l−2) . We have two fat C2l’s, say C and C ′, containing Q

such that every subpath of length l − 1 in each of them has multiplicity at least 2k(k−l)
(l−2) − 2. By

Claim 12 the intersection of C and C ′ is a path Q′ of length l or l − 1. It means either Q = Q′ or
Q′ consists of Q plus an additional vertex adjacent to either u1 or ul.

Note that for any pair u, v of vertices that are opposite in either C or C ′, there is a path P (u, v)
of length l between u and v such that V (P ) \ {u, v} ∩ (V (C) ∪ V (C ′)) = ∅, by Claim 13, since u, v
is a fat pair.

Let us assume first that Q′ = Q. Let 1 ≤ i ≤ l− 2 and let w be the vertex opposite to ui in C ′.
Consider the subpath of Q from u1 to ui, the path P (ui, w) of length l from ui to w, the subpath
of length i from w to ul in C ′, and the path of length l + 1 from ul to u1 in C. They form a cycle
of length 2l + 2i, that contains a subpath of C of multiplicity at least

2k(k − l)

l − 2
− 1 ≥ 2k(k − l − i)

l − 2
.

If Q′ 6= Q, we can assume without loss of generality that Q′ = u1u2 . . . ulul+1. Let 1 ≤ i ≤ l− 3
and let w′ be the vertex opposite to ui+1 in C ′. Consider the subpath of Q′ from u1 to ui+1, the
path P (ui+1, w

′) of length l from ui+1 to w′, the subpath of length i from w′ to ul+1 in C ′, and the
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path of length l (different from Q′) from ul+1 to u1 in C. They form a cycle of length 2l+ 2i, that
contains a subpath of C of multiplicity at least

2k(k − l)

l − 2
− 1 ≥ 2k(k − l − i)

l − 2
,

finishing the base cases.
Let us continue with the induction step. Assume we are given a cycle C of length 2r that

contains a path Qr = u1u2 . . . ul with m(Q) ≥ 2k(k−r)
l−2 , and we are going to find a cycle of length

2r + 2l − 2 that contains a path of length l − 1 with multiplicity at least 2k(k−r−l+2)
l−2 . For any

i ≤ 2k(k−r)
l−2 , when Qr was picked for the ith time, the corresponding fat C2l contained 2l paths of

length l − 1 each of which had been picked earlier at least i− 1 times, thus they have multiplicity
at least i− 1. Let Fr be the set of those fat C2l’s where Qr was picked for the last

2k(k − r)

l − 2
− 2k(k − r − l + 2)

l − 2
= 2k

times, so |Fr|≥ 2k. All the other paths of length l − 1 in each of these fat C2l’s have multiplicity
at least

2k(k − r)

l − 2
− 2k =

2k(k − r − l + 2)

l − 2
.

First observe that for every vertex w ∈ V (C) \ V (Qr) there is at most one cycle in Fr which
contains w such that w is neither next to u1, nor to ul in that cycle. Indeed, two such cycles
would contradict Claim 12. As there are less than 2k choices for w, either there exists a cycle
C ′ = u1u2 . . . ulv1 . . . vlu1 ∈ Fr such that all of the vertices v1, . . . , vl are not in C or there exists a
cycle C ′ = u1u2 . . . ulv1 . . . vlu1 ∈ Fr such that only vl or v1 is in C among v1, . . . , vl. Without loss
of generality, suppose v1 is in C.

Consider a path P of length l from u2 to v2 that avoids (V (C)∪ V (C ′)) \ {u2, v2} (such a path
exists because u2, v2 is an opposite pair in C ′, thus it is a fat pair and we can apply Claim 13). Let
P ′ be a subpath of length l− 1 in C ′ from v2 to u1. We replace the edge u1u2 in C by the union of
paths P and P ′. Note that we replaced an edge with a path of length 2l− 1, so the resulting cycle
has length 2r + 2l− 2 and it contains the subpath v2 . . . vlu1, which is a subpath of C ′, thus it has
multiplicity at least

2k(k − r − l + 2)

l − 2
,

as required.

We are done with the case m = 2, now we consider the case m is larger. Let G again be a graph
that does not contain C3, C4, . . . , C2l−2, C2k. From here we follow the proof of Theorem 10. First
we introduce the following notation. For two distinct vertices a, b ∈ V (G), let

fl(a, b) := number of paths of l edges between a and b.
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In particular f2(a, b) = f(a, b). Then we have

1

2

∑

a6=b, a,b∈V (G)

Ç

fl(a, b)

2

å

= O(n2), (5)

by the case m = 2, since the left-hand side is equal to the number of C2l’s in G.

Claim 15. For every a ∈ V (G) we have

∑

b∈V (G)\{a}
fl(a, b) = O(n).

Proof. Notice that for any i < l, the set Ni(a) does not contain any edges. It is easy to see that
∑

b∈V (G)\{a} fl(a, b) is equal to the number of edges between Nl−1(a) and Nl(a). We will show this
number is O(n) by using Lemma 27 to the bipartite graph G′ with vertex set Nl−1(a) ∪Nl(a) and
the edge set being the set of edges of G between Nl−1(a) and Nl(a).

Let w1, . . . , ws−1 be the neighbors of v, and let Vi = Nl−1(a) ∩Nl−2(wi) for 1 ≤ i ≤ s− 1. Let
Vs = Nl(a). It is easy to see that V1, V2, . . . , Vs partition V (G′). Observe that a P3 in G′ with both
endpoints inside Vi (for i < s) would create a cycle of length at most 2l − 2. This implies (i) of
Lemma 27 is satisfied. A path P2k−2l+3 in G′ with endpoints in Vi and Vj with i 6= j would create
a cycle of length 2k in G, which shows that (ii) of Lemma 27 is satisfied. Since G′ is bipartite,
clearly Vs is independent in G′, thus we can apply Lemma 27, finishing the proof of the claim.

Let us fix vertices v1, v2, . . . , vm and let g(v1, v2, . . . , vm) be the number of Cml’s in G where
vi is li′th vertex (i ≤ m). Clearly g(v1, v2, . . . , vm) ≤ ∏m

j=1 fl(vj , vj+1) (where vl+1 = v1 in the
product).

If we add up g(v1, v2, . . . , vm) for all possible m-tuples (v1, v2, . . . , vm) of l distinct vertices in
V (G), we count every Cml exactly 4m times. It means the number of Cml’s is at most

1

4m

∑

(v1,v2,...,vm)

m
∏

j=1

fl(vjvj+1) ≤
1

4m

∑

(v1,v2,...,vm)

f2
l (v1, v2) + f2

l (v2, v3)

2

m
∏

j=3

fl(vjvj+1). (6)

Fix two vertices u, v ∈ V (G) and let us examine what factor f2
l (u, v) is multiplied with in

(6). It is easy to see that f2
l (u, v) appears in (6) whenever u = v1, v = v2 or u = v2, v = v1 or

u = v2, v = v3 or u = v3, v = v2. Let us start with the case u = v1 and v = v2. Then f2
l (u, v) is

multiplied with

1

8m

Ñ

m−1
∏

j=3

fl(vjvj+1)

é

f(vm, u) =
1

8m
fl(u, vm)

m−1
∏

j=3

fl(vjvj+1)

for all the choices of tuples (v3, v4, . . . , vm) (where these are all different vertices). We claim that

∑

(v3,v4,...,vm)

1

8m
fl(u, vm)

m−1
∏

j=3

fl(vjvj+1) ≤
(2k − 2)m−2nm−2

8m
.
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Indeed, we can rewrite the left-hand side as

1

8m

∑

vl∈V (G)

fl(u, vm)
∑

vm−1∈V (G)

fl(vm, vm−1) . . .
∑

v3∈V (G)

fl(v4, v3),

and each factor is at most O(n) by Claim 15.
Similar calculation in the other three cases gives the same upper bound, so adding up all four

cases, we get an additional factor of 4, showing that the number of copies of Cml is at most

1

ml

∑

u 6=v,u,v∈V
f2
l (u, v)O(nm−2).

Finally observe that
∑

u 6=v,u,v∈V
f2
l (u, v) = O(n2),

by (5) and Claim 15. This finishes the proof.

5.3 Proofs of Theorem 19 and Theorem 20: Counting C4’s or C6’s when a set

of cycles is forbidden

Below we determine the asymptotics of ex(n,C4,CA) and the order of magnitude of ex(n,C6,CA).
For the convenience of the reader, we restate Theorem 19 and Theorem 20.

Theorem. For any k ≥ 3 we have

ex(n,C4,CA) =











0 if 4 ∈ A

(1 + o(1)) (k−1)(k−2)
4 n2 if 4 6∈ A and 2k is the smallest element of Ae

(1 + o(1)) 1
64n

4 if Ae = ∅.

Proof. The first line is obvious. For the second line, the upper bound follows from Theorem 11 as
C2k is forbidden, while the lower bound is given by the complete bipartite graph Kk−1,n−k+1. For
the third line, the lower bound is given by the graph Kn/2,n/2, while the upper bound follows from
Theorem 24.

Theorem.

ex(n,C6,CA) =



















0 if 6 ∈ A,
Θ(n2) if 6 6∈ A, 4 ∈ A and |Ae|≥ 2,
Θ(n3) if 4, 6 6∈ A and Ae 6= ∅, or if Ae = {4}
Θ(n6) if Ae = ∅.

Proof. The first line is obvious. For the second line, Theorem 14 with m = 2 and l = 3 gives the
upper bound and the lower bound. For the third line, the upper bound follows from Theorem 10
and if 4, 6 6∈ A, then the lower bound is given by the graph K3,n−3.

If Ae = {4}, the upper bound is given by Theorem 10. For the lower bound let us consider the
C4-free graph G given by [18, 20], which contains Θ(n3) C6’s. G might contain some forbidden odd
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cycles. However, Lemma 25 shows they do not change the order of magnitude.
For the fourth line, the lower bound is given by the graph Kn/2,n/2, while the upper bound is

obvious.

6 Counting cycles in graphs with given odd girth

6.1 Proof of Theorem 16: Maximum number of C2k+1’s in a graph of girth 2k+1

In this subsection we prove Theorem 16.
Let G be an almost-regular, {C4, C6, . . . , C2k}-free graph on n vertices with n1+1/k/2 edges

given by Conjecture 15. It follows that the degree of each vertex of G is n1/k +O(1). We will show
that G contains at least

(1− o(1))
1

2k + 1

n2+1/k

2

copies of C2k+1.
Consider an arbitrary vertex v ∈ V (G). Recall that Ni(v) denotes the set of vertices at distance

i from v. (Note that N1(v) is simply the neighborhood of v.) First we show the following.

Claim 16. Let 2 ≤ i ≤ k. Each vertex u ∈ Ni−1(v) has at least n1/k + O(1) neighbors in Ni(v).
Moreover, no two vertices of Ni−1(v) have a common neighbor in Ni(v).

Proof. Consider an arbitrary vertex u ∈ Ni−1(v). If there are two edges ux, uy with x, y ∈ Ni−2(v),
let w be the first common ancestor of x and y. Then the length of the cycle formed by the two paths
from w to x and from w to y and the two edges ux, uy is at most 2k and is even, a contradiction.
So there is at most one edge from u to the set Ni−2(v). Now if there are two edges ux, uy with
x, y ∈ Ni−1(v), then again consider the first common ancestor w, of x and y and we can find an even
cycle of length at most 2k similarly. So the degree of u in G[Ni−2(v)] is at most one. Therefore,
each vertex u ∈ Ni−1(v) has at least n1/k + O(1) neighbors in Ni(v) (recall the degree of u is
n1/k +O(1)), proving the first part of the claim.

Suppose for a contradiction that there are two vertices u, u′ ∈ Ni−1(v), which have a common
neighbor in Ni(v). Then consider the first common ancestor of u and u′, and we can again find an
even cycle of length at most 2k. This completes the proof of the claim.

The above claim implies the following.

Claim 17. For all 1 ≤ i ≤ k, we have |Ni(v)| = (1 + o(1))ni/k.

Proof. Notice that Claim 16 implies that there are at least |Ni−1(v)| (n1/k+O(1)) vertices in Ni(v)
for each 2 ≤ i ≤ k. Since N1(v) = n1/k +O(1), this proves the claim.

Now we claim that there are (1 − o(1))n
1+1/k

2 edges of G in Nk(v) (i.e., basically all the edges
of G are in Nk(v)). Indeed, notice that

|Nk(v)| = (1 + o(1))nk/k = (1 + o(1))n

by Claim 17, so |V (G) \Nk(v)| = o(n). Therefore the sum of degrees of the vertices in V (G)\Nk(v)
is

o(n) · (n1/k +O(1)) = o(n1+1/k),
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showing that the number of edges incident to vertices outside Nk(v) are negligible. This shows that

there are (1− o(1))n
1+1/k

2 edges in G[Nk(v)], proving the claim.
Now we color each edge ab of G[Nk(v)] in the following manner: If the first common ancestor

of a and b is not v, then ab is colored with the color red, but if the only common ancestor of a and
b is v then it is colored blue. We want to show that most of the edges in G[Nk(v)] are of color blue.
To this end, let us upper bound the number of edges in G[Nk(v)] of color red.

Consider an arbitrary vertex w ∈ N1(v). Applying Claim 16 repeatedly, one can obtain that w
has

(n1/k +O(1))k−1 = (1 + o(1))n(k−1)/k

descendants in Nk(v). By Theorem 1, in the subgraph of G induced by this set of descendants,
there are at most

O(n(k−1)/k)1+1/k = (1 + o(1))O(n(k2−1)/k2)

edges.
On the other hand, the end vertices of each red edge must have an ancestor w ∈ N1(v), so the

total number of red edges is at most

(1 + o(1)) |N1(v)|O(n(k2−1)/k2) = (1 + o(1))n1/kO(n(k2−1)/k2) = o(n1+1/k).

This shows that there are n1+1/k

2 (1 − o(1)) blue edges in G[Nk(v)]. Notice that any blue edge
ab, together with the two paths joining a and b to v, forms a C2k+1 in G containing v. This shows

that there are n1+1/k

2 (1− o(1)) copies of C2k+1 in G containing v. As v was arbitrary, summing up
for all the vertices of G, we get that there are at least

(1− o(1))
1

2k + 1

n2+1/k

2

copies of C2k+1 in G.
Now it only remains to upper bound the number of C2k+1’s in a graph H of girth 2k+1. For a

pair (v, xy) where v ∈ V (H), and xy ∈ E(H), there is at most one C2k+1 in H such that xy is the
edge in the C2k+1 opposite to v. Indeed, there is at most one path of length k in H joining v and
x, and at most one path of length k in H joining v and y, as H has no cycles of length at most 2k.
On the other hand, a fixed C2k+1 consists of 2k+1 pairs (v, xy) such that v is opposite to an edge
xy of the cycle. Therefore, the number of C2k+1’s in H is at most

n

2k + 1
|E(H)| ≤ (1 + o(1))

n

2k + 1

n1+1/k

2
,

by Theorem 3. This completes the proof.

6.2 Proofs of Theorem 17 and Theorem 18: Forbidding an additional cycle in

a graph of odd girth

In this subsection, we study the maximum number of C2l+1’s in a C2l ∪ {C2k}-free graph and the
maximum number of C2l+1’s in a C2l ∪ {C2k+1}-free graph, and prove Theorem 17 and Theorem
18.

If l = 1 we count triangles in a C2k-free graph or a C2k+1-free graph. The second question
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was studied by Győri and Li [25] and Alon and Shikhelman [2]. The first question was studied by
Gishboliner and Shapira [20]. They showed the following.

Theorem 28 (Győri-Li, Alon-Shikhelman and Gishboliner-Shapira). For any k ≥ 2 we have

(i) Ω(ex(n,C2k)) ≤ ex(n,C3, C2k) ≤ Ok(ex(n,C2k)).

(ii) Ω(ex(n,C2k)) ≤ ex(n,C3, C2k+1) ≤ O(k · ex(n,C2k)).

The above lower and upper bounds are known to be of the same order of magnitude, Θ(n1+1/k)
when k ∈ {2, 3, 5} (see [3, 42]).

In the rest of the section we study the case l ≥ 2. For the lower bounds, we will use the following
result of Nes̆etr̆il and Rödl [32]. Girth of a hypergraph H is defined as the length of a shortest
Berge cycle in it. More formally, it is the smallest integer k such that H contains a Berge-Ck .

Theorem 29 (Nes̆etr̆il, Rödl). For any positive integers r ≥ 2 and s ≥ 3, there exists an integer
n0 such that for all n ≥ n0, there is an r-uniform hypergraph on n vertices with girth at least s and
having at least n1+1/s edges.

Here we restate Theorem 17.

Theorem. For any k ≥ l + 1, we have

Ω(n1+ 1

2k+1 ) = ex(n,C2l+1,C2l ∪ {C2k}) = O(n1+ l
l+1 ).

Proof. For the lower bound, consider a (2l+1)-uniform hypergraph of girth 2k+1 with n1+1/(2k+1)

hyperedges (guaranteed by Theorem 29) and then replace each hyperedge by a copy of C2l+1. It
is easy to check that the resulting graph does not contain any cycle of length at most 2k except
2l + 1.

Now we prove the upper bound. Consider a C2l ∪ {C2k}-free graph G. Since all the cycles of
length at most 2l are forbidden, for any vertex v in G, there are no edges inside Ni(v) for i < l,
and the number of cycles of length 2l + 1 containing v is equal to the number of edges in Nl(v).
For a neighbor w of v let Q(v,w) = Nl(v) ∩Nl−1(w).

Claim 18. For any vertex v ∈ V (G), there exists a constant c = c(k, l) ≥ 2 such that there are at
most

(i) c|Nl(v)| edges inside Nl(v), and

(ii) c(|Nl(v)|+|Nl+1(v)|) edges between Nl(v) and Nl+1(v).

Proof. For (i) let w1, . . . , ws−1 be the neighbors of v, and let Vi = Q(v,wi) for 1 ≤ i ≤ s− 1. This
gives a partition of Nl(v). Observe that an edge inside Vi would create a cycle of length at most
2l−1, as both its vertices are connected to wi with a path of length l−1. Similarly a P3 with both
endpoints inside Vi would create a cycle of length at most 2l. Finally, a P2k−2l+1 with endpoints
in Vi and Vj would create a cycle of length 2k together with the two (internally disjoint) paths of
l connecting its endpoints to v. Thus we can apply Lemma 27 to finish the proof.

For (ii) we add Vs = Nl+1(v) to the family of sets Vi, 1 ≤ i ≤ s − 1 defined before, and delete
the edges inside Vs, as well as the edges inside Nl(v). Observe that if a P2k−2l+1 has endpoints in
different parts Vi and Vj , then i 6= s 6= j because of the parity of the length of the path. Thus we
can apply Lemma 27 to finish the proof.
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Now we delete every vertex which is contained in at most 4cl+1n
l

l+1 copies of C2l+1 from G,
and we repeat this procedure until we obtain a graph G′ where every vertex is contained in more

than 4cl+1n
l

l+1 copies of C2l+1. We claim that G′ has at most O(n1+ l
l+1 ) copies of C2l+1. As we

deleted at most O(n
l

l+1 ) C2l+1’s with every vertex, this will finish the proof.

Assume G′ contains more than cn1+ l
l+1 copies of C2l+1. First we show that the maximum degree

in G′ is at least cn
1

l+1 . Indeed, otherwise Ni(v) contains at most cin
i

l+1 vertices for every 1 ≤ i ≤ l

(here we use that G′ is C2l-free), thus there are at most cln
l

l+1 vertices in Nl(v), hence there are

at most cl+1n
l

l+1 edges inside Nl(v) by (i) of Claim 18, which means v is contained in at most

cl+1n
l

l+1 copies of C2l+1, so it should have been deleted, a contradiction.

Thus we can assume there is a vertex v of degree at least cn
1

l+1 . We will show that either v

or one of its neighbors is contained in at most cln
l

l+1 copies of C2l+1. For a neighbor w of v let
S0(w) = Nl(w) ∩ Nl−1(v), S1(w) = Nl(w) ∩ Nl(v) and S2(w) = Nl(w) ∩ Nl+1(v). Notice that
Nl(w) = S0(w) ∪ S1(w) ∪ S2(w).

Let us sum up the number of edges pq with p ∈ Q(v,w) and q ∈ Nl(v) ∪Nl+1(v), over all the
neighbors w of v. This way we counted every edge inside Nl(v) or between Nl(v) and Nl+1(v) at
most twice; moreover the number of such edges is at most 2cn by Claim 18. Therefore, the total

sum is at most 4cn. As d(v) ≥ cn
1

l+1 , v has a neighbor w such that there are at most 4n
l

l+1 edges

between vertices in Q(v,w) and vertices in Nl(v)∪Nl+1(v). This also means |S1(w)∪S2(w)|≤ 4n
l

l+1 .

We claim that there are at most (c+1)n
l

l+1 edges inside Nl(w) = S0(w)∪S1(w)∪S2(w). There
is no edge inside S0(w) as there is no edge inside Nl−1(v). There is no edge between S0(w) and
S2(w), since otherwise its endpoint in S2(w) would have to be in Nl(v). A vertex u ∈ S1(w) is
connected to at most one vertex in S0(w), otherwise we would obtain two distinct paths of length
l between u and v, giving us a cycle of length at most 2l. Hence the number of edges inside Nl(w)

incident to elements of S0(w) is at most |S1(w)|≤ 4n
l

l+1 .
Let us now partition Nl(w) into sets Q(w,w′) = Nl(w) ∩ Nl−1(w

′) for each neighbor w′ of w.
Observe that Q(w, v) = S0(w). For the remaining d(w) − 1 parts we want to apply Lemma 27
similarly to (i) of Claim 18. In fact, by deleting S0(w) we obtain another graph G′′ where the same
cycles are forbidden and the l–th neighborhood of w is S1(w)∪S2(w). Thus applying Claim 18 we

obtain that there are at most c(|S1(w) ∪ S2(w)|) ≤ 4cn
l

l+1 edges inside S1 ∪ S2.

Thus altogether there are at most 4(c + 1)n
l

l+1 < 4cl+1n
l

l+1 edges inside Nl(w) (where c > 0 is
a constant chosen so that the previous inequality is satisfied), hence w should have been deleted, a
contradiction.

Here we restate Theorem 18 and prove it.

Theorem. For k > l ≥ 2 we have

Ω(n1+ 1

2k+2 ) = ex(n,C2l+1,C2l ∪ {C2k+1}) = O(n2).

Proof. For the lower bound, consider a (2l+1)-uniform hypergraph of girth 2k+2 with n1+1/(2k+2)

hyperedges and then replace each hyperedge by a copy of C2l+1.
Now we prove the upper bound. Let v be an arbitrary vertex in a C2l ∪ {C2k+1}-free graph

G. We will upper bound the number of C2l+1’s containing v. There are no edges inside Ni(v) for

28



each i < l. Indeed, if there is an edge then we can find a forbidden short odd cycle containing
that edge (because the end points of that edge have a common ancestor). This shows that every
C2l+1 containing v must use an (actually exactly one) edge from Nl(v). So the number of C2l+1’s
containing v is upper bounded by the number of edges in Nl(v). We claim the following.

Claim 19. The number of edges in Nl(v) is O(|Nl(v)|) = O(n).

Proof of Claim. Color each vertex in Nl(v) by its (unique) ancestor in N1(v). Then the resulting
color classes A1, A2, . . . At partition Nl(v). There are no edges inside the color classes, because such
an edge would be contained in a forbidden short odd cycle.

One can partition the color classes into two parts {Ai | i ∈ I} and {Ai | i ∈ J} (with I ∪ J =
{1, 2, . . . , t} and I ∩ J = ∅), so that at least half of all the edges in Nl(v) are between the vertices
of the two parts. Now as C2k+1 is forbidden, there is no path of length 2k+1− 2l between the two
parts, as such a path would have its end vertices in different classes. (Note that here we use that
the parity of the path length 2k + 1− 2l is odd.) Thus by Erdős-Gallai theorem there are only at
most O(|Nl(v)|) = O(n) edges between the two parts. This implies that the total number of edges
in Nl(v) is at most twice as many, completing the proof of the claim.

So using Claim 19, the number of C2l+1’s containing any fixed vertex v is O(n). Thus the total
number of C2l+1’s in G is at most O(n2), as desired. This completes the proof.

We conjecture that even if the additional forbidden cycle has odd length, we can only have a
sub-quadratic number of C2l+1’s. See Conjecture 34 stated in the last section.

7 Number of copies of Pl in a graph avoiding a cycle of given

length

In the first subsection, we will consider the case when an even cycle is forbidden and prove Theorem
21 and Theorem 22, and in the next subsection, we will deal with the case when an odd cycle is
forbidden and prove Theorem 23.

7.1 Bounds on ex(n, Pl, C2k)

For the upper bound, we use a spectral method similar to the one used in [26].
The spectral radius of a finite graph is defined to be the spectral radius of its adjacency matrix.

Given a graph G, the spectral radius of G is denoted by µ(G). Given a matrix A, its spectral radius
is denoted by µ(A). If A is the adjacency matrix of G, then of course, µ(G) = µ(A).

Nikiforov [33] showed the following.

Theorem 30 (Nikiforov). Let G be a C2k-free graph on n vertices. Then for any k ≥ 1, we have

µ(G) ≤ k − 1

2
+
»

(k − 1)n + o(n).

Note that in the case k = 2, a sharper bound is known: The maximum spectral radius of a
C4-free graph on n vertices is 1

2 +
»

n− 3/4 + O(1/n), where for odd n the O(1/n) term is zero.
Now we prove Theorem 21, restated below.

29



Theorem. We have

ex(n, Pl, C2k) ≤ (1 + o(1))
1

2
(k − 1)

l−1

2 n
l+1

2 .

Proof. Let A be the adjacency matrix of a C2k-free graph G. Recall that N (Pl, G) denotes the
number of copies of Pl in G. Let N (Wl, G) denote the number of walks consisting of l vertices in
G. Note that 2N (Pl, G) ≤ N (Wl, G), since every path corresponds to two walks.

Then we have,
2N (Pl, G)

n
≤ N (Wl, G)

n
=

1tAl−11

1t1
(7)

Note that 1 is the column vector with all entries being 1. The right-hand-side of (7) is at most
µ(Al−1) because the spectral radius of any Hermitian matrix M is the supremum of the quotient
x∗Mx
x∗x , where x ranges over Cn\{0}. Moreover, using Theorem 30, we have

µ(Al−1) = (µ(A))l−1 = (µ(G))l−1 ≤
Å

k − 1

2
+
»

(k − 1)n + o(n)

ãl−1

≤ (1 + o(1))((k − 1)n)
l−1

2 ,

completing the proof.

Now we provide some lower bounds on ex(n, Pl, C2k).

Constructing C2k-free graphs with many copies of Pl

We prove Theorem 22. Note that the behavior of the extremal function seems to be very different
in the cases l < 2k and l ≥ 2k.

Theorem. If 2 ≤ l < 2k, then

ex(n, Pl, C2k) ≥ (1 + o(1))
1

2
(k − 1)⌊ l

2
⌋n

⌈ l
2
⌉.

If l ≥ 2k, then

ex(n, Pl, C2k) ≥ (1 + o(1))max







Ç

n

⌊l/2⌋

å⌈l/2⌉
,

Ç

(k − 1)

4(k − 2)k+2

å⌈ l
2
⌉
(k − 1)⌊ l

2
⌋n

⌈ l
2
⌉







.

Proof. In the case l < 2k, we take a complete bipartite graph B with parts of size k − 1 and
n− (k − 1). Clearly, B is C2k-free and the number of copies of Pl in B is at least

1

2
(k − 1)⌊ l

2
⌋(n− (k − 1))⌈ l

2
⌉ =

1

2
(k − 1)⌊ l

2
⌋n

⌈ l
2
⌉(1 + o(1)).

Now we consider the case l ≥ 2k. First we give a simple construction. Consider a path v1v2 . . . vl
and for each odd i, replace the vertex vi by b vertices v1i , v

2
i , . . . , v

b
i where each of them is adjacent

to the same vertices that vi was adjacent to. Choose b = n−⌊l/2⌋
⌊l/2⌋ = (1 + o(1)) n

⌊l/2⌋ . The resulting
graph only contains cycles of length 4, so it is C2k-free as long as k 6= 2. Moreover, it contains at
least

(1 + o(1))b⌈l/2⌉ = (1 + o(1))

Ç

n

⌊l/2⌋

å⌈l/2⌉
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copies of Pl. The case k = 2 is dealt with in Theorem 4
Now we give a different construction which gives a better lower bound when l is large compared

to k. We will use the following theorem of Ellis and Linial [7].

Theorem 31 (Ellis, Linial [7]). Let r,d and g be integers with d ≥ 2 and r, g ≥ 3. Then there
exists an r-uniform, d-regular hypergraph H with girth at least g, and at most

nr(g, d) := (r − 1)

Ç

1 + d(r − 1)
(d − 1)g(r − 1)g − 1

(d− 1)(r − 1)− 1

å

< 4((d − 1)(r − 1))g+1

vertices.

Let g = k + 1 and r = k − 1. Consider the hypergraph H given by Theorem 31 with

|V (H)| ≤ nr(g, d) = nk−1(k + 1, d). (8)

Notice that the number of hyperedges in H is

|E(H)| ≤ d · nr(g, d)

r
=

d · nk−1(k + 1, d)

k − 1
. (9)

Let E(H) = {h1, h2, . . . , hm}. To each hyperedge hi ∈ E(H), we add a set Si of new vertices
with

|Si| =
(n− |V (H)|)

|E(H)|
(note for i 6= j, we take Si ∩ Sj = ∅). Now we construct a graph G as follows: For each i with
1 ≤ i ≤ m, consider the sets hi, Si and add all possible edges between hi and Si. That is,
E(G) = {uv | u ∈ hi, v ∈ Si for some 1 ≤ i ≤ m}. It is easy to check that G is C2k-free. Note
that G is a bipartite graph with parts U := V (H) and D := ∪m

i=1Si. Moreover, the degree of every
vertex of G in U is d times the size of a set Si, so it is

d(n − |V (H)|)
|E(H)| .

And the degree of every vertex in D is the size of a set hi, so it is k − 1. Therefore, the number of
copies of Pl in G is at least

Ç

d(n− |V (H)|)
|E(H)|

å

⌈ l
2
⌉
(k − 1)⌊ l

2
⌋ = (1 + o(1))

Ç

dn

|E(H)|

å⌈ l
2
⌉
(k − 1)⌊ l

2
⌋.

Using (9), this is at least

(1 + o(1))

Ç

(k − 1)n

nk−1(k + 1, d)

å⌈ l
2
⌉
(k − 1)⌊ l

2
⌋.

Choosing d = 2 and using Theorem 31, we have

nk−1(k + 1, d) = (k − 2)

Ç

1 + 2(k − 2)
(k − 2)k+1 − 1

(k − 2)− 1

å

< 4(k − 2)k+2.
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So, ex(n, Pl, C2k) is at least

(1 + o(1))

Ç

(k − 1)n

nk−1(k + 1, 2)

å⌈ l
2
⌉
(k − 1)⌊ l

2
⌋ > (1 + o(1))

Ç

(k − 1)

4(k − 2)k+2

å⌈ l
2
⌉
(k − 1)⌊ l

2
⌋n

⌈ l
2
⌉.

7.2 Bounds on ex(n, Pl, C2k+1)

For the upper bound we will again use a spectral bound. We will use the following theorem of
Nikiforov [34].

Theorem 32 (Nikiforov). Let G be a C2k+1-free graph on n vertices. Then for any k ≥ 1 and
n > 320(2k + 1), we have

µ(G) ≤
»

n2/4.

Now we prove Theorem 23, restated below.

Theorem. We have

ex(n, Pl, C2k+1) = (1 + o(1))

Å

n

2

ãl

.

Proof. For the lower bound, consider a complete bipartite graph B with n/2 vertices on each side.
Then clearly, B does not contain any odd cycle and it contains at least

(1 + o(1))

Å

n

2

ãl

copies of Pl.
The proof of the upper bound is similar to that of the proof of Theorem 21. Let A be the

adjacency matrix of a C2k+1-free graph G. Then, for n large enough, using Theorem 32 we get,

2N (Pl, G)

n
≤ N (Wl, G)

n
=

1tAl−11

1t1
≤ µ(Al−1) = (µ(A))l−1 = (µ(G))l−1 ≤

(
 

n2

4

)l−1

=

Å

n

2

ãl−1

.

Thus,

N (P1, G) ≤
Å

n

2

ãl

,

completing the proof of the theorem.

Remark 3. Note that the number of copies of P2l in a graph G is at least 2l times the number of
copies of C2l in G. Indeed, every copy of C2l contains 2l copies of P2l. Moreover, a copy of P2l

belongs to at most one copy of C2l. Thus Theorem 23 implies Theorem 24.

8 Concluding remarks and questions

We finish our article by posing some questions.
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• Naturally, it would be interesting to prove asymptotic or exact results corresponding to our
results where we only know the order of magnitude. For example it would be nice to close the gap
between the lower and upper bounds in Theorem 10.

We also pose some conjectures when a family of cycles are forbidden.

• We proved in Theorem 14, that for any k > l and m ≥ 2 such that 2k 6= ml we have

ex(n,Cml,C2l−1 ∪ {C2k}) = Θ(nm).

We conjecture that it is true for longer cycles as well.

Conjecture 33. For any k > l, m ≥ 2 and 1 ≤ j < l with ml + j 6= 2k we have

ex(n,Cml+j ,C2l−1 ∪ {C2k}) = Θ(nm).

• We prove in Theorem 18 that for l > k ≥ 2 we have

ex(n,C2k+1,C2k ∪ {C2l+1}) = O(n2).

However, we conjecture that the truth is smaller.

Conjecture 34. For any integers k < l, there is an ǫ > 0 such that

ex(n,C2k+1,C2k ∪ {C2l+1}) = O(n2−ǫ).

The following theorem supports Conjecture 34.

Theorem 35. We have
ex(n,C5,C4 ∪ {C9}) = O(n11/12).

Proof. Let us consider a C4 ∪ {C9} = {C3, C4, C9}-free graph G. First we delete every edge that is
contained in less than 17 C5’s, then repeat this until every edge is contained in at least 17 C5’s. We
have deleted at most 17|E(G)|= O(n3/2) C5’s this way (note that |E(G)|= O(n3/2) follows from
the fact that G is C4-free). Let G

′ be the graph obtained this way.
Observe that if a five-cycle C := v1v2v3v4v5v1 shares the edge v1v2 with another C5, then they

either share also the edge v2v3 or v5v1 and no other vertices, or they share only the edge v1v2. If
there are at least six five-cycles sharing only v1v2 with C, we say v1v2 is an unfriendly edge for
C, otherwise it is called a friendly edge for C. Our plan is to show first that a C5 cannot contain
both friendly and unfriendly edges, then using this we will show that a C5 cannot contain friendly
edges. Thus every edge is unfriendly for every C5, and this will imply that G′ is C6-free.

Assume C contains both friendly and unfriendly edges. Then it is easy to see that it contains
an unfriendly edge, say v1v2, and a path P of two edges not containing v1v2 such that C shares
P with a set S of at least 6 other C5’s. (Note that the cycles in S only share P .) Now there is a
cycle v1v2w3w4w5v1 by the unfriendliness of v1v2 that contains three new vertices w3, w4, w5. Then
we replace v1v2 in C with v1w3w4w5v2 to obtain a C8. Afterwards, there is a cycle in S that does
not contain any of w3, w4 and w5 as the elements of S are vertex disjoint outside C. Thus we can
replace P in this C8 with a path of three edges to obtain a C9, a contradiction.
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Assume now C contains only friendly edges. The edge v1v2 is contained in at least 6 other C5’s
together with one of its two neighboring edges, say v2v3. At least of these 6 C5’s does not contain
the vertices v4 and v5, let it be v1v2v3w1w2v1. Thus replacing the two-edge path v1v2v3 with the
three-edge path v3w1w2v1 to obtain the six-cycle v4v5v1w2w1v3v4. The edge w1w2 is friendly for
v1v2v3w1w2v1 (because otherwise, it would contain both friendly and unfriendly edges). Thus w1w2

is in at least 6 other C5’s together with either v3w1 or w2v1. In the same way as before, we can
replace this two-edge path with a three-edge path to obtain a seven-cycle. Repeating this procedure
we can obtain an eight-cycle and then a nine-cycle, a contradiction. Indeed, at each step, we are
given a cycle C ′ of length between 5 and 8, and we add two new vertices to it in place of one of its
vertices by replacing a two-edge path P with a three-edge path to increase the length of C ′. We
have to make sure that the two new vertices are disjoint from the other vertices of C ′. Since there
are 6 C5’s containing P which are vertex-disjoint outside P , it is easy to find a C5 that avoids the
at most 5 vertices of C ′ outside P .

Hence every edge is unfriendly to every C5 in G′. Then we claim that there is no C6 in G′.
Indeed, otherwise we consider an arbitrary edge uv of that C6, there is a set S ′ of at least 17 C5’s
that each contain uv. Because of the unfriendliness of uv to each of the cycles in S ′, they do not
share any other vertices except u and v, so at least one of them is disjoint from the other vertices
of the C6, thus we can exchange e to a 4-edge-path in the C6, obtaining a C9, a contradiction.

We obtained that after deleting O(n3/2) edges, the resulting graph G′ is {C3, C4, C6}-free, thus
it contains at most O(n11/12) C5’s by Theorem 17.

Remarks about ex(n, Cl,CA) for a given set A of cycle lengths

After the investigation carried out in this article it is natural to ask to determine ex(n,Cl,CA) for
any set A.

Let us note that the behavior of ex(n,Cl,CA) is more complicated if l is not 4 or 6. A simple
construction of a CA-free graph G is the following. Let 2r be the shortest length of an even cycle
which is allowed (note that if no even cycle is allowed, then the total number of cycles is O(n) by a
theorem in [16]). Let p = ⌊l/r⌋. If r divides l, then the theta-(n,Cp, r) graph contains Ω(np) copies
of Cl, some C2r’s and no other cycles. If r does not divide l, it is easy to see that we can add a
path with l − pr new vertices between the two end vertices of a theta-(n − (l − pr), Pp+1, r) graph
to obtain a graph with Ω(np) many Cl’s, some C2r’s and no other cycles.

Observe that in these cases, we still have an integer in the exponent. However, Theorem 9 (by
Solymosi and Wong) shows that if l ≥ 4 is even, then ex(n,C2l,C6) = Θ(nl/3) since it is known
that Erdős’s Girth Conjecture holds for m = 3. This shows an example where the exponent is not
an integer.

The situation is even more complicated when l is odd. Let us examine the simplest case l = 5,
i.e. ex(n,C5,CA). If A contains only one element, Gishboliner and Shapira [20] determined the
order of magnitude (it is 0 or n2 or n5/2). If there are at least two elements in A but 4 6∈ A,
then the construction described above gives ex(n,C5,CA) = Ω(n2), while the result of Gishbo-
liner and Shapira [20] implies ex(n,C5,CA) = O(n2). If A = {C3, C4}, then Lemma 26 shows
ex(n,C5, {C3, C4}) = Θ(ex(n,C5, C4)), which is Θ(n5/2) by Theorem 4. What remains is the case
A contains 4 and another number. In this case Theorem 17 and Theorem 18 give some bounds
that are not sharp.
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[28] H. Hatami, J. Hladký, D. Král, S. Norine, A. Razborov. On the number of pentagons in
triangle-free graphs. Journal of Combinatorial Theory, Series A, 120(3), 722–732, 2013.

36



[29] F. Lazebnik, V. A. Ustimenko, A. J. Woldar. Polarities and 2k-cycle-free graphs. Discrete
Math. 197/198, 503–513, 1999.

[30] J. Ma, Y. Qiu. Some sharp results on the generalized Turán numbers. arXiv :1802.01091, 2018.

[31] W. Mantel. Problem 28. Wiskundige Opgaven, 10, 60–61, 1907.
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