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Abstract
The development of advanced experimental methodologies, such as optical tweezers, scanning-probe and super-resolved optical
microscopies, has led to the evolution of single-molecule biophysics, a field of science that allows direct access to the mechanistic
detail of biomolecular structure and function. The extension of single-molecule methods to the investigation of particles such as
viruses permits unprecedented insights into the behavior of supramolecular assemblies. Here we address the scope of viral
exploration at the level of individual particles. In an era of increased awareness towards virology, single-particle approaches
are expected to facilitate the in-depth understanding, and hence combating, of viral diseases.
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Single-molecule and single-particle science

Much of our knowledge in natural sciences is derived from
ensembles of particles (atoms, molecules), the standard quan-
tity of which is the mol (Van Holde et al. 1998). The proper-
ties and the behavior of the individual particles are thus ex-
trapolations from ensemble average parameters. By contrast,
single-molecule and single-particle science focuses on the in-
dividual (Bustamante et al. 2000; Kellermayer 2005). Hence,
not only the average but also the distribution of the measured
parameter can be obtained, which provides a direct insight
into the structure, function, and dynamics of the investigated
molecule or particle and into the mechanisms behind the pro-
cesses the molecule or the particle is involved in. Investigation
of molecules and particles one by one has particular signifi-
cance in biological systems, considering that in a living cell
often there are only a handful of molecules of the same species
present. Although particles, in the biological sense, are usually
supramolecular assemblies and therefore are composed of a
number of molecules, similar methodological principles can
be applied to them as to single molecules.

There are at least four areas in which single-molecule or
single-particle techniques provide unique gain over ensemble
methods. First, individuals can be identified in a crowd and
followed in space and time. Considering the unusually dense
and crowded environment of the intracellular space, single-
molecule and single-particle visualization methods must be
applied to uncover the behavior of individual molecular spe-
cies. Second, the temporal distribution of molecular states
may be described; hence stochastic processes, such as the
blinking of fluorescent proteins (Dickson et al. 1997), may
be identified. Third, the spatial distribution of molecular states
may be identified; hence, processes that proceed via parallel
pathways, such as protein folding (Dobson and Karplus 1999;
Zhuang and Rief 2003), may be explored in detail. Finally, the
mechanical properties and functions of biomolecular systems
can be unveiled only by single-molecule and single-particle
methods, because mechanical force needs to be measured
which is a vectorial quantity with a distinct point of action.
Biomolecular mechanics entail the investigation of the elastic
and viscoelastic properties of biomolecules and the force-
generation by mechanoenzymes.

The field of single-molecule and single-particle science
evolved in the past 30 years through landmark experiments.
Individual actin filaments could be visualized as they glide
over a lawn of myosin molecules in what has since become
known as the in vitro motility assay (Harada et al. 1987; Kron
and Spudich 1986). Myosin (Finer et al. 1994) and kinesin
(Svoboda et al. 1993) were the first motor proteins, the
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mechanical work (force and displacement) of which were
measured, by using optical tweezers. Single-molecule me-
chanical experiments have shown that dsDNA may be
overstretched into an S-form, the exact nature of which is still
to be uncovered (Smith et al. 1996; Strick et al. 1996). The
first protein molecule to be mechanically manipulated, with
optical tweezers (Kellermayer et al. 1997; Tskhovrebova et al.
1997) and AFM (Rief et al. 1997a), was the giant muscle
protein titin. This mechanical fingerprinting assay has since
contributed to the development of a separate methodological
field, single-molecule force spectroscopy (Anderson et al.
2013; Dowhan et al. 2015; Fisher et al. 2000; Greene et al.
2008; Lanzicher et al. 2020; Lv et al. 2014; Rief and
Grubmuller 2002; Rief et al. 1997b; Ros et al. 2004; Thoma
et al. 2018; Zhu et al. 2009). Stretching single RNA hairpins
with optical tweezers has shown that RNA can fold against
force (Liphardt et al. 2001). It has also been shown that ribo-
somes are mechanoenzymes that work against applied force
via phases of discrete steps and pauses (Wen et al. 2008).

Single-particle approaches have been applied to viruses
soon after AFM imaging began making its way into biomo-
lecular sciences. The topography of individual T4 bacterio-
phage particles was obtained by scanning them, in air, with
the AFM (Ikai et al. 1993). Single-molecule mechanical ex-
periments revealed that the portal motor of the φ29 bacterio-
phage is the strongest mechanoenzyme known to date (Smith
et al. 2001) (see also below). AFM-based nanoindentation
experiments revealed that viral capsids are resilient
nanocontainers (Ivanovska et al. 2007; Ivanovska et al.
2004; Klug et al. 2006; Michel et al. 2006; Roos et al.
2007). The single-particle approach to understanding viral
structure, function, and mechanics paved the way towards
the emergence of physical virology (Baclayon et al. 2010;
Marchetti et al. 2016; Roos et al. 2010).

In the following we address some of the pivotal aspects of
the single-particle applications in virus analysis, which may
be appropriately called single-particle virology. It is important
to note that in spite of the amazing progress in the cryo-
electron microscopic investigation of viruses, cryo-EM is
not discussed here as it relies on class averaging of particle
images obtained on frozen virions (Kaelber et al. 2017). By
contrast, in single-particle virology, individual virions are
studied in their quasi-native, functional environment.

General structure and life cycle of viruses

The history of virology dates back to the end of the eighteenth
century to Edward Jenner’s valiant experiment, which is the
first vaccination effort, against smallpox, a highly contagious
viral infection (Riedel 2005). The remarkable experiment not-
withstanding, the existence of viruses remained unknown for
several decades. Although the discovery of the Tobacco

mosaic virus by D. Ivanovski (1892) and M. Beijerinck
(1898) and bacteriophages by F. W. Twort (1915) and F.
d’Herelle (1917) had given experimental evidence for the ex-
istence of infectious agents smaller than bacteria (Duckworth
1976), viruses could be visualized only much later, with the
introduction of the electron microscope (EM) in 1939
(Goldsmith and Miller 2009). At present, about 80 years after
the first visible record of Tobbaco mosaic viruses by EM
(Kausche et al. 1939), single-particle methods enable us not
only to visualize individual virions but also to study environ-
mental effects such as changes in pH (Wilts et al. 2015), tem-
perature (Vörös et al. 2018), or osmotic pressure (Cordova
et al. 2003; Evilevitch et al. 2005; Evilevitch et al. 2003;
Jeembaeva et al. 2008) on capsids in real time in quasi phys-
iological aqueous conditions.

Viruses are small obligate intracellular parasites
(Gelderblom 1996). They are classified on the basis of mor-
phology, chemical composition, and mode of replication. The
complete virus particle is composed of either RNA or DNA
genome—single stranded or double stranded, linear or
circular—packaged inside a symmetric protein capsid. The
entire genome may be formed by a single nucleic acid mole-
cule (monopartite genome) or segments of it (multipartite ge-
nome). The different types of genomes lead to different repli-
cation strategies. Capsids are formed as single- or double-
layered protein shells and consist of only one or a few struc-
tural protein species (Lucas 2010). Self-assembly of virus
capsids follows two basic patterns: helical symmetry, in which
nucleocapsids consist of a helical array of proteins wrapped
around a helical filament of nucleic acid, or icosahedral sym-
metry, in which the protein subunits assemble into a symmet-
ric shell that covers the nucleic acid–containing core.
Icosahedral viral capsids need to withstand the high pressure
from the tightly packaged DNA. Larger viruses often have a
complex architecture consisting of both helical and isometric
symmetries confined to different structural components. In
enveloped viruses, the nucleocapsid is surrounded by a lipid
bilayer derived from the modified host cell membrane deco-
rated with virus envelope glycoproteins. Virus envelopes can
be considered additional protective shells. A head-tail mor-
phology is unique to viruses that infect bacteria, which are
known as bacteriophages. The head of the virus has an icosa-
hedral shape connected to a helical tail (Hrebík et al. 2019).
The phage tail is attached to one of the fivefold vertices of the
head in which a pentamer of capsid proteins is replaced by a
dodecahedral portal complex. The tails of podoviruses are
variable in size and protein composition; however, they share
common organizational motifs. The capsids of some phages
contain inner core proteins that are associated with the portal
complex and play a role during infection. The capsid and
envelope protect the viral genome from digestion by nucle-
ases, maintain virion integrity, and play a role in viral infec-
tion: they facilitate virus attachment to target cells, the entry

Biophys Rev



into the host, the release of its contents into the cells, and the
enclosure of the newly formed viral genome (Roos et al.
2007). Capsid and envelope structure determine the method
of viral binding, entry, and exit through the host cell mem-
brane. The tail of bacteriophages contains specialized protein
subunits for receptor binding, cell wall degradation, and cell
membrane penetration (Lander et al. 2009). The inner core
proteins are released together with the phage genome and
are speculated to play a role in the delivery of DNA into the
cell cytoplasm. Packaging of viral genomes of tailed bacterio-
phages inside procapsids is powered by an ATP-dependent
virus-encoded genome-packaging motor that assembles at
the portal vertex (Cardone et al. 2012; Lokareddy et al.
2017; Rao and Feiss 2008; Suhanovsky and Teschke 2015).

Packaging of the viral genome

An essential, first step of the viral life cycle is the tight pack-
aging of newly replicated viral genome into a protein shell,
which leads to the emergence of new, infectious virions.
Several double-stranded (ds) DNA viruses, including herpes,
adenoviruses, and tailed bacteriophages, package their ge-
nome into preformed protein procapsids by a nanomotor that
is located at its portal complex (Casjens 2011; Rao and Feiss
2008). This molecular motor is an ATP-hydrolyzing DNA
translocase which requires chemical energy to condense the
typically several-micrometer-long double-stranded DNA into
the capsid-confined volume that is approximately 10−4 μm3

(Sun et al. 2010). In the case of tailed bacteriophages, the
diameter of the capsid (30–100 nm) is typically five to six
orders of magnitude smaller than the contour length of the
viral DNA (3–10 μm), which explains why packaging results
in a tightly wound arrangement and near-crystalline DNA
density (Tang et al. 2008). To package the highly charged
polymer chain into a small confinement, the motor protein
has to deliver a significant amount of mechanical work to
overcome the increase in entropic, electrostatic, and bending
energies of the condensed DNA (Jeembaeva et al. 2010; Tzlil
et al. 2003). Single-molecule experiments revealed the
nanomechanics of the viral packaging machine, in which the
terminus of a partially packaged dsDNA molecule was pulled
against the working packaging motor using optical tweezers.
In case of the most excessively studied ϕ29 bacteriophage,
these measurements revealed that the DNA-packaging motor
is processive, can insert DNA into the procapsid at rates of ∼
100 bp per second, and generates forces up to ∼ 60
piconewtons (Fig. 1) (Smith et al. 2001). The unprecedented
high value of forces that single viral packaging motors were
able to exert in these experiments makes them the strongest
molecular motors reported to date. The speed of packaging
decreased with the procapsid filling, possibly because of the
increasing internal pressure. This suggests that the high forces

generated by the motor are required to package DNA against
the increasing internal capsid pressure that can reach up to ∼
6 MPa by the end of the process (Evilevitch et al. 2003). The
ϕ29motor translocates the DNA in steps of 10 bps that in turn
consists of four rapid, non-integer 2.5-bp sub-steps per ATP
hydrolysis (Moffitt et al. 2009). The four non-integer steps
together with the presence of five motor subunits reveals an
asymmetry that demands new models for motor-DNA inter-
actions (Chistol et al. 2012). It has been shown that the ϕ29
motor also rotates the DNA during packaging, and the rotation
per base pair increases with filling and leads to a reduction in
the motor’s step size as the level of packaging increases (Liu
et al. 2014). The packaging of T4 and λ phages measured with
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Fig. 1 Schematics of measuring the mechanical function of the φ29
bacteriophage portal motor (Smith et al. 2001). The force generated by
the DNA-packaging portal motor is transmitted, via the dsDNAmolecule,
to an optically trapped latex bead attached to the free DNA end, allowing
for the measurement of the force. This particular packagingmotor stalls at
a force of about 60 pN

Biophys Rev



optical tweezers was also found to be driven by a very strong
(stall force > 60 pN) and processive motor, suggesting that
these are universal properties of all dsDNA viral motors that
need to package DNA to high density. The only difference
that was found in case of T4 and λmotors is that the packaging
rates were significantly faster (1–2 kbp per second). Given
that the genome of T4 and λ phages is several-fold longer than
that ofϕ29, these findings suggest that viral motors scale their
packaging speeds according to the genome size (Fuller et al.
2007a; Fuller et al. 2007b).

Topographical structure of individual virus
particles

Viruses assemble spontaneously from their proteinaceous
building blocks into a few main structural classes with a vari-
ety of sizes and molecular detail. In recent years cryo-electron
microscopy has become a key method in revealing viral struc-
ture, down to the atomic resolution (Kaelber et al. 2017).
However, beyond doubt, the most essential method in inves-
tigating the structure of individual viral particles under ambi-
ent conditions is the atomic force microscope (AFM) (Allison
et al. 2010; Baclayon et al. 2010; de Pablo 2018; de Pablo and
Schaap 2019; Kuznetsov and McPherson 2011; Santos and
Castanho 2004). Shortly after its invention (Binnig et al.
1986), AFM was applied to imaging viruses, initially in air
(Ikai et al. 1993; Valle et al. 1996), then under aqueous buffer
conditions (Müller et al. 1997; Ohnesorge et al. 1997). In the
decade that followed, AFM has been applied to describing the
surface structure of a vast array of different viruses (Chen
2007a, b; Drygin et al. 1998; Dubrovin et al. 2007; Ferreira
et al. 2008; Hards et al. 2005; Huff et al. 2004; Kiselyova et al.
2003; Klem et al. 2003; Kuznetsov et al. 2008; Kuznetsov
et al. 2005a; Kuznetsov et al. 2005b; Kuznetsov et al. 2004;
Kuznetsov et al. 2000; Kuznetsov et al. 2007; Malkin et al.
1999; Malkin et al. 2003; Mat-Arip et al. 2001; Matsko et al.
2001; Moloney et al. 2002; Negishi et al. 2004; Nettikadan
et al. 2003; Schmatulla et al. 2006; Trindade et al. 2007).
Although in its standard operation the AFM provides a high-
resolution topographical image of the sample, by now its ap-
p l i c a t i o n s h av e expanded t o n a nomech an i c s ,
nanomanipulation, measurement of interactions, and record-
ing of time-dependent processes.

In an AFM the sample is scanned with a sharp tip at the end
of a flexible cantilever. During scanning the tip is brought in
close proximity with the surface that causes the cantilever to
bend (de Pablo 2018). The bending of the cantilever, exerted
by the forces acting between the tip and the surface, is detected
through the deflection of a laser beam reflected from the back
of the cantilever (de Pablo and Schaap 2019). Usually deflec-
tion is kept stable by a feedback loop, meaning that it is held at
constant distance from the sample (de Pablo and Schaap

2019). A commonly used gentle imaging mode of soft biolog-
ical samples is “tapping” or “amplitude-modulation”mode, in
which the direct contact between the tip and the sample is
minimized (Kuznetsov and McPherson 2011) (Fig. 2).
Resonating the cantilever tip without shaking the entire canti-
lever base, such as in photothermal excitation, for example,
provides a particularly stable imaging technique. Besides
height contrast (Fig. 2a, c), additional contrast mechanisms
(e.g., amplitude, phase) provide further insight into local struc-
tural and mechanical (elasticity, viscosity) properties of the
virion. Considering that each pixel of a height-contrast image
contains topographical height information, height profile plots
may be obtained along axial (Fig. 2b) or arbitrary (Fig. 2d)
directions over the capsid surface. It is important to emphasize
that the surface topographical image obtained after scanning
the sample is not an ensemble average but is characteristic of
the individual virion. In spite of collecting an image based on
a single nanoscale object, amazing structural detail can be
revealed (c.f. the tail fiber domain structure in Fig. 2c). An
AFM imaging mode that has become popular in viral analysis
is “jumping mode” or fast force mapping (FFM) (Fig. 3). In
FFM imaging the cantilever is moved up and down
(sinusoidally) with a frequency (~ 50–300 Hz) much below
the cantilever’s resonance frequency. There is one oscillation
cycle for every pixel of the image. In each oscillation cycle a
force versus distance plot is obtained which corresponds to a
nanoindentation-retraction trial (Fig. 3b). In FFM mode the
forces which the virion is exposed to are better controlled than
in tapping mode. Furthermore, topography, adhesion, and
elasticity maps may be calculated from the force traces.
Finally, resonant modes which a functional virus might re-
spond to (Kellermayer et al. 2018) are avoided. Altogether,
the functions of AFM provide much more than surface topog-
raphy. High-resolution force versus distance curves derived
from indentation and pulling experiments give information
about the detailed nanomechanical properties of capsids
(Marchetti et al. 2016) (see below). The Young’s modulus,
stiffness, and rupture forces are directly associated with capsid
stability (de Pablo 2018). Combining AFM imaging with
nanoindentation allows to map the structural consequences
of the mechanical perturbations. By utilizing this approach,
the mechanical fatigue, the self-healing capacity, and the me-
chanically induced partial disassembly of capsids could be
uncovered (Ortega-Esteban et al. 2013; Valbuena and Mateu
2015). Enveloped viruses such as HIV (Rankovic et al. 2017)
and SARS-CoV (Lin et al. 2005) may be more challenging to
investigate with AFM due to the dynamics of the surface
coating. In the case of isolated HIV-1, it was found that the
viral uncoating process depends on the stage of reverse tran-
scription (Rankovic et al. 2017).

A unique feature of AFM lies in its function to follow
dynamic processes even in more complex biological systems,
such as on the surface of the living cell. Hence, virus-cell
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interactions, viral budding or disassembly can be followed in
an unlabeled environment (Baclayon et al. 2010; Kiselyova
et al. 2003). SARS-CoV virions were shown to bud and rup-
ture the plasma membrane, assisted by the underlying actin
cytoskeleton in their transport. Individual retrovirus budding
through the plasma membrane of living cells infected with
Moloney murine leukemia virus was monitored in real time
with AFM, wherein two kinetically distinct pathways were
observed (Gladnikoff and Rousso 2008). HIV budding was
registered over time by measuring the viral protrusion height
on the surface of infected cell membranes (Gladnikoff et al.
2009). Finally, thanks to the rapid development of image pro-
cessing, automatic classification methods for single virus dis-
crimination based onAFM imaging can be constructed, which
might potentially be important in diagnostic applications.
Blocklitz el al. investigated the maximal height, volume, and

occupied area of five different virus species (Varicella-zoster
virus, Porcine teschovirus, Tobacco mosaic virus, Coliphage
M13, and Enterobacteria phage PsP3) on AFM images, and
designed an automatic image classification method with an
identification accuracy over 95% (Bocklitz et al. 2014).

Viral capsid nanomechanics

Besides being a powerful imaging technique, AFM also pro-
vides a possibility for exploring the mechanical properties of
viral capsids. In the recent past, single-particle nanoindenta-
tion experiments enabled the characterization of the physical
properties of viral capsids with unprecedented detail and in-
sight (Carrasco et al. 2011; Castellanos et al. 2012; Hernando-
Pérez et al. 2014b; Ivanovska et al. 2011; Roos et al. 2012;

capsid
tail

tail tip
distal fiber 
segment

capsomeres

a c

b d

20 nm20 nm

Fig. 2 Imaging virions with atomic force microscopy (AFM) in non-
contact mode, by using photothermal excitation to resonate the cantilever.
a Height-contrast AFM image of a T7 bacteriophage particle attached to
poly-L-lysine-coated mica. Based on the surface topography, this icosa-
hedral virion is facing towards the buffer solution (phosphate-buffered
saline, PBS) with its 3-fold symmetry axis. Individual capsomeres can be
discerned in the image. b Topographical height profile plot along the axis

of the particle image (indicated by the dotted straight line). c Height-
contrast AFM image of a T7 bacteriophage particle pointing towards
the buffer solution with its tail. To immobilize the tail fibers, the sample
was chemically fixed with 2.5% glutaraldehyde and imaged in PBS. d
Topographical height profile plot along the axis of a tail fiber (indicated
by the dotted freehand line)
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Snijder et al. 2012). In a nanoindentation experiment, the tip
of the AFM cantilever is lowered on the surface of a substrate-
bound capsid until a pre-adjusted force is reached by the bend-
ing of the cantilever (Fig. 4a). Then, the cantilever is retracted.
Force, obtained from the bending of the calibrated cantilever,
is recorded as a function of cantilever displacement (Fig. 4b).
Nanoindentation results showed that many virus protein cap-
sids behave like elastic and robust nanocontainers (Snijder
et al. 2013). Furthermore, below a certain force threshold,
the capsids behave as elastic nanoshells, whereas at higher
forces material failure occurs and the capsid collapses. The
AFM has also been used to apply well-controlled forces to
single capsids to trigger disintegration. For adenovirus, tip
penetration causes the same sequence of events as the
uncoating in vivo, starting with the release of pentons, follow-
ed by capsid disruption (Ortega-Esteban et al. 2015; Ortega-
Esteban et al. 2013). Based on AFM imaging subsequent to
the nanoindentation experiment, it was found that after the
mechanical rupture of the capsid the viral core of a mutant

adenovirus (TS1) remained visible as a condensed blob,
whereas the core of the wild-type virus could not be resolved.
AFM and single-molecule fluorescence microscopy were
combined to specifically observe genome uncoating from
wild-type and TS1 adenovirus (Cordova et al. 2014).
Viruses that infect eukaryotic cells usually undergo structural
changes leading to complete capsid disassembly and release
of the viral genome (Mateu 2011; Wilts et al. 2015).
Conformational transitions in the capsid can be triggered by
mechanical cues. HIV-1 undergoes a protease-mediated mat-
uration process, which is necessary for successful infection.
By using AFM, it was discovered that HIV undergoes a “stiff-
ness switch,”which is a dramatic reduction in particle stability
during maturation mediated by the viral envelope protein
(Pang et al. 2013). High-resolution AFM nanoindentation ex-
periments on DNA-filled T7 bacteriophages revealed that the
elastic region of the force curves contained discrete, stepwise
transitions (Fig. 4b). These transitions lead to capsid buckling
in steps, the size of which is integer multiples of about half a
nanometer. The transitions are reversible, as similar steps were
observed during cantilever retraction. The reverse steps con-
tribute to the structural recovery of the capsid following me-
chanical perturbation. The steps were present even after DNA
removal, indicating that they reflect the structure and dynam-
ics of the capsid proteins (May and Brooks Iii 2012; Vörös
et al. 2017). Upon gently tapping the capsid wall of the T7
bacteriophage with the tip of an AFM cantilever, the virus
rapidly ejected its DNA. At increasing mechanical loads, the
rate of triggering DNA ejection increased exponentially. The
low forces employed caused very small changes in the internal
pressure of the capsid, yet they were sufficient to trigger DNA
ejection. Thus, a DNA-filled capsid is in a state poised for
expelling its genomic material and the proteins required for
the faithful execution of the initial steps of phage infection
(Kellermayer et al. 2018). Nanomechanical measurements
may reveal the response of the virion to environmental factors.
Exposing T7 bacteriophage to a thermal treatment at 65 °C
caused DNA release due to the tail complex breaking off from
the capsid. The loss of DNA and/or thermally driven changes
in capsid protein structure results in reduced capsid stiffness
and breaking force. Further heating to 80 °C leads to the ap-
pearance of large globular particles that likely correspond to
disassembled capsids. It also results in partial structural stabi-
lization of the remaining capsids, most likely caused by rear-
rangements within the capsid wall (partial denaturation of the
component gp10A proteins). Even though the capsids are
destabilized, they are still able to withstand high temperatures
with a more or less intact global topographical structure
(Vörös et al. 2018). Altogether, AFM-based nanomechanical
experiments provide a sensitive tool to explore the properties
of viruses (Cieplak and Robbins 2013; Hernando-Pérez et al.
2014a; Kurland et al. 2012; Mateu 2012). Nanomechanical
parameters, such as stiffness and capsid breaking force, may

approach

retraction
capsid compression 
phase

free cantilever movement phase

cantilever 
landing

50 nm

a

b

Fig. 3 Imaging virions with AFM in jumping mode (fast force mapping).
a Height-contrast AFM image of a T7 bacteriophage particle attached to
poly-L-lysine-coated mica. b Example of a force versus distance curve
that lies behind every pixel of the FFM image
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reveal molecular mechanisms underlying capsid maturation
and the packaging, storage, and release of genetic material.
Combining AFM with other methods, such as total internal
reflection fluorescence (TIRF), provides further possibilities
for the complex analysis of viral biological processes.

Viral infection tracking by super-resolution
single-molecule fluorescence imaging

Fluorescence microscopy techniques have long been widely
used for studying various biological processes due to their
versatility. Although wide-field fluorescence microscopy is
most common due to ease of use and relatively low cost, its
significant drawback is that photons from out-of-focus regions
contribute to the observed signal; therefore, the imaging of
small particles such as viruses or proteins is challenging due
to the high background signal. Special forms of fluorescence
microscopy have been developed to overcome this problem.
In total internal reflection fluorescence (TIRF) and confocal
laser scanning microscopy (CLSM), light is detected only
from the focal plane; thus, the low background allows the
studying of individual molecules in small (TIRF) or large
(CLSM) volumes evenwith three-dimensional reconstruction.
These techniques are, however, limited by the diffraction of
light, and the best resolution achieved is ~ 200 nm according
to Abbe’s law. Biomolecular processes occurring in this
length scale, e.g., virus-host cell binding or enzyme-
substrate interaction, thus have not been possible to explore
with optical microscopy. One solution to this problem was
Förster resonance energy transfer (FRET) which can be used

as a molecular ruler across small distances (1–10 nm). Despite
its technical challenges, FRET has been applied to investigate
virus-host interactions (Emmott et al. 2015; Koh et al. 2011;
Takagi et al. 2017). A fundamental solution that overcomes
the limitations of Abbe’s law is super-resolution (SR) micros-
copy, which has been revolutionizing life sciences and is pav-
ing its way into single-particle virology. SR microscopies can
be divided into two broad groups based on their approach to
bypass the diffraction limit: stochastic (Fig. 5a) and determin-
istic (Fig. 5b).

Stochastic SR microscopies are based on either
photoactivatable (photoactivated localization microscopy,
PALM) or photoswitchable (stochastic optical reconstruction
microscopy, STORM) dyes (Betzig et al. 2006; Rust et al.
2006). During image acquisition, only a small subset of the
labeled particles is activated simultaneously by the excitation
laser; then, the dye molecules are bleached. The laser activates
the fluorophores with a spatial stochasticity until all of them
have emitted photons and become bleached (Fig. 5a).
Emission is detected by sensitive sCMOS detectors, and the
centroids of the fluorescence spots are calculated based on the
point spread function (PSF). Using these coordinates, super-
resolution images are reconstructed, the typical spatial resolu-
tion of which may be as good as 20 nm. By contrast, the
temporal resolution is low due to the numerous activation/
photobleaching cycles necessary for image formation.
PALM microscopy was used in a proof-of-concept effort to
follow single virus particles in transfected cells. It was clearly
demonstrated that the imaging speed can be sufficient to re-
constitute trajectories of single virus particles in live cells
(Manley et al. 2008). Several studies on influenza

a b

Fig. 4 Nanoindentation of a viral capsid. a Schematics of the experiment.
The capsid and AFM cantilever tip are indicated with a realistic relative
scale. Mechanical information can be collected, in the form of force
versus distance data, during both the indentation and retraction phases
of the experiment. b Force versus distance plot obtained on a T7 phage

particle (Vörös et al. 2017). Force sawteeth during indentation and retrac-
tion point at buckling and unbuckling events, respectively, which result in
stepwise, 6-nm reversible structural changes in the capsid. The slope of
the indentation trace may be used to calculate the stiffness of the capsid
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hemagglutinin (HA) protein were carried out by PALM mi-
croscopy variations revealing HA’s relationship with host-cell
actin meshwork. These results may help to find new targets to
develop antiviral treatments (Gudheti et al. 2013; Hess et al.
2007; Nelson et al. 2014). STORM microscopy was used in
several studies related to viral infection. Pereira et al. proved
that the HIV-1 matrix shell and capsid core can be quantified
by STORM. It was also demonstrated that HIV particles un-
dergo dramatic rearrangement immediately after entry into the
target cells (Pereira et al. 2012). A further study combining
STORM and cryo-EM revealed that this increase in size is
solely triggered by the CD4-Env binding and is independent
of virus fusion (Pham et al. 2015).

Deterministic SR microscopies (Fig. 5b) rely on the con-
trolled excitation of fluorophores in the focal volume and the
confinement of the excitation volume by point-spread-
function engineering (Fig. 5c). The most representative mem-
ber of this category is stimulated emission depletion (STED)
microscopy (Hell and Wichmann 1994). STED uses selective
deactivation of fluorophores with a doughnut-shaped deple-
tion laser beam, which creates a minimized excitation area at
the focal point. The size of this area can be reduced by increas-
ing the intensity of the depletion laser (Fig. 5c), yielding a
much smaller focal point than would be allowed by the dif-
fraction limit. STED is combined with point-scanning de-
vices; thus, photon collection is deterministic and SR image
formation is immediate. As a result, temporal resolution

exceeds that of stochastic approaches and there is no need
for image post-processing. Due to the fast imaging rate,
STED microscopy is suitable for live-cell imaging and hence
the investigation of viral entry into the cell (Fig. 5d). The
resolution of STED is theoretically infinite; however, it de-
pends strongly on the fluorophores and the hardware used.
The typical resolution that can be achieved even in live-cell
imaging is 30–40 nm. STED microscopy related to viruses
was first demonstrated with GFP-labeled rotaviruses (Willig
et al. 2006). STEDmicroscopy was used to explore how HIV-
1 enters CD4+ cells. It was clearly demonstrated, by using
dual-color STED microscopy, that cell contact can induce
the clustering of mobile Env molecules promoting the matu-
ration of the virion (Chojnacki et al. 2012). STED-FCS mea-
surements have confirmed that Env mobility is dependent on
the virus maturation status (Chojnacki et al. 2017). Recently, a
novel super-resolution approach calledMINFLUXwas devel-
oped with a capability of resolving luminous points within a
1–3-nm range even in live cells in three dimensions
(Balzarotti et al. 2017; Gwosch et al. 2020), raising the possi-
bility of following viral assembly in situ. Since subviral details
may be resolved, yet the speed of image formation is sufficient
for tracking single particles in live cells, SR microscopies will
likely play an important role in unraveling the molecular de-
tails of the viral life cycle. Although key parameters such as
temporal and spatial resolution need to be further improved,
super-resolution microscopies are expected to expand and

a

b

c

d

Fig. 5 Super-resolution microscopy techniques employed in single-
particle virus research. a Principles of stochastic methods (STORM and
PALM). b Principles of the deterministic approach in STED. c Principle
of the shaping of the point spread function (PSF). d Example of

influenzavirus A (IAV) infection in a human dendritic cell. Blue color
corresponds to Alcian blue in the cellular environment, gray to the DAPI-
stained nucleus, and green to IAV nucleoprotein labeled with FITC-
conjugated antibody. Adapted from (Baharom et al. 2017)
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contribute significantly to understanding the viral infectious
cycle at the level of the single virion.

Mechanisms and mechanics of viral infection

Ever since the discovery of viruses, the mechanisms of the
viral infection process have been in the center of scientific,
medical, and even economic interest. Most of our knowledge
has come from the high-resolution structures provided by
electron microscopy studies of the past decades, which en-
abled us to predict the functions of different parts of viral
nanomachines. In the recent past, cryo-electron microscopy
has been providing an ever-increasing detail about the struc-
ture of viruses, lending clues to the infection mechanisms
(Guo et al. 2014; Kaelber et al. 2017; Pham et al. 2015;
Serwer et al. 2018; Shingler et al. 2013; Wrapp et al.
2020). Besides imaging methods, bulk assays relying on
molecular biological techniques have provided key elements
to understanding the steps of viral infection. EM and molec-
ular biology techniques provide ensemble snapshots of the
viral infection process, but the continuous timeline of events
related to a single virion largely remains hidden. Different
types of viruses (e.g., DNA and RNA viruses) use vastly
different tactics to invade the host. In the recent past, remark-
able experimental observations were made on the dynamics
of the first steps of infection by individual DNA-virus parti-
cles. The ejection of genomic dsDNA was followed in real
time by using a combination of microfluidics and total inter-
nal reflection fluorescence (TIRF) video microscopy
(Grayson et al. 2007; Mangenot et al. 2005) (Fig. 6). In the
experimental layout, virus particles are attached to a cover-
slip surface which serves as the bottom of a microfluidic
device (Fig. 6a). The viruses are activated by injecting the
relevant activator protein along with DNA-intercalating
dyes. The interaction of phages and their protein receptors
resulted in the sudden ejection of DNA molecules which
were immediately stretched out by the flow, allowing their
length to be measured as a function of time. In the case of T5,
rapid DNA ejection steps were observed with intermittent
pauses at distinct locations along the genome, which corre-
lated with the positions of genetically engineered DNA nicks
(Mangenot et al. 2005). This mechanism appears to be
unique compared with other viruses. In the case of λ phage,
for example, DNA release was continuous with no apparent
pauses (Grayson et al. 2007). λ-DNA ejection kinetics is
strongly influenced by cations in the ejection medium (Fig.
6b), which is similar to the effect of environmental osmotic
pressure changes (Casjens and Hendrix 2015; Marion and
Šiber 2014; São-José et al. 2007; Wu et al. 2010). Similar
experimental approach was used to monitor the ejection of
DNA from the Archaeal virus His1. The rapid DNA ejection
process of His1 was dependent on cation concentrations and

osmotic pressure changes, similarly to bacteriophages
(Hanhijärvi et al. 2013). By contrast, His1 DNA ejection
was insensitive to changes in pH and temperature, explaining
why this virus can withstand harsh environmental conditions
(Hanhijärvi et al. 2016). The major, yet-to-be answered ques-
tion concerns the energetics of DNA ejection. It is thought
that the initial forces driving the ejection are stored in the
self-repulsion between tightly packaged DNA segments.
However, this energy cannot be the sole driving force for
complete ejection. There needs to be an additional force that
finalizes DNA translocation across the target membrane,
which might be contributed by internal host enzymes
(Molineux and Panja 2013).

Intact phages may be labeled via their DNA with dye
amounts so low that their presence does not disrupt their
functions (Eriksson et al. 2007). By making use of this meth-
od, λ phages were labeled and individual DNA injections
into E. coli were successfully observed (Van Valen et al.
2012). DNA translocations, intermittent with pauses, were
complete only by 5 min. By contrast, in vitro DNA ejection
proceeds continuously and becomes finished within 10 s
(Grayson et al. 2007) (Fig. 6b). In vitro studies showed that
ejection velocity is controlled by the amount of DNA left

Excitation

Objective lens

Evanescent 
field

Emission

capsid

DNA

Trigger+flow

Coverslip

a

b

Fig. 6 a Schematics of investigating the genomic DNA release from
individual phage particles by using a microfluidic device, total internal
reflection fluorescence (TIRF) microscopy, and DNA-intercalating
fluorophores. b Time-resolved images of the release of dsDNA from a
single λ-phage particle. DNA ejection was triggered by adding LamB
(maltoporin), an E. coli outer-membrane protein, and the DNA molecule
was visualized by rapid staining with the fluorescent dye SUBR Gold
present in the buffer solution of the microfluidic chamber. Time delay
between consecutive DNA images is 0.25 s. Upper and lower image
series were recorded in the presence of 10 mM NaCl and 10 MgSO4,
respectively. Adapted from (Grayson et al. 2007)
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inside the capsid, whereas in vivo translocation is addition-
ally governed by forces acting on the DNA that is already
inside the target cell. Further techniques for tracking and
visualizing viruses during their infectious steps include
patch-clamp methods which have been employed to track
the docking of λ phages to their target receptors incorporated
in a supported lipid bilayer (Gurnev et al. 2006); holographic
microscopy, which has been used to track the orientation and
DNA release of bacteriophage λ (Goldfain et al. 2016). The
average DNA release measured by this method was close to
that obtained in in vitro experiments using fluorescent label-
ing. Altogether, to reveal the molecular mechanisms of the
numerous different tactical processes that viruses have de-
vised for infecting the host organism, a combination of
methods that allow to monitor the spatial and temporal dy-
namics and mechanics of the different viral components is
required.

Conclusion and perspectives

Viruses are amazing nanoscale machineries which, in spite of
their miniscule size and relatively low complexity, are capable
of invading the host organism with a puzzling array of tactical
mechanisms. Interest in understanding how viruses replicate,
assemble, and infect has never vanished ever since their dis-
covery. Single-particle imaging andmanipulationmethods are
of unequalled importance in unveiling the mechanistic detail
behind the infectious cycle of viruses. Considering the tech-
nological pressures in the recent SARS-CoV-2 pandemia to-
wards understanding, diagnosing, treating, and preventing co-
ronavirus infection (Al-Qahtani 2020; Astuti and Ysrafil
2020; Sheng et al. 2020; Wang et al. 2020; Yan et al. 2020a;
Yan et al. 2020b; Zhang et al. 2020) and viral infections in
general, single-particle virology may provide a unique edge in
combating viral diseases.
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