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Abstract 

A crucial question in skill learning research is how instruction affects the performance or the 

underlying representations. Little is known about the effects of instructions on one critical 

aspect of skill learning, namely, picking-up statistical regularities. More specifically, the 

present study tests how pre-learning speed or accuracy instructions affect the acquisition of 

non-adjacent second-order dependencies. We trained two groups of participants on an implicit 

probabilistic sequence learning task: one group focused on being fast and the other on being 

accurate. As expected, we detected a strong instruction effect: accuracy instruction resulted in 

a nearly errorless performance, and speed instruction caused short reaction times. Despite the 

differences in the average reaction times and accuracy scores, we found a similar level of 

statistical learning performance in the training phase. After the training phase, we tested the 

two groups under the same instruction (focusing on both speed and accuracy), and they showed 

comparable performance, suggesting a similar level of underlying statistical representations. 

Our findings support that skill learning can result in robust representations, and they highlight 

that this form of knowledge may appear with almost errorless performance. Moreover, multiple 

sessions with different instructions enabled the separation of competence from performance. 

Keywords: implicit learning, instruction, probabilistic learning, speed-accuracy, statistical 

learning 
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Introduction 

Our social, motor and cognitive skills help us adapt to and function in various situations 

in our everyday life. Therefore, fine-tuning the ability to learn new skills can be advantageous 

for an individual. Previous studies investigating sports performance (Beilock et al. 2004, 2008) 

and sequence learning (Hoyndorf and Haider 2009; Barnhoorn et al. 2019) found that speed 

and accuracy strategies differently affect skill learning. However, skill learning is multifaceted, 

and it still not clear what underlying mechanisms benefit from speed and accuracy instructions 

and what mechanisms do not. A core component of learning new skills is picking up complex 

statistical regularities from the environment (Janacsek et al. 2012; Conway 2020). To date, no 

study has investigated the effects of prioritizing speed or accuracy on the acquisition of such 

statistical dependencies. Here, we aim to unveil how emphasizing speed or accuracy influences 

this essential aspect of skill learning. 

Hoyndorf and Haider (2009) investigated the sequencing aspect of skill learning and 

found an accuracy strategy to impair the expression of implicit knowledge compared to speed 

instruction; however, evidence of learning was still detected under accuracy instruction 

compared to a non-learning control group. Yet, in this experiment, the accumulated sequence-

knowledge under speed/accuracy instructions was not compared to a phase where the 

importance of speed and accuracy was equally emphasized. Such a comparison would reveal 

whether implicit sequence knowledge is acquired at the same level under different instructions. 

Recently, Barnhoorn, Panzer, Godde, and Verwey (2019) found that speed instruction benefits 

the development of representations about repeating sequences, while forcing participants to be 

more accurate leads to a faster selection of responses via better stimulus-response associations. 

In this study, the participants were aware of the repeating sequences; thus, the learning was 

completely explicit. The studies mentioned above suggest that speed instruction might benefit 

sequence learning more than accuracy instruction. These studies used relatively simple, 
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deterministic sequences (i.e., sequences with a simple repeating pattern). Therefore, data are 

still lacking on whether instruction affects probabilistic representations. 

Human participants can rapidly extract statistical information from the environment 

(Frost et al. 2015). But how fragile are these representations? Previous studies have shown that 

accelerated learning can be advantageous for habit formation (Hardwick et al. 2019) and also 

affects the sequencing aspect of skill learning (Hoyndorf and Haider 2009; Barnhoorn et al. 

2019). However, these studies could not distinguish whether the instructions affect the 

representations or momentary performance. Instructing participants to be fast or accurate during 

the learning process, and test their knowledge after the instructed phase would allow us to 

decipher whether the statistical representations are themselves fragile or only the performance 

is affected. If instructions do not affect statistical learning, it will underlie the robust nature of 

picking up non-adjacent statistical regularities (Kóbor et al. 2017). 

 Here, we aimed to test whether speed or accuracy instructions affect the acquisition of 

complex statistical regularities using an implicit probabilistic sequence learning task. We go 

beyond previous investigations by at least two aspects: First, by studying complex probabilistic 

sequences with non-adjacent second-order dependencies (Remillard 2008). This feature means 

that to predict the nth element of the sequence, we need to know the n-2th element instead of n-

1th. This structure creates an abstract sequence representation, and its acquisition will be based 

on statistical regularities (Nemeth et al. 2013), which are also fundamental in complex cognitive 

skills such as human language (Christiansen and Chater 2015). 

The second novel contribution of our study is that we also test the implicit sequence 

knowledge of our participants after the (instructed) training phase. Our learning task was 

completed in two different phases. In the first phase, we instructed the participants to focus 

either on accuracy or speed while performing the task (Different Instruction Phase, Accuracy 

vs. Speed Group). After the training phase, we tested both groups of participants with the same 
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instruction (i.e., focusing both on accuracy and speed, Same Instruction Phase). By doing so, 

we aimed to differentiate between the effects of instructions on training performance and 

acquired knowledge. Our questions were 1) whether the speed/accuracy instruction affects the 

learning of probabilistic statistical regularities, and if yes, 2) do they affect the training 

performance (Different Instruction Phase) and the retrieval of knowledge (Same Instruction 

Phase) equally? 

Materials and Methods 

Participants 

Sixty-six healthy young adults took part in the study. Five of them were excluded from 

the experiment because they conceivably misunderstood the instructions. Their performance 

was more than two standard deviations from the mean of their group in more than 50% of the 

epochs (units of analysis), which was not observable during the practice session. Therefore, 61 

participants remained in the final sample (40 females), which is sufficient to detect group 

differences in statistical learning (see power analysis in the “Justification for sample size” 

section of the Supplementary Materials). Another four participants were excluded from the 

analysis of the Inclusion/Exclusion task for not following instructions (see Inclusion/Exclusion 

part of the Results section).  

Participants were between 19 and 27 years of age (Mage = 21.18 years, SDage = 2.13 

years). All of them were undergraduate students from Budapest, Hungary (Myears of education = 

14.14 years, SDyears of education = 1.64 years). Participants had a normal or corrected-to-normal 

vision, none of them reported a history of any neurological and/or psychiatric disorders, and 

none of them was taking any psychoactive medication at the time of the experiment. 

Handedness was measured using the Edinburgh Handedness Inventory (Oldfield 1971). The 

Laterality Quotient (LQ) of the sample varied between −84.62 and 100 (−100 indicates 
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complete left-handedness, 100 indicates complete right-handedness, MLQ = 62.25, SDLQ = 

53.73). They performed in the normal range on the Counting Span Task (MCounting Span = 3.66, 

SDCounting Span = 0.81) All of the participants gave written informed consent before enrollment 

and received course credit for participating. They were randomly assigned to the Accuracy 

Group (n = 31) or Speed Group (n = 30). 

No group differences were observed in terms of age, years of education, handedness, 

and neuropsychological performance (see Table 1). Males and females were equally 

represented in the sample (Accuracy Group: 11 males, Speed Group: 10 males, χ2 (1, N = 61) 

= 0.03, p = .86). The study was approved by the Research Ethics Committee of the Eötvös 

Loránd University, Budapest, Hungary, and it was conducted in accordance with the 

Declaration of Helsinki. 

 

Table 1. Comparison of the two groups on age, years of education, handedness, and 

neuropsychological performance 

 Accuracy Group 

M(SD) 

Speed Group 

M(SD) 

t-test 

Age (years) 21.29 (2.28) 21.07 (2.00) t(59) = -0.41, p = .69, BF01 = 4.82 

Education (years) 14.31 (1.60) 13.97 (1.71) t(59) = -0.80, p = .43, BF01 = 3.87 

Handedness (LQ) 54.88 (55.00) 69.86 (52.20) t(59) = 1.09, p = .28, BF01 = 3.02 

Counting Span Score 3.69 (0.75) 3.64 (0.88) t(59) = 0.21, p = .83, BF01 = 5.08 

  

Alternating Serial Reaction Time task 

In this study, we used the implicit version of the Alternating Serial Reaction Time 

(ASRT) task (Howard and Howard 1997; Nemeth, Janacsek, Londe, et al. 2010). In the ASRT 

task, four empty circles were presented horizontally in front of a white background in the middle 
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of a computer screen. A target stimulus (drawing of a dog’s head) was presented sequentially 

in one of the four empty circles (Figure 1A). The stimuli were 300 pixels each. The monitor 

resolution was 1280 × 1024 pixels, and the viewing distance from the monitor was 

approximately 60 cm. A keyboard with four heightened keys (Z, C, B, and M on a QWERTY 

keyboard) was used as a response device, each of the four keys corresponding to the circles in 

a horizontal arrangement. Participants were asked to respond with their middle and index 

fingers of both hands by pressing the button corresponding to the target position. At the 

beginning of each block of the ASRT task, the four empty circles appeared horizontally on the 

screen for 200 ms, and then, the first target stimulus occurred, and it remained on the screen 

until the first correct response. The next stimulus appeared after a 120 ms response-to-stimulus 

interval. 

The serial order of the four possible positions (coded as 1, 2, 3, and 4 in a horizontal 

arrangement, with 1 as the leftmost and 4 as the rightmost position) in which target stimuli 

could appear was determined by an eight-element probabilistic sequence. In this sequence, 

every second element appeared in the same order. In contrast, the other elements’ positions 

were randomly chosen out of the four possible locations (e.g., 2r4r3r1r, where r indicates a truly 

random position). Therefore, some combinations of three consecutive trials (triplets) occurred 

with a higher probability than others. For example, 2X4, 4X3, 3X1, and 1X2 (where ‘‘X” 

indicates any possible middle element of the triplet) would often occur because the third 

element (bold numbers) could be derived from the sequence (or occasionally could be a random 

element as well). In contrast, 1X3 or 4X2 would occur with less probability because the third 

element could only be random (Figure 1B). Therefore, the third element of a high-probability 

triplet is more predictable from the first event when compared to a low-probability triplet.  

There were 64 possible triplets in the task (four stimuli combined for three consecutive 

trials). Sixteen of them were high-probability triplets, each of them occurring in approximately 
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4% of the trials, five times more often than the low-probability triplets. Overall, high-

probability triplets occur with approximately 62.5% probability during the task, while low-

probability triplets only occur with a probability of 37.5% (Figure 1C). 

As participants practice the ASRT task, their responses become faster and more accurate 

to the high-probability triplets compared to the low-probability triplets, revealing statistical 

learning throughout the task (Howard and Howard 1997; Song et al. 2007; Kóbor et al. 2017; 

Unoka et al. 2017). Each block of the ASRT task contained 85 stimuli (5 random elements were 

presented at the beginning of the block, then the 8-element alternating sequence was repeated 

ten times). Each participant performed a randomly selected sequence from the six possible 

original sequences: 2r1r3r4r, 2r1r4r3r, 2r3r4r1r, 2r3r1r4r, 2r4r3r1r, and 2r4r1r3r. 

 

Figure 1. Task and design of the experiment. (A) Stimulus presentation in the ASRT task. A dog’s head appeared 

in one of the four positions. Stimuli appeared in either a pattern (P) or a random (r) position, creating an eight-item 

long alternating sequence structure. (B) High- and low-probability triplets. Due to the alternating sequence 
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structure, some runs of consecutive stimuli (called triplets) occurred with a higher probability than others. Every 

trial was defined as the third trial of a high- or a low-probability triplet, based on the two preceding trials. High-

probability triplets can be formed by two patterns and one random element, but also by two random and one pattern 

element. (C) Proportion of high- and low-probability triplets. High-probability triplets occurred in 62.5% of all 

trials (of which 50% came from pattern trials, i.e., from P-r-P structure, and 12.5% came from random trials, i.e., 

from the r-P-r structure, by chance). Low-probability triplets occurred in the remaining 37.5% of all trials (of 

which each individual low-probability triplet occurred with a 12.5% probability by chance, originating only from 

the r-P-r structure). (D) Design of the study. In the Different Instruction Phase, different instructions were given 

to the two groups. After four epochs (each containing five blocks) of the ASRT task, and a 10-minute long rest 

period, the instruction changed. In the fifth epoch (containing five blocks of stimuli), the same instruction was 

given to all of the participants (Same Instruction Phase). 

 

Inclusion-Exclusion Task 

We also administered an Inclusion-Exclusion Task (Destrebecqz and Cleeremans 2001; 

Destrebecqz et al. 2005; Jiménez et al. 2006; Fu et al. 2010), which is based on the “Process 

Dissociation Procedure”, a widely-used method to disentangle the explicit-implicit processes 

in memory tasks (Jacoby 1991). In the first part of the task, we asked participants in what order 

the stimuli (both pattern and random elements) appeared during the task and to type the 

sequence using the same four response buttons they used during the ASRT task (inclusion 

instruction). After that, they had to generate new sequences that were different from the learned 

sequence (exclusion condition). Both parts consisted of four runs, and each run finished after 

24 button presses, which is equal to three rounds of the eight-element alternating sequence 

(Kóbor et al. 2017; Horvath et al. 2018; Kiss et al. 2019). 

We assessed performance by the occurrence of high-probability triplets in the sequence 

of responses. Thus, in the inclusion condition, successful performance is indicated by producing 

high-probability triplets above the chance level. It can be achieved solely by implicit knowledge 
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(however, explicit knowledge can also boost performance, but it is not necessary for the 

successful completion of the task). 

On the contrary, successful performance in the exclusion condition (i.e., generating a 

new sequence that is different from the learned one) is indicated by the production of high-

probability triplets at or under chance level. This is only possible if the participant has conscious 

(explicit) knowledge about the learned statistical regularities, and they can inhibit the 

production of high-probability triplets consciously. The generation of the learned statistical 

regularities above chance level, even in the exclusion task, indicates that the participant relies 

on their implicit knowledge, as it cannot be controlled consciously. 

To test whether the participants gained consciously accessible triplet knowledge, first, 

we calculated the percentage of the generated high-probability triplets in the inclusion and 

exclusion conditions separately. Then, we tested whether the occurrence of high-probability 

triplets differed from the probability of generating them by chance. The chance level was 

considered 25% because, after two consecutive button presses, the chance for the third button 

press to form a high-probability triplet with the two preceding button presses is 1/4 = 25%. We 

also compared the percentages of the high-probability triplets across conditions (inclusion and 

exclusion task) and groups (Accuracy Group and Speed Group) (for more details about the 

Inclusion-Exclusion task, see: Horvath et al., 2018; Kiss et al., 2019; Kóbor et al., 2017). 

Questionnaire 

We used a questionnaire to scrutinize whether the participants preferred accuracy or 

speed in general and whether they were rather accurate or fast in their everyday life. The 

questionnaire consisted of the following questions: “In an everyday situation, what do you 

attend more: speed or accuracy (on a scale from 1 to 10, where 1 means that only the accuracy 

is important and 10 means that only the speed is important)?”, “In an everyday situation, how 
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important is for you to be accurate/fast on a scale from 1 to 10?”, “According to your friends 

and family, how fast/accurate are you when you need to solve a problem (on a scale from 1 to 

10)?”. 

Design 

First, the participants completed three practice blocks of 85 random trials each to 

familiarize themselves with the task. After that, the participants completed two sessions of the 

ASRT task. In the training session (referred to as Different Instruction Phase), we gave different 

instructions to the two groups. For the Accuracy Group, the instruction was to try to be as 

accurate as possible during the task. On the contrary, the instruction for the Speed Group was 

to be as quick as possible. Twenty blocks were presented to the participants in the Different 

Instruction Phase (for analysis, we organized the blocks into four epochs by merging five 

consecutive blocks). Participants could rest a bit after each block. A 10 min rest period was 

inserted before the second ASRT session. During this period, participants were not involved in 

any demanding cognitive activity. The second session of ASRT (referred to as the Same 

Instruction Phase) contained five blocks (one epoch). This time, both the Accuracy and Speed 

Group were instructed to respond to the target stimulus as quickly and as accurately as possible 

(Figure 1D). After the ASRT task, the Inclusion-Exclusion task was administered. 

Statistical analysis 

We defined each trial as the third element of a high- or low-probability triplet. Trills 

(e.g., 1-2-1) and repetitions (e.g., 1-1-1) were eliminated from the analysis because participants 

tended to show preexisting response tendencies to these types of triplets (Howard et al. 2004; 

Unoka et al. 2017; Janacsek et al. 2018; Takács et al. 2018). The first five button presses were 

random; thus, only the eighth button press could be evaluated as the last element of a valid 

triplet. Therefore, the first seven trials were excluded from the analysis. Blocks were collapsed 
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into four epochs in the Different Instruction Phase (Epoch 1-4), and one epoch in the Same 

Instruction Phase (Epoch 5) to facilitate data processing and to reduce intra-individual 

variability. We calculated the median reaction times (RTs) separately for high- and low-

probability triplets for each participant and each epoch. Only correct responses were considered 

for the RT analysis (we also performed the analyses with the incorrect trials included, see 

“Analyses including the incorrect trials” in the Supplementary Materials). To ensure that our 

results on the learning measures were not due to the differences in the average RTs and 

accuracies, we repeated the analyses with standardized scores (for details, see “Standardized 

learning scores” section in the Supplementary Materials). 

We used mixed-design ANOVAs to compare the learning performance between the two 

groups in the Different and Same Instruction Phase. ANOVAs with the within-subject factor of 

Triplet (high- vs. low-probability triplets) and the between-subjects factor of Group (Accuracy 

Group vs. Speed Group) were run (and also with the Epoch factor for the analysis of the 

Different Instruction Phase). In all ANOVAs, the Greenhouse-Geisser epsilon (ε) correction 

was used if necessary. Corrected df values and corrected p values are reported (if applicable) 

along with partial eta-squared (ηp
2) as the measure of effect size. We used LSD (Least 

Significant Difference) tests for pairwise comparisons. Significant interactions involving the 

Triplet factor were further analyzed using follow-up ANOVAs on the difference scores by the 

Triplet factor (high-probability triplets vs. low-probability triplets).  

To further support the results of our comparisons, we ran Bayesian t-tests with a 

standard Cauchy prior distribution (r = 1) (Rouder et al. 2009). Here, we report BF01 values: 

greater values support the null hypothesis over the alternative hypothesis. BF01 values between 

1 and 3 indicate anecdotal evidence for H0, while values between 3 and 10 indicate substantial 

evidence for H0. Values between 1 and 0.33 indicate anecdotal evidence for H1, values between 



13 
 

0.33 and 0.1 indicate substantial evidence for H1. BF01 values around one do not support either 

H0 or H1 (Wagenmakers et al. 2011).  

To obtain a robust indication of which factors determine performance, we also 

performed Bayesian repeated-measures ANOVAs on the learning scores (the difference 

between the two levels of Triplet factor, i.e., learning scores) (Zavecz et al. 2020). We decided 

to run the ANOVAs on the learning scores because our primary interest was to quantify the 

contribution of each interaction to statistical learning rather than to general reaction times. Here 

we present Bayesian Model Averaging and report the inverted BF inclusion values 

(1/BFinclusion). These values indicate the amount of evidence for the exclusion of the given factor 

from our model.  Thus, values below 1 support the inclusion and values above 1, the exclusion 

of the given factor. Full model comparisons are included in the Supplementary Materials (see 

“Model comparisons of statistical learning” section in the Supplementary Materials). Cauchy 

prior distribution was used for the ANOVA with a fixed-effects scale factor of r = .5, and a 

random-effects scale factor of r = 1 (JASP Team 2020). 

To test whether participants developed conscious knowledge about the learned 

statistical regularities, we compared the percentage of the generated high-probability triplets in 

the Inclusion-Exclusion Task to chance level (25%) separately for the two groups with one-

sample t-tests. We compared the percentage of high-probability triplets with a mixed-design 

ANOVA to reveal whether the level of explicitness differs between groups and conditions. 

Additionally, we correlated the average RTs and accuracy scores with the rates of the 

different items of the questionnaire to check whether the subjective preferences of the 

participant are related to the ability to follow the instructions. 
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Results 

Did the two groups perform equally before learning? 

To ensure the lack of substantial preexisting differences between groups in terms of 

speed or accuracy, we compared the median RTs (only for correct responses) and the accuracy 

of the two groups in the practice session (random stimuli). We did not find differences between 

groups either in RTs, t(59) = 0.48, p = .64, BF01 = 4.67, or in accuracy measures, t(59) = 1.08, 

p = .28, BF01 = 3.04. Therefore, we assumed that there were no pre-existing differences between 

groups regarding their speed or accuracy. 

General speed changes and statistical learning in RT measures in the Different Instruction 

Phase 

We investigated how 1) general RTs changed, and 2) whether statistical learning 

differed between groups during the Different Instruction Phase. RTs were analyzed with a 

mixed-design ANOVA with the within-subject factors of Triplet (high- vs. low-probability 

triplets) and Epoch (Epoch 1 to 4), and the between-subjects factor of Group (Accuracy Group 

vs. Speed Group). Please note that main effects and interaction excluding the Triplet factor 

could reveal changes in the average speed/accuracy during the task, independent of the 

acquisition of statistical regularities, and the main effects and interaction including the Triplet 

factor could unveil differences in statistical learning. 

 We also compared the learning process with standardized learning scores (see Materials 

and Methods). To this end, a mixed-design ANOVA was performed on the standardized RT 

learning scores with Epoch (Epoch 1 to 4) as a within-subject factor and Group (Accuracy 

Group vs. Speed Group) as a between-subjects factor. 

Did the instruction affect general RTs in the Different Instruction Phase? 
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The main effect of Group was significant, F(1, 59) = 51.86, p < .001, ηp
2 = .47, 

indicating faster overall RTs in the Speed Group, and the Bayesian comparison of means also 

favored the difference, BF01 < 0.001; thus, the instruction did modify the average speed of the 

participants. A main effect of Epoch was found, F(1.97, 116.33) = 7.46, p = .001, ηp
2 = .11, 

indicating a change in average RTs during the task: significantly faster RTs were observed 

between Epoch 2 and Epoch 3 (p = .008) as well as between Epoch 3 and Epoch 4 (p = .049).  

The Epoch × Group interaction was non-significant, F(1.97, 116.33) = 2.30, p = .10, ηp
2 = .04 

(Figure 2). 

 

Figure 2. Effects of instruction on (A) average reaction times and (B) accuracies. The horizontal axis indicates 

the five epochs of the task and the vertical axis the RTs in milliseconds/accuracies in percentage. The error bars 

represent the standard error of the mean (SEM). Average RTs were significantly shorter and accuracies lower for 

the Speed Group from the first epoch, indicating that the participants followed the instructions. After the change 

of the instructions (Epoch 5) – although the average scores of the two groups approached each other – the 

difference persisted for accuracies; however, the difference disappeared for the average RTs. * p < .05 
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 Did statistical learning measured by RTs differ between groups in the Different 

Instruction Phase? 

The main effect of Triplet was significant, F(1, 59) = 49.41, p < .001, ηp
2 = .46: faster 

RTs were found for high-probability triplets compared to low-probability triplets (BF01 < 

0.001), revealing significant implicit statistical learning. Importantly, the Triplet × Group 

interaction was non-significant, F(1, 59) = 0.48, p = .49, ηp
2 = .01: the degree of learning did 

not differ between the two groups over the course of the learning. The Bayesian comparison of 

mean differences also supported the lack of difference, BF01 = 4.17 (Figure 3). The Triplet × 

Epoch interaction was significant, F(3, 177) = 5.66, p = .001, ηp
2 = .09: In the first epoch, 

independently from groups, no difference was detected between high- and low-probability 

triplets (p = .54), and learning (faster RTs for high- than for low-probability triplets) emerged 

from the second epoch (each p < .007). Follow-up analysis on the difference between high- and 

low-probability triplets (learning scores) revealed an increase in learning scores between Epoch 

1 and Epoch 2 (p < .001), but not between Epoch 2 and Epoch 3 (p = .90) or Epoch 3 and Epoch 

4 (p = .17).  The interaction between the Triplet, Epoch, and Group factors was non-significant, 

F(3, 177) = 0.90, p = .43, ηp
2 = .02,  revealing no difference in the time course of statistical 

learning between groups. The analysis with the standardized learning scores in the RT measures 

revealed similar results (see Supplementary Materials for details). 
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Figure 3. Learning in RT measures in the (A) Accuracy Group and (B) Speed Group. The horizontal axis 

shows the five epochs of the task and the vertical axis the RTs. The solid line represents the RTs for the high-

probability triplets, while the dashed line indicates the RTs for the low-probability triplets. The error bars represent 

the SEM. Please note that the gap between the two lines indicates the learning of statistical regularities. The RTs 

for high-probability triplets were smaller for both groups and phases. The difference between the two trial types 

remained after the change of the instructions. A similar level of learning was measured in both groups and phases. 

*.p < .05 

 

Bayesian Model Averaging in the Different Instruction Phase in RT measures 

 We conducted a Bayesian repeated-measures ANOVA to quantify the contribution of 

the different factors to statistical learning (to the difference between the two levels of the Triplet 

factor, i.e., low-probability triplets minus high-probability triplets). The ANOVA was 

performed on the learning scores as the dependent variable, with the within-subject factor of 

Epoch (Epoch 1-4) and the between-subject factor of Group (Accuracy Group vs. Speed 

Group). Please note that, because this ANOVA is conducted on learning scores, here the Epoch 

factor corresponds to the Triplet × Epoch interaction, the Group factor to the Triplet × Group 

interaction, and the Epoch × Group interaction in the three-way interaction of the frequentist 

ANOVA. The Bayesian ANOVA supported the inclusion of the Epoch factor, and the exclusion 

of the Group factor and the Epoch × Group interaction (Table 2). This result suggests that 
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although the learning scores changed throughout the task, this change was independent of the 

instructions, and the overall statistical knowledge was not different between the two groups (see 

detailed model comparisons in Supplementary Table 7). 

 

Table 2. Analysis of effects for the RT learning scores  

Effects  P(incl)  P(incl|data)  

BF 

exclusion  

Epoch   0.60   0.98   0.04   

Group   0.60   0.19   6.49   

Epoch  ×  Group   0.20   0.02   11.13   

 

Note: The column Effects lists the main effects and interactions. The P(incl) column denotes the prior, and the 

P(incl|data) the posterior inclusion probability. The BFexclusion column indicates the change from prior to posterior 

odds. 

 

General accuracy changes and statistical learning in accuracy measures in the Different 

Instruction Phase 

Next, we repeated the above analyses on accuracy measures to see how 1) general 

accuracy changed, and 2) whether statistical learning differed between groups during the 

Different Instruction Phase. We ran a mixed-design ANOVA with the within-subject factors of 

Triplet (high- vs. low-probability triplets) and Epoch (Epoch 1 to 4), and the between-subject 

factor of Group (Accuracy Group vs. Speed Group). Please note again that the main effects and 

interaction excluding the Triplet factor could reveal information about the average 

speed/accuracy during the task, independent of statistical learning, and main effects and 

interaction including the Triplet factor could unveil potential differences in terms of statistical 

learning. 
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Did the instruction affect general accuracies in the Different Instruction Phase? 

The main effect of Group was significant, F(1, 59) = 117.40, p < .001, ηp
2 = .67, 

signaling higher average accuracy in the Accuracy Group; thus, the instructions did influence 

the accuracy of the participants. The Bayesian comparison of means also supported the 

difference (BF01 < 0.001). The ANOVA revealed a main effect of Epoch, F(1.81, 107 = 8.19, 

p = .001, ηp
2 = .13, revealing a significant decrease in accuracies between Epoch 1 and Epoch 

2 (p = .02) and between Epoch 2 and Epoch 3 (p = .002). The Epoch × Group interaction was 

significant, F(1.84, 107) = 7.08, p = .002, ηp
2 = .11, indicating that accuracy decreased over the 

epochs in the Speed Group (each p < .005, except between Epoch 3 and Epoch 4, p = .36), and 

it remained similarly high in all epochs in the Accuracy Group (each p > .74) (Figure 2). 

Did statistical learning measured by accuracies differ between groups in the 

Different Instruction Phase? 

The main effect of Triplet was significant, F(1, 59) = 93.88, p < .001, ηp
2 = .61: 

participants responded more accurately to high-probability triplets compared to low-probability 

triplets, revealing prominent implicit statistical learning also in accuracy measures. The 

Bayesian comparison also supported the difference, BF01 < 0.001. Contrary to the RT results, 

the ANOVA revealed a significant interaction between the Triplet and Group factors, F(1, 59) 

= 45.25, p < .001, ηp
2 = .43. The Speed Group responded more accurately to high-probability 

triplets compared to the low-probability triplets; the Accuracy Group exhibited similarly 

accurate responses to the two types of triplets (BF01 < 0.001) (Figure 4). The Triplet × Epoch 

interaction was significant, F(3, 177) = 3.69, p = .01, ηp
2 = .06; thus, the degree of statistical 

learning changed over the course of learning. Follow-up analysis of the difference between 

high- and low-probability triplets (learning scores) revealed a decrease in statistical knowledge 

between Epoch 3 and Epoch 4 (p = .01), but not between Epoch 1 and Epoch 2 (p = .19) or 

Epoch 2 and Epoch 3 (p = .13). The Triplet × Epoch × Group interaction was also significant, 
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F(2.95, 174.28) = 2.99, p = .03, ηp
2 = .05, suggesting different dynamics of implicit statistical 

learning for the two groups. The follow-up analysis on the difference between high- and low-

probability triplets (learning scores) revealed that in the Accuracy Group, no change was 

observed between consecutive epochs (each p > .74). On the contrary, in the Speed Group, an 

increase was observed between Epoch 2 and Epoch 3 (p = .04) and a decrease between Epoch 

3 and Epoch 4 (p = .001). The analysis with the standardized learning scores in accuracy 

measures revealed similar results (see Supplementary Materials for details). 

 

 

Figure 4. Learning in accuracy measures in the (A) Accuracy Group and (B) Speed Group. The horizontal 

axis shows the five epochs of the task and the vertical axis the RTs. The solid line represents the RTs for the high-

probability triplets, while the dashed line indicates the RTs for the low-probability triplets. The error bars represent 

the SEM. Please note that the learning of statistical regularities is measured by the gap between the two lines. The 

accuracies for high-probability triplets were smaller in the Speed Group, but not in the Accuracy Group. However, 

learning was measurable in both groups after the change of the instructions. * p < .05 

 

Bayesian Model Averaging in the Different Instruction Phase in accuracy measures 

We ran a Bayesian repeated-measures ANOVA on the accuracy learning scores with 

the same factors as for the RT analysis. The Bayesian ANOVA indicates that, averaged across 
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all models, the models including the Group factor, the Epoch factor, and the interaction are 

more likely. However, the latter two improve the model to a much smaller extent compared to 

the Group factor. This result underscores that the instructions affected statistical learning in 

accuracy measures, and the dynamic of the learning trajectory is different between the two 

groups (see detailed model comparisons in Supplementary Table 8). 

 

Table 3. Analysis of effects for the accuracy learning scores 

Effects P(incl) P(incl|data) BF exclusion 

Epoch   0.60   0.80   0.38   

Group   0.60   1.00   9.50e -7   

Epoch  ×  Group   0.20   0.47   0.29   

 

Note: The column Effects indicates the main effects and interactions. The P(incl) column denotes the prior, and 

the P(incl|data) the posterior inclusion probability. The BFexclusion column indicates the change from prior from 

posterior odds. 

  

Did the acquired knowledge differ between groups in the Same Instruction Phase? 

First, we calculated the median RTs separately for the high- and low-probability triplets 

at the Same Instruction Phase. We analyzed RTs of Epoch 5 with a mixed-design ANOVA with 

the within-subject factor of Triplet (high-probability triplets vs. low-probability triplets) and 

the between-subjects factor of Group (Accuracy Group vs. Speed Group). 

A significant main effect of Triplet was found, F(1, 59) = 50.50, p < .001, ηp
2 = .46, 

indicating the emergence of statistical knowledge, as RTs for high-probability triplets were 

smaller than RTs for low-probability triplets (BF01 < 0.001). The main effect of Group did not 

reach significance, F(1, 59) = 2.03, p = .16, ηp
2 = .03, indicating that after the change of the 
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instructions, the average RT difference between the two groups disappeared; however, the 

Bayesian comparison revealed only anecdotal evidence for the lack of difference, BF01 = 2.08 

(Figure 2). Importantly, the Triplet × Group interaction did not reach significance, F(1, 59) = 

0.27, p = .60, ηp
2 = .01. It indicates that, irrespective of the instruction during training, the two 

groups showed the same level of statistical knowledge in the Same Instruction Phase (Figure 

5). Moreover, the Bayesian comparison of statistical learning (the difference between high- and 

low-probability triplets) between groups also favored the lack of difference, BF01 = 4.58. The 

analysis with the standardized learning scores in the RT measures revealed similar results (see 

Supplementary Materials for details). 
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Figure 5. Comparison of the high- and low-probability triplets (A and B), and the learning scores in the 

Same Instruction Phase. The vertical axis indicates the RTs (A), accuracy (B) or the learning scores (the 

difference between high- and low-probability triplets, C and D). The horizontal axis represents the two groups. 

The error bars denote the SEM. Although statistical knowledge was detected in both groups, no significant 

difference was found in the learning scores, and the lack of difference was confirmed by Bayesian analysis. * p < 

.05 

 

Next, we repeated the above analysis on the accuracy scores. The Triplet × Group 

ANOVA revealed a significant main effect of Triplet, F(1, 59) = 39.96, p < .001, ηp
2 = .40, 

indicating statistical knowledge in accuracy as well: more accurate responses for high-

probability triplets compared to the low-probability triplets (BF01 < 0.001). The main effect of 

Group was also significant, F(1, 59) = 5.08, p = .03, ηp
2 = .08, indicating that the overall 

difference in accuracy persisted after the change of the instructions; however, according to the 

Bayesian t-test, the difference was only anecdotal (BF01 = 0.55). Importantly, the Triplet × 

Group interaction did not reach significance, F(1, 59) = 0.85, p = .36, ηp
2 = .01, indicating a 

similar level of statistical knowledge after the change of the instructions (Figure 5). The 

Bayesian comparison of statistical learning between groups also supported the lack of 

difference, BF01 = 3.53. The analysis with the standardized learning scores in accuracy 

measures revealed comparable results (see Supplementary Materials for details). 

Did the participants develop conscious knowledge about the statistical regularities, and 

was it different between groups? 

The Inclusion-Exclusion task was administered to reveal whether the acquired statistical 

knowledge remained implicit or became explicitly accessible for the participants. We compared 

the percentage of the generated high-probability triplets to the chance level separately for the 

two groups (see Materials and Methods section for details). 
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In the Accuracy Group, two participants were excluded from this analysis because they 

did not follow the instructions. Participants in the Accuracy Group generated 32.33% (0.15% 

SEM) high-probability triplets in the Inclusion condition, which is significantly higher than 

chance level, t(28) = 4.82, p < .001, BF01 = 0.002. In the Exclusion condition, they generated 

29.81% (0.12% SEM) high-probability triplets, which is significantly above chance level, t(28) 

= 4.04, p < .001, BF01 = 0.01, indicating that they could not consciously inhibit the emergence 

of this knowledge. These results show that in the Accuracy Group, knowledge about the 

statistical regularities remained implicit. 

In the Speed Group, two participants were excluded because they did not follow the 

instructions. Participants in the Speed Group generated 30.34% (0.15% SEM) high-probability 

triplets in the Inclusion condition, which is significantly above the chance level, t(27) = 3.58, p 

= .001, BF01 = 0.04. They also generated more high-probability triplets than expected by chance 

in the Exclusion condition, 29.25% (0.21% SEM), t(27) = 2.07, p = .048, BF01 = .99; thus, 

knowledge about the statistical regularities remained implicit in the Speed Group. 

Furthermore, we compared the differences between groups and tasks with a 2 

(Condition: Inclusion vs. Exclusion) × 2 (Group: Accuracy Group vs. Speed Group) ANOVA. 

The main effect of Condition was not significant, F(1, 55) = 1.66, p = .20, ηp
2 = .03, indicating 

that participants did not perform better in either condition, which was confirmed by a Bayesian 

t-test, BF01 = 4.21. Thus, the triplet knowledge of the participants remained implicit. The Group 

main effect did not reach significance, F(1, 55) = 0.53, p = .47, ηp
2 = .01, indicating that the 

two groups performed equally on the two tasks, confirmed also by the Bayesian t-test, BF01 = 

3.96. The interaction of the Condition and Group factors was not significant, F(1, 55) = 0.26, p 

= .61, ηp
2 = .01, revealing that the lack of difference between groups was not influenced by the 

type of task (BF01 = 4.47). To sum up, the two groups performed similarly on the task. 
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Did the preexisting preferences of the participants affect their performance on the task? 

We used a questionnaire to check whether the subjective preferences on being fast or 

accurate in real-life were related to the ability to follow instructions (see Materials and Methods 

for the questions). We correlated the questionnaire scores with the average RTs and accuracy 

of the participants separately for the two groups. We did not find any significant correlations 

between the average scores and subjective ratings either in the Accuracy Group or in the Speed 

Group (each p > .09). This result indicates that the preference for accuracy or speed, and 

whether the participants are rather fast or accurate in real life did not play a role in the ability 

to follow the instructions. 

Discussion 

Here, we aimed to unveil whether speed/accuracy instructions can influence an essential 

component of skill learning, namely the acquisition of probabilistic statistical regularities. To 

this end, we instructed two groups of participants to be either fast or accurate during the training 

on an implicit probabilistic sequence learning task (Different Instruction Phase). In the testing 

phase, we assessed the acquired knowledge of probabilistic regularities, and this time, all 

participants were instructed to be both fast and accurate (Same Instruction Phase). As predicted, 

the instructions greatly affected the average speed and accuracy of the participants: the speed 

instructions resulted in faster RTs and a higher number of errors, while the accuracy instructions 

caused slower average RTs and an almost errorless performance. Despite these differences 

during training, the statistical learning scores based on RTs were similar in both groups. 

However, statistical learning was not detectable with accuracy instructions. Thus, measured by 

RTs, the instructions did not affect the acquisition of implicit probabilistic regularities during 

training. Moreover, no difference between the groups was found in the testing phase. This lack 

of difference suggests that instructions did not affect either the performance during training or 
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the acquired statistical knowledge. Similar results were obtained when we controlled for the 

differences in average speed between groups. Moreover, Bayesian statistical methods also 

supported the lack of difference between groups in terms of acquired knowledge. 

Our main result is that, irrespective of the strategy used during the training, we detected 

a similar level of acquired statistical knowledge. This finding has several implications. From a 

narrower, learning perspective, it suggests that our ability to extract the relevant pieces of 

statistical information from the environment is so robust that instructions cannot influence it. 

This conclusion is in accordance with the findings that statistical knowledge persists and 

remains resistant to interference even after one year (Kóbor et al. 2017), is intact in dual-task 

conditions (Vékony et al. 2019) or in certain disorders characterized by cognitive dysfunctions, 

such as obstructive sleep apnea (Nemeth et al. 2012; Csabi et al. 2014), sleep-disordered 

breathing (Csábi et al. 2013, 2016), autism (Nemeth, Janacsek, Balogh, et al. 2010), borderline 

personality disorder (Unoka et al. 2017) or alcohol dependency (Virag et al. 2015). 

Deterministic learning tasks test patterns that occur with a 100% probability over time, while 

the alteration of the random and pattern elements in the ASRT task creates a noisy, uncertain 

environment, which is similar to the natural environments of learning in everyday life (Fiser et 

al. 2010). Our results showed that using complex probabilistic regularities, a similar level of 

statistical knowledge emerges throughout learning, even when learning occurs under different 

circumstances and with different strategies. 

Another compelling result of our study is that participants in the accuracy instruction 

condition acquired stable statistical knowledge despite the minimization of motor (response) 

errors during training. The extent of this statistical knowledge was comparable with the 

knowledge acquired with the speed instruction. This result is especially interesting in light of 

the theory claiming that the brain is a Bayesian inference machine (Friston 2010) because our 

results contradict to the findings that committing errors facilitates learning (Bubic et al. 2010). 
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Our brain learns associations between events through continuous adjustments of the estimated 

probability distribution, that is, the prior. After a prediction error, the prior should be updated 

in accordance with new information about the probabilistic structure (Friston 2010). Based on 

these theories, we would expect a low number of errors to impair the learning process; however, 

this was not the case in our study. This finding raises the possibility that the motor aspect of 

prediction errors is not crucial in all circumstances for updating the priors during probabilistic 

sequence learning. This claim is also supported by other studies reporting statistical and 

sequence learning without overt errors (Fiser and Aslin 2001; Aslin 2017). However, it is also 

possible that a similar amount of prediction errors might be detected with other methods, for 

example, by investigating eye movements (Wills et al. 2007; Le Pelley et al. 2011). The 

exploration of the role of errors in implicit statistical learning deserves future investigation 

using eye-tracking and electrophysiological methods. 

Measured by RTs, a similar level of statistical learning was found under the speed and 

accuracy instruction conditions in the training phase. This finding is in contrast with the results 

of Hoyndorf and Haider (2009), as they reported impaired implicit learning performance with 

an accuracy strategy. In their study, participants performed a regular and a random task set 

during a Number Reduction Task. They found that only the participants focusing on speed had 

increased speed for the regular task set. The authors claimed that the increased monitoring due 

to the accuracy instruction might have impeded the performance, similarly to the results of skill 

acquisition studies (Beilock et al. 2004, 2008). However, in the same study, Hoyndorf and 

Haider (2009) found a preference for the regular task set also in the accuracy group, which they 

interpreted as the focus on accuracy affects only the expression of implicitly acquired 

knowledge rather than learning processes per se. This conclusion is in accordance with our 

results, as we found a similar level of statistical knowledge when we equally emphasized the 

importance of speed and accuracy after the initial learning. The difference in the training phase 
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might be due to the more complex, probabilistic sequence representations used in our study. 

They may be more resistant to instructions than deterministic patterns. Similarly, Barnhoorn et 

al (2019), who have also found the speed instruction to benefit the development of sequence 

representations, used simple repeating sequences. Moreover, this study investigated explicit 

sequence learning processes, while our participants were unaware of their accumulated 

statistical knowledge. A possible explanation for the difference between the effect of implicit 

and explicit learning conditions could be that the increased speed covers up the explicitness of 

the task. As a consequence, the task becomes more implicit, the top-down control reduces, and 

the learning becomes better. In our study, the learning was entirely implicit; therefore, the 

speeding up could not improve the level of implicitness. Thus, the learning was similar under 

speed and accuracy instructions. Future investigations are needed to determine the extent to 

which the implicit or probabilistic nature of the task affects the lack of speed benefit during 

training. 

Although we found similar level of the acquired statistical knowledge in accuracy 

measures, a difference was revealed in the training performance: only the speed instruction 

resulted in measurable statistical learning. Accuracy is a measure that can reach a maximum of 

100%; that is, the task can be performed without errors. Our results suggest that the accuracy 

instruction caused a ceiling effect. Participants completed the task nearly without error, which 

did not allow us to measure statistical learning in accuracy measures (i.e., to find a significant 

difference between responses to high- vs. low-probability triplets). However, learning did 

occur, evidenced by the results of the testing phase. These findings call for a more careful 

approach when we evaluate the learning phase in terms of accuracy measures: focusing on being 

accurate can distort the learning scores of interest so much that, in some instances, we cannot 

reveal the knowledge that exists. 
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 From a broader cognitive neuroscience perspective, it is essential to highlight the 

relationship between learning and performance in our study. Most studies in the field of 

cognitive neuroscience measure learning in a single context, and draw conclusions about brain-

behavior relationships based on either long-term learning (the relatively permanent changes in 

knowledge, i.e., competence) or momentary performance (the temporary fluctuation in 

behavior) (e.g., Heideman, van Ede, & Nobre, 2018; Rose, Haider, Salari, & Buchel, 2011; 

Thomas et al., 2004; Turk-Browne, Scholl, Johnson, & Chun, 2010). However, it was shown 

that these two factors could be separated from each other. For example, learning and 

performance can differ due to fatigue, different types of practice, latent learning, or overlearning 

of the practiced skill (Soderstrom and Bjork 2015). Our study also revealed that skill learning 

competence could differ from the momentary performance due to different instructions, at least 

when accuracy is used as an indicator. This result draws attention to the problem of using only 

one session to evaluate learning. For example, if the fatigue or boredom of the participants are 

different when they concentrate on being fast or accurate, then it can influence the conclusions 

we draw from our results. However, when the learning index (difference score) is based on RTs, 

this contingency appears smaller, at least when investigating implicit probabilistic sequence 

learning. Future studies should reveal to what extent this phenomenon is generalizable to other 

types of learning, such as to more explicit or non-statistical learning tasks. Non-learning tasks 

should also be tested, as general speed-up and changes in accuracy can be seen over the course 

of various cognitive tasks requiring fast decision-making. Based on our results, we recommend 

taking into consideration the possible differences between the measured competence and 

performance when designing learning studies. 

We manipulated the general speed and accuracy of the participants by giving explicit 

instructions to focus either on speed or accuracy, as previous non-learning cognitive tasks also 

did (e.g., Aasen & Brunner, 2016; Christensen et al., 2001; Osman et al., 2000; Ullsperger, 
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Bylsma, & Botvinick, 2004). However, it might be questionable if our results genuinely reflect 

the effect of instructions on learning. One can argue that the instructions in our study were not 

strong enough to manipulate the learning strategy and the learning processes because previous 

studies used more pronounced instructions and feedback to modify the strategy of the 

participants (Hoyndorf and Haider 2009; Barnhoorn et al. 2019). This possibility seems unlikely 

because, based on our results, the average speed and accuracy were affected by the instructions. 

Group differences also emerged in general skill learning as (1) participants who focused on 

their speed showed increasingly faster responses, and (2) participants who focused on their 

accuracy sustained a high level of accuracy during the learning phase compared to the other 

group. In contrast to these findings, the acquisition of statistical regularities was not affected by 

the instructions. To sum up, we found evidence that speed and accuracy affect general skill 

learning and statistical learning differently. 

One could also argue that verbal instructions given at the beginning of the task might 

not be sufficient to regulate subjects’ average speed and accuracy because, as time goes on, 

participants tend to wane in favor of their response tendencies (Heitz 2014). In other words, 

they will behave according to their preferences for being accurate or fast on a task. In our case, 

this change in behavior seems unlikely. First, we found no differences in the average RTs and 

accuracy scores between groups when the participants practiced the task on random sequences 

(before we gave distinct instructions to the groups), and second, participants did not become 

less accurate or slower throughout the task. Therefore, the observed effects should be the result 

of the instructions. Additionally, we measured the participants’ individual preferences on 

response tendencies using a questionnaire (whether they preferred to be accurate or fast). No 

correlations were observed between these individual preferences and the average speed and 

accuracy during the task in either group. These aspects indicate that our results indeed reflect 
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the effect of instructions, and participants did not follow their individually preferred response 

tendencies during the task. 

Conclusions 

Our study investigated the effects of speed and accuracy instructions on an essential 

component of skill learning, namely, the acquisition of probabilistic regularities. Our main 

finding is that our ability to pick up statistical regularities in a noisy, uncertain environment is 

so robust that instructions do not influence it. This result indicates that implicit probabilistic 

sequence learning is independent of the manipulation of the speed/accuracy trade-off. Another 

finding of our study is that learning can occur with an almost 100% accuracy level as well. This 

result suggests that statistical learning is at least partly independent of accuracy level, and 

statistical knowledge about the environmental regularities can be acquired even if no response 

(motor) errors occur. Our results also raise the possibility that competence and performance can 

differ in some instances. Accuracy instructions can mask the accumulating statistical 

knowledge during learning when measured by accuracy, although knowledge does emerge in 

these cases as well. Future studies investigating whether this robustness is related to the implicit 

feature of the task or whether different types of learning are affected equally seem warranted. 

Acknowledgment 

This research was supported by the National Brain Research Program (project 2017-

1.2.1-NKP-2017-00002); Hungarian Scientific Research Fund (NKFIH-OTKA K 128016, PI: 

D. N., NKFIH-OTKA PD 124148, PI: K.J.); Janos Bolyai Research Fellowship of the 

Hungarian Academy of Sciences (to K. J. and A. M.); EFOP-3.6.1-16-2016-00008 (to A. M.); 

IDEXLYON Fellowship of the University of Lyon as part of the Programme Investissements 

d'Avenir (ANR-16-IDEX-0005) (to D.N). 



32 
 

Correspondence concerning this article should be addressed to Dezso Nemeth, Lyon 

Neuroscience Research Center (CRNL), INSERM, CNRS, Université de Lyon, Centre 

Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus 95 boulevard Pinel 69675 Bron, France. 

E-mail: dezso.nemeth@univ-lyon1.fr Phone: +33 4 81 10 65 46 

The authors declare no conflicts of interest. The authors are grateful to Lúcia Nemes, 

Soma Béres, and Réka Sefcsik for their help in data acquisition. 

References 

Aasen IE, Brunner JF. 2016. Modulation of ERP components by task instructions in a cued 

go/no-go task. Psychophysiology. 53:171–185. 

Aslin RN. 2017. Statistical learning: a powerful mechanism that operates by mere exposure. 

Wiley Interdiscip Rev Cogn Sci. 

Barnhoorn JS, Panzer S, Godde B, Verwey WB. 2019. Training motor sequences: Effects of 

speed and accuracy instructions. J Mot Behav. 51:540–550. 

Beilock SL, Bertenthal BI, Hoerger M, Carr TH. 2008. When does haste make waste? Speed-

Accuracy tradeoff, skill level, and the tools of the trade. J Exp Psychol Appl. 14:340–

352. 

Beilock SL, Bertenthal BI, McCoy AM, Carr TH. 2004. Haste does not always make waste: 

Expertise, direction of attention, and speed versus accuracy in performing sensorimotor 

skills. Psychon Bull Rev. 11:373–379. 

Bubic A, Von Cramon DY, Schubotz RI. 2010. Prediction, cognition and the brain. Front 

Hum Neurosci. 4:1–15. 

Christensen CA, Ivkovich D, Drake KJ. 2001. Late positive ERP peaks observed in stimulus-



33 
 

response compatibility tasks tested under speed-accuracy instructions. 

Psychophysiology. 38:404–416. 

Christiansen MH, Chater N. 2015. The language faculty that wasn’t: a usage-based account of 

natural language recursion. Front Psychol. 6:1182. 

Conway CM. 2020. How does the brain learn environmental structure? Ten core principles for 

understanding the neurocognitive mechanisms of statistical learning. Neurosci Biobehav 

Rev. 112:279–299. 

Csábi E, Benedek P, Janacsek K, Katona G, Nemeth D. 2013. Sleep disorder in childhood 

impairs declarative but not nondeclarative forms of learning. J Clin Exp Neuropsychol. 

35:677–685. 

Csábi E, Benedek P, Janacsek K, Zavecz Z, Katona G, Nemeth D. 2016. Declarative and non-

declarative memory consolidation in children with sleep disorder. Front Hum Neurosci. 

9. 

Csabi E, Varszegi-Schulz M, Janacsek K, Malecek N, Nemeth D. 2014. The consolidation of 

implicit sequence memory in obstructive sleep apnea. PLoS One. 9:1–6. 

Destrebecqz A, Cleeremans A. 2001. Can sequence learning be implicit? New evidence with 

the process dissociation procedure. Psychon Bull Rev. 8:343–350. 

Destrebecqz A, Peigneux P, Laureys S, Degueldre C, Del Fiore G, Aerts J, Luxen A, Van Der 

Linden M, Cleermans A, Maquet P. 2005. Neural correlates of implicit and explicit 

sequence learning: Interacting networks revealed. Learn Mem. 12:480–490. 

Fiser J, Aslin RN. 2001. Unsupervised statistical learning of higher-order spatial structures 

from visual scenes. Psychol Sci. 12:499–504. 

Fiser J, Berkes P, Orbán G, Lengyel M. 2010. Statistically optimal perception and learning: 



34 
 

from behavior to neural representations. Trends Cogn Sci. 14:119–130. 

Friston K. 2010. The free-energy principle: A unified brain theory? Nat Rev Neurosci. 

11:127–138. 

Frost R, Armstrong BC, Siegelman N, Christiansen MH. 2015. Domain generality versus 

modality specificity: The paradox of statistical learning. Trends Cogn Sci. 

Fu Q, Dienes Z, Fu X. 2010. Can unconscious knowledge allow control in sequence learning? 

Conscious Cogn. 19:462–474. 

Hardwick RM, Forrence AD, Krakauer JW, Haith AM. 2019. Time-dependent competition 

between goal-directed and habitual response preparation. Nat Hum Behav. 

Heideman SG, van Ede F, Nobre AC. 2018. Temporal alignment of anticipatory motor 

cortical beta lateralisation in hidden visual-motor sequences. Eur J Neurosci. 48:2684–

2695. 

Heitz RP. 2014. The speed-accuracy tradeoff: History, physiology, methodology, and 

behavior. Front Neurosci. 8:1–19. 

Horvath K, Torok C, Pesthy O, Nemeth D, Janacsek K. 2018. Explicit instruction 

differentially affects subcomponents of procedural learning and consolidation. bioRxiv. 

433243. 

Howard JH, Howard D V. 1997. Age differences in implicit learning of higher order 

dependencies in serial patterns. Psychol Aging. 12:634–656. 

Howard D V., Howard JH, Japikse K, DiYanni C, Thompson A, Somberg R. 2004. Implicit 

sequence learning: Effects of level of structure, adult age, and extended practice. Psychol 

Aging. 19:79–92. 



35 
 

Hoyndorf A, Haider H. 2009. The “Not Letting Go” phenomenon: Accuracy instructions can 

impair behavioral and metacognitive effects of implicit learning processes. Psychol Res. 

73:695–706. 

Jacoby LL. 1991. A process dissociation framework: Separating automatic from intentional 

uses of memory. J Mem Lang. 30:513–541. 

Janacsek K, Borbély-Ipkovich E, Nemeth D, Gonda X. 2018. How can the depressed mind 

extract and remember predictive relationships of the environment? Evidence from 

implicit probabilistic sequence learning. Prog Neuro-Psychopharmacology Biol 

Psychiatry. 81:17–24. 

Janacsek K, Fiser J, Nemeth D. 2012. The best time to acquire new skills: Age-related 

differences in implicit sequence learning across the human lifespan. Dev Sci. 15:496–

505. 

JASP Team. 2020. JASP (Version 0.13.1)[Computer software]. 

Jiménez L, Vaquero JMM, Lupiáñez J. 2006. Qualitative differences between implicit and 

explicit sequence learning. J Exp Psychol Learn Mem Cogn. 32:475–490. 

Kiss M, Nemeth D, Janacsek K. 2019. Stimulus presentation rates affect performance but not 

the acquired knowledge – Evidence from procedural learning. bioRxiv. 650598. 

Kóbor A, Janacsek K, Takács A, Nemeth D, Kobor A, Janacsek K, Takacs A, Nemeth D. 

2017. Statistical learning leads to persistent memory: Evidence for one-year 

consolidation. Sci Rep. 7:1–10. 

Le Pelley ME, Beesley T, Griffiths O. 2011. Overt attention and predictiveness in human 

contingency learning. J Exp Psychol Anim Behav Process. 37:220–229. 

Nemeth D, Csábi E, Janacsek K, Várszegi M, Mari Z. 2012. Intact implicit probabilistic 



36 
 

sequence learning in obstructive sleep apnea. J Sleep Res. 21:396–401. 

Nemeth D, Janacsek K, Balogh V, Londe Z, Mingesz R, Fazekas M, Jambori S, Danyi I, 

Vetro A. 2010. Learning in autism: Implicitly superb. PLoS One. 5:1–7. 

Nemeth D, Janacsek K, Király K, Londe Z, Németh K, Fazekas K, Adam I, Király E, Csányi 

A. 2013. Probabilistic sequence learning in mild cognitive impairment. Front Hum 

Neurosci. 7:318. 

Nemeth D, Janacsek K, Londe Z, Ullman MT, Howard D V., Howard JH. 2010. Sleep has no 

critical role in implicit motor sequence learning in young and old adults. Exp Brain Res. 

201:351–358. 

Oldfield RC. 1971. The assessment and analysis of handedness: The Edinburgh inventory. 

Neuropsychologia. 9:97–113. 

Osman A, Lou L, Muller-Gethmann H, Rinkenauer G, Mattes S, Ulrich R. 2000. Mechanisms 

of speed-accuracy tradeoff: Evidence from covert motor processes. Biol Psychol. 

51:173–199. 

Remillard G. 2008. Implicit learning of second-, third-, and fourth-order adjacent and 

nonadjacent sequential dependencies. Q J Exp Psychol. 61:400–424. 

Rose M, Haider H, Salari N, Buchel C. 2011. Functional dissociation of hippocampal 

mechanism during implicit learning based on the domain of associations. J Neurosci. 

31:13739–13745. 

Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G. 2009. Bayesian t tests for accepting 

and rejecting the null hypothesis. Psychon Bull Rev. 

Soderstrom NC, Bjork RA. 2015. Learning versus performance: An integrative review. 

Perspect Psychol Sci. 10:176–199. 



37 
 

Song S, Howard JH, Howard D V. 2007. Sleep does not benefit probabilistic motor sequence 

learning. J Neurosci. 27:12475–12483. 

Takács Á, Kóbor A, Chezan J, Éltető N, Tárnok Z, Nemeth D, Ullman MT, Janacsek K. 2018. 

Is procedural memory enhanced in Tourette syndrome? Evidence from a sequence 

learning task. Cortex. 100:84–94. 

Thomas KM, Hunt RH, Vizueta N, Sommer T, Durston S, Yang Y, Worden MS. 2004. 

Evidence of developmental differences in implicit sequence learning: An fMRI study of 

children and adults. J Cogn Neurosci. 16:1339–1351. 

Turk-Browne NB, Scholl BJ, Johnson MK, Chun MM. 2010. Implicit perceptual anticipation 

triggered by statistical learning. J Neurosci. 30:11177–11187. 

Ullsperger M, Bylsma LM, Botvinick MM. 2004. The conflict-adaptation effect : it ’ s not just 

priming. Cogn Affect Behav Neurosci. 5:467–472. 

Unoka Z, Vizin G, Bjelik A, Radics D, Nemeth D, Janacsek K. 2017. Intact implicit statistical 

learning in borderline personality disorder. Psychiatry Res. 255:373–381. 

Vékony T, Török L, Pedraza F, Schipper K, Plèche C, Tóth L, Janacsek K, Nemeth D. 2019. 

Retrieval of a well-established skill is resistant to distraction: evidence from an implicit 

probabilistic sequence learning task. bioRxiv. 849729. 

Virag M, Janacsek K, Horvath A, Bujdoso Z, Fabo D, Nemeth D. 2015. Competition between 

frontal lobe functions and implicit sequence learning: evidence from the long-term 

effects of alcohol. Exp Brain Res. 233:2081–2089. 

Wagenmakers E, Wetzels R, Borsboom D, van der Maas HLJ. 2011. Why psychologists must 

change the way they analyze their data: The case of psi: Comment on Bem (2011). J Pers 

Soc Psychol. 100:426–432. 



38 
 

Wills AJ, Lavric A, Croft GS, Hodgson TL. 2007. Predictive learning, prediction errors, and 

attention: Evidence from event-related potentials and eye tracking. J Cogn Neurosci. 

19:843–854. 

Zavecz Z, Horváth K, Solymosi P, Janacsek K, Nemeth D. 2020. Frontal-midline theta 

frequency and probabilistic learning: A transcranial alternating current stimulation study. 

Behav Brain Res. 393:112733. 

 

 


