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We study the connection between transport phenomenon and escape rate statistics in two-
dimensional standard map. For the purpose of having an open phase space, we let the momentum
co-ordinate vary freely and restrict only angle with periodic boundary condition. We also define
a pair of artificial holes placed symmetrically along the momentum axis where the particles might
leave the system. As a consequence of the leaks the diffusion can be analysed making use of only
the ensemble of survived particles. We present how the diffusion coefficient depends on the size and
position of the escape regions. Since the accelerator modes and, thus, the diffusion are strongly
related to the system’s control parameter, we also investigate effects of the perturbation strength.
Numerical simulations show that the short-time escape statistics does not follow the well-known
exponential decay especially for large values of perturbation parameters. The analysis of the escape
direction also supports this picture as a significant amount of particles skip the leaks and leave the
system just after a longtime excursion in the remote zones of the phase space.

PACS numbers:

I. INTRODUCTION

Fermi acceleration (FA) has been known since Fermi
introduced [1] the concept to describe the high energy
cosmic rays. In brief, particles gaining kinetic energy in
unlimited amount caused by oscillating magnetic fields
undergo different kind of diffusion in phase space [2–7].

Since then numerous studies dealt with accelerator
modes (AM) identified as regular islands in simple con-
servative dynamical systems as the motive of anomalous
transport [2, 8–15]. The paradigmatic example of these
investigations is the two-dimensional (2D) standard map
(SM) [16] wherein one or both phase space coordinate is
not bounded by any restriction. That is, the system is
open and irregular motion might appear in the motion
along that direction(s). In general case, normal diffusion
describes the spreading of (initially nearby) particles in
the phase space. Accelerator modes (usually quite tiny
subsets of phase space) can keep chaotic orbits around
themselves for shorter or longer times. As an impact
these orbits seem to be regular during the trapping time.
This effect of the AMs is called stickiness, one of the back-
bones of conservative dynamics [9, 17–19]. If stickiness
is present determining the transport phenomenon might
be problematic. Recently, global and local diffusion have
been studied in standard map with and without AMs
[13]. The authors report that the global diffusion is nor-
mal when no accelerator modes present in the phase space
and anomalous when accelerator modes exist. However,
the local diffusion strongly depends on the initial con-
ditions. They also claim that the diffusion turns to be
normal after finite time even for initial conditions in the
extreme sticky region.

One of the possible physical consequences of FA is that
the particle takes so much kinetic energy that it can leave
the system. One experimental realization of this action

is to set a maximum value of a coordinate above which
particles are outside the system. Livorati et al. [20] ap-
plied this framework for the bouncing ball model in order
to scrutinize the normal-ballistic diffusion transition in a
one-dimensional. Other implementation of particle es-
cape is by defining artificial hole in the phase space of
an originally closed system. [21–23]. In this scheme as
soon as a particle reaches the area of the leak, it is forced
to leave the system and additional iterations will not be
taken with that. Both aspects have profound theoretical
background in the literature and wide-spread application
among many disciplines.

The motivation of present work is to understand the
role of vanishing particles in calculation of diffusion co-
efficient. To integrate these two concepts we use the un-
bounded or open SM in combination with finite size leaks
in the phase space. We refer to this setup as open-leaky
SM. Since the diffusion is strongly related to the non-
linearity in SM that also governs the particles’ dynamics,
we focus on escape statistics in open-leaky system which
is also connected to strength of periodic perturbation of
the system.

The paper is organized as follows. In Sec. II, we present
the model and details of the simulations and parameter
choices. Sec. III is devoted to results about the transport
and escape dynamics. In last section, Sec. IV, we sum-
marize what we have learned about the behavior of the
open-leaky standard map.

II. MODEL AND SIMULATIONS

The model we investigate is the well-known 2D chaotic
standard map [16]. It is simple in a way that the phase
space is only two dimensional but complex because of
reach dynamics that might appear. The defining equa-
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tions are the following

pn+1 = pn +
K

2π
sin(2πΘn),

Θn+1 = Θn + pn+1 (mod 1),
(1)

where p and Θ are the momentum and the angle coordi-
nates, K is the non-linearity parameter, n refers to the
number of iterations. In present study, we only have
mod 1 restriction for the angular coordinate which im-
plies that the map is open along the p axis letting the
momentum reaches arbitrary large values.

Fig. 1 demonstrates a representative phase portrait of
the open standard map with K = 28 and the open-leaky
layout with a pair of leaks (horizontal red lines) at p =
[10, 10.5] and [−10.5,−10]. Here, the simulation includes
only 100 particles up to 100 iteration steps in order to
avoid overcrowding the plot. Colors refer to positions of
the same particle at different time instant.

FIG. 1: Trajectories of 100 particles for 100 iteration steps in
open (left) and open-leaky (right) standard map with K = 28.
Note the asymmetry of the distribution in the right panel as
a consequences of disappearing particles.

Accelerator modes, as special kind of initial conditions
belonging to regular islands, can appear in the system
[24]. These orbits look like ”leap frogs” in phase space as
they jump by integer values along the p axis as iteration
goes on. Nevertheless, the appearance of period-1 AMs as
a function of the non-linearity parameter can be defined
with the inequality [16]

2πl ≤ K ≤
√

(2πl)2 + 16, (2)

here l denotes a positive integer number, K is as the same
as in Eq. (1). One can also obtain that the width of the
successive ∆K intervals decreases by ∼ 9/K [13].

The diffusion coefficient is the expectation value of the
squared distance for an ensemble of trajectories. It is
determined numerically by the equation1 [13]

D(K) =
〈(p− p0)2〉

n
, (3)

where D is the diffusion coefficient for a given K value,
p0 denotes the initial momenta, and 〈. . . 〉 refers to the
average over the ensemble of trajectories. For complete-
ness we note that n should be large enough in order to
get a saturation in D. The K dependence on the right
hand side of Eq. 3 is included in the calculation of p co-
ordinate according to Eq. 1. To demonstrate the facts
above, we reproduce the classical spike structure of the
D(K) curve [13, 15] in Figure 2 (yellow line).

It is also known that accelerator mode islands help
the particles to take larger steps in one iteration, as a
result, those particles can travel further in the phase
space showing anomalous diffusion rather than normal
for long timescale [14, 15, 25–27]. Furthermore, orbits
inside the AMs are ballistically transported in both di-
rections p→ ±∞.

In physical systems when the total mechanical energy
becomes positive, the equipotential surfaces open up,
particles’ orbit becomes unbounded and, therefore, can
escape a pre-defined region. Similar phenomenon in open
standard map wherein the cylinder-like phase space is
extended to infinity can be observed at critical value of
KC ≈ 0.976. Beyond this value the last KAM-torus de-
stroys and trajectories originating from chaotic sea can
visit the entire phase space.

In order to be able to observe escape in open standard
map we have two choices. First, by defining a maximum
value of momentum pmax. In this case particles leave the
system, and do not contribute to the dynamics at all, if
the condition p > pmax is fulfilled. This setup can be
thought of as an open flow in the phase space with a
bounded region (±pmax in our case) where irregular mo-
tion appears before they quit this domain and complexity
ceases. We recall that this phenomenon has been exten-
sively studied and can be described by chaotic scattering
[19, 28, 29].

Second, closed systems can be open-up artificially by
placing a hole in the phase space and let the particles
leave the system through this hole, see the thorough re-
view by [21]. It can also be shown that the Poincaré re-
currences in closed chaotic systems corresponds to escape
through a leak provided the leak is positioned exactly to
the recurrence region [30].

Both cases above show paradigmatic escape statistics
of survived particles either through the pre-defined bor-
der [18, 31, 32] of the system or through a leak [33–37].

1 In case of general 2D normal diffusion both coordinates have to
be take into account. However, the difference in our simulations
was less than 10−3 %. Consequently we used Eq. (3) to determine
the coefficient.
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That is, escape of particles in fully hyperbolic dynam-
ics and for short times in weakly chaotic systems shows
exponential decay. Moreover, the number of surviving
trajectories in weakly chaotic systems for long timescales
follows a power-law distribution.

In order to examine transport and escape in the ex-
tended standard map we place two holes at predefined
positions in the phase space. In terms of its size, we uti-
lize a pair of leaks along the whole θ = [0, 1] interval with
varying height along p. We are interested in the diffusion
along the p direction.

In most of our simulations scrutinizing the diffusion
coefficient we put 400 particles initially on a lattice at
p = [−0.5, 0.5] and Θ = [0, 1] intervals. The length of
iteration is 500.

III. RESULTS

A. Diffusion

FIG. 2: Diffusion coefficients in the open system (yellow),
in the open-leaky system (black) the difference (∆D, brown)
between them. Two holes are placed at p = [10, 10.5] and
[−10.5,−10].

Let us begin to explore the difference between the open
and the open-leaky system’s diffusion coefficient D. To
do this two holes are symmetrically defined in the inter-
val of p = [10, 10.5] and p = [−10.5,−10]. Fig. 2 de-
picts D(K) curves for 500 different values in the interval
K = [5, 50]. As one can see, the diffusion coefficient can
have very large values. The spiky structure, discussed
thoroughly in the literature, is associated with acceler-
ator modes in the phase space. According to the value
of K in Eq. (2) the particles are pulled far away from

their origin along the p direction. It is worth mention-
ing that the shape of the D(K) curve does not depend
on the length of the iteration. Taking 500 time steps
is sufficient to calculate D(K). The only change that
appears with longer simulation is that the spikes are get-
ting higher because the accelerator modes take particles
further and further. We can notice the similarity of the
D(K) curves for the open system (D), the open-leaky
system (Dleaky ), and also the difference between them
(∆D = D −Dleaky). In case of a leaky system, Dleaky

consists of those particles only that survived even the last
iteration step of the simulation. Consequently, negative
values of ∆D mean that after 500 iterations the particles
still in the system are further in the phase space on aver-
age. In other words, trajectories fallen out thorough the
leak do not contribute to the diffusion coefficient. Re-
sulting in a positive shift to the D(K) curve. That is,
we can point out that the main difference arises from the
fact that the size of the ensemble is not constant during
the simulation.

The question then naturally arises what does the ∆D
depend on.

(i) initial conditions: The uniformly distributed initial
conditions as well as randomly chosen (Θ0, p0) pairs in
the domain Θ = [0; 1], p = [0; 1] lead to the same result.

(ii) leak size: It turns out that the size largely con-
tribute to the difference quantitatively, however, in a
trivial manner. We checked ∆D with several different
leak size in p-direction, from 0.1 to 1 and found that the
larger the leak, the bigger the difference ∆D. The rea-
son behind this observation is simple: if we have a more
elongated domain of escape, more particles run into it,
thus, they enhance the contrast between the open and
open-leaky diffusion.

(iii) leak position: Repeating the previous simulation
with leaks same in size (∆p = 0.5) but at different posi-
tions along the p axis: p = 20,−20 or 30,−30 we obtain
∆D(K) in Fig. 3. The brown curve coincides with ∆D
in Figure 2. The upper two curves belong to leaks at
p = ±20 and ±30, respectively. The further we put the
leaks to the initial conditions, the smaller difference ap-
pears in the diffusion coefficients. The explanation of
this finding can be understood by examining the relative
position and the initial ensemble position.

We can also investigate the effect of leaks’ position to
the diffusion coefficient from a different aspect. Fig 4 de-
picts ∆D for a fixed K as a function of the leaks’ position
along the p-axis. The two curves stand for K = 31.55
and 35, the former one belongs to an accelerator mode
in the phase space.

The right tale of ∆D(K) corresponds to distant leaks.
Here the difference of the two diffusion coefficients, D −
Dleaky, tends to zero because most of the particles ex-
perience normal diffusion and could not reach the leaks
during the integration time. There are only a few of
them stuck with AM islands. If these trajectories enter
the leaks, the almost periodic spikes are appearing on
top of the (blue) curve yielding a significant difference in
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FIG. 3: For fix positioned holes at p = [10, 10.5] and
[−10.5,−10], the D−Dleaky follows a decreasing trend (with
peaks where the diffusion is anomalous) increasing the non-
linearity parameter. Also further placed leak does not effect
on ∆D as much as if we put it closer.

∆D.

On the other hand, for closer leaks, left side in Fig-
ure 4, we have negative values according to Figure 3 as
described above.

There is also a special leak position for every K be-
ing in harmony with the expectation value of squared
distance (p − p0)2. That is, the intersection with hori-
zontal axis, i.e. where ∆D = 0, describes the situation
when the leaks engulf the trajectories that provide the
displacement from their origin approximately equal to D
in non-leaky system. Beyond this point, the leaks capture
the faster trajectories and, therefore, the survivors pro-
duce smaller diffusion coefficient (Dleaky) than D result-
ing in a positive deviation. The maximum of ∆D(K) can
be thought as a barrier when escape takes place at the
”wavefront” of normal diffusion removing the ”fastest”
particles from the dynamics leaving behind the largest
gap between leaky and non-leaky scenarios.

In Fig 4, taking a deeper look at the trend of the curves
from right to left we can recognize the similarity with the
envelope of the curves in Fig 3. If we consider a pair of
leaks at fix position and increase K (keeping the inte-
gration time also fixed), we observe the spreading of the
particles along p axis. The relative size of the interval
between the leaks and the spanned interval by the par-
ticles movement decreases with larger K. For fix K, the
result in the phase space is the same if we place the leaks
closer to each other.

FIG. 4: Position dependence of the ∆D. At K = 31.55, the
accelerator modes in the phase space cause larger fluctuations
than in the K = 35 case.

B. Survival probability, escape rate

Up to now, we learned about diffusion coefficient in
open-leaky and its relation to the open standard map.
Basically, the survived particles govern the ∆D, there-
fore, it is worth investigating the escape of particles
through the predefined leaks. At this point we turn our
focus of interest to the number of particles left the sys-
tem. More precisely, the ratio of the particles still in
the system and the initial population of the ensemble as
time goes by is measured numerically. To do this, the
leaks are specified symmetrically at p = 30 and −30 with
height 0.5. Figure 5 portrays the evidence that for small
K (< 10) values low amount of the particles manage to
reach the leaks. Consequently, the survival probability is
high P ' 0.5. As we increase the non-linearity parameter
they can get to the leaks more likely since the stronger
diffusion drives them further. This is how the decreas-
ing part of the curve is explained. The minimum of the
survival probability at Kc stands for the case when most
of the particles cover the distance to the holes and even-
tually escape. The ascending trend, then, is annotated
by jumping over the leak due to the stronger diffusion
yielding extended loops in p, in one iteration step. The
role of the accelerator modes appears along the vertical
gray lines as local minima (black circles) and maxima
(red circles) in the decreasing and increasing parts, re-
spectively. As we know, accelerator modes help particles
travel further in the same amount of time. Thus, they
assist the particles to reach the leaks in the low K < Kc

regime, while help them jump over the leak and end up
far distance for large values, K > Kc. This is why we ob-
serve local minima (maxima) at accelerator modes before
(after) a critical Kc value of nonlinearity parameter.

In order to talk about escape rate, we have to fix the
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FIG. 5: Survival probability for particles in a leaky system.
Vertical lines mark the presence of accelerator mode for that
K. The holes are at p = 30 and −30 with height 0.5. For small
K values, accelerator modes increase the chance of leaving
and the survival probability curve has local minima (black
circles) there. However, at large K, they keep particles in the
system, therefore, the possibility of staying in the system is
higher (red circles).

parameters of the simulations. It is clear that we need
more particles to have reliable statistics, therefore, we
choose to follow 106 trajectories. We also raise the length
of the iteration to 107 in order to be able to analyze the
tail of the distribution. The leaks are now settled at
p = [−10.5,−10] and [10, 10.5].

FIG. 6: Number of survived particles for different K values
for short times does not follow exponential distribution for
open-leaky standard map (solid lines) and true exponential
for close-leaky standard map (dashed lines) limited to p =
[−40, 40] via periodic boundary conditions. Different slope of
the dashed lines - the escape rate - characterizes the quality
of mixing. The larger the K, the shorter the recurrence time
to the leaks.

Let us begin with a classical simulation. Initial con-
ditions are placed uniformly in a unit square (p0,Θ0)=[-
0.5;0.5]x[0;1]. The leaks cover the area mentioned above.
The number of non-escaped trajectories vs. time is
stored. We stress that the smallest value of K is far
beyond the non-linearity parameter that generates fully

ergodic dynamics. Thus, without a doubt, we assume
a clear exponential trend based on the literature. The
results are summarized in Figure 6. Solid lines corre-
spond to leaky-open standard map and clearly deviates
from a straight line in the log-lin plot. This observation
completely contradicts our expectation, and not only for
accelerator modes (K = 12.74 and 44) but for normal
diffusion (K = 8 and 40) as well.

In our study the motion can be considered on a cylin-
der, p ∈ (−∞,∞),Θ ∈ [0, 1]. So, periodic boundary con-
dition in Θ allows that a trajectory re-enters the same
domain in the phase space frequently. This view in p-
direction is more contrasting. Due to the unbounded mo-
tion in momentum the trajectories might wander much
longer times in phase space before they come back to the
same position. To check what happens if we divert back
the particles violently to the same realm in phase space,
we repeat the previous process with periodic boundary
condition, p mod (40). The resulting dashed curves in
Figure 6 follow the desired exponential decay. As the
only difference between the two simulations is the open or
closed phase space, we conclude that the non-exponential
decay for open-leaky system can be a consequence of the
unbounded phase space in p coordinate. Periodic bound-
ary conditions do not let particles leave the surrounding
area of the leaks, hence, the well-mixing process, which
is the basic criterion of the Poisson survival distribution
for short times [12, 38, 39], is violated.

Interestingly, one can observe the same behavior if
p = ±40 behaves as a strict edge of the system, i.e. par-
ticles leave the system, ”fall out”, when their momen-
tum exceeds |p| ≥ 40. This phenomenon has also been
reported in [20].

FIG. 7: For different K values the number of survived parti-
cles until n = 107. The decays follow power-law for each case.
The slopes of the curves are nearly the same σ ≈ 0.5.

The long-term dynamics in open-leaky problem fits to
our presumption. Figure 7 represents the power-law tail
of survival distribution up to 107 iteration steps for dif-
ferent K values. The tail (n > 1000) of various N(t) has
nearly the same slope, σ = 0.5 Only the cyan curve corre-
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sponding to the AM K = 18.95 shows a deviation beyond
n ≈ 3× 105. Moreover, the clear exponential part is also
visible, especially in the case of K = 10. From this and
Fig. 6, we can point out that the initial stage of the sur-
vival distribution (n . 200 − 300) indicates exponential
decay only for moderate control parameters. This fact re-
inforces the view that larger diffusion works against the
efficient mixing in phase space.

Although we found that after ca. 5000 iterations, the
curves in Fig. 7 become linear on log-log scale, it should
be noted that the escape rates are not exactly equal.
Fig. 8 collects the power-law exponents, σ, for 60 different
K values. The fit has been made on straight segment
of the distributions. It turns out from the fluctuations
of the σ(K) plot that the N(t) ∼ 1/

√
t rule does not

hold for the accelerator modes, for instance, 6.28 < K <
7.45 or 12.57 < K < 13.19. There are, however, shorter
sections of N(t) curves at AMs that follow the σ = 0.5
exponent but their tail always deviates from the straight
line causing different slope. It cannot be rule out that
for longer iteration, say, 109 − 1010 steps, these curves
pursue again the original slope or tend to different value
of σ. This investigation is beyond the scope of present
work.

FIG. 8: Escape rate for different K parameters. The fit
was executed after 5000 iterations where the N(n) curve was
straight line on log-log scale.

The finite size of the leaks make it possible for the par-
ticles to jump over them and get to larger p coordinates.
Indeed, some of them are not so ”lucky”, mostly for small
K, and their furthest position to the origin is situated
exactly in the leak. The others, however, can enter the
leaks while they change the direction of movement and
return to smaller values of p, see Figure 9.

As they have their momentum p larger (smaller) than
the leak’s upper (lower) border, let us call them back-
ward particles and the former category of escaping par-
ticles forward. Of course, there are particles that do not
leave the system, they are the survivors. In Fig. 10 we
illustrated the number of particles in the three groups
for five different values of K after 106 iterations. One
can see that for larger K more particles leave the system
backward.

It is not surprising, since they have more chance to
jump over the leaks. Comparing the first two columns,
the significant difference in the ratio of the forward and
backward particles is remarkable. A tiny increase in K,
from 6 to 6.75 refers to spike structure of Figure 2 and

FIG. 9: Left: Phase space portrait (K = 25.3) with acceler-
ator (decelerator) modes. Right: Momenta of 19 trajectories
experiencing AMs. The green curve shows a particle travel-
ling downward then trapped by the left accelerator channel
– that acts as a decelerator mode in lower semi-plane – and
finally enters backward the bottom leak around n ≈ 1900.

FIG. 10: Particles classified to three categories according to
the ”direction of leaving” for five different K values after 106

iterations. Increasing K leads to more particles escape during
backward motion. The group of survivors is not visible on top
of the bars.

it is the consequence of an appearing accelerator mode
around K = 6.5.

We have already seen that not all of the particles leave
the system while they approximate one of the leaks. In
Figure 11, we depicted the ensemble at two particular
time instants: the absolute value of the largest p coordi-
nate the particles reached vs. the absolute value of p at
the last iteration step before leaving. Whenever a parti-
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FIG. 11: For K = 50 absolute value of the p coordinate at
the furthest position and at the last iteration for n = 104

(orange) and n = 106 (blue). The final position is 0 if a
particles not left the system. Considering longer times make
the scale change and more particles end up leaving via the
leaks.

cle escapes, its final momentum is set to the last position
in p (it belongs obviously to either leaks). The vertical
blue/orange lines at ≈ 10 indicates the position of the
escaped particles right before falling into the leak. One
can see that the remaining points are scattered above the
y = x line that means they travelled far away in the phase
space. A considerable amount of iteration increases the
number of escaped particles and might increase, with the
help of AMs and their stickiness effect, the distance from
the initial place for the survivors. If we compare the
two calculations, n = 104 (orange points) and n = 106,
(blue) we can conclude that every further iteration, parti-
cles might escape or get further in the phase space. This
can be considered as the main fingerprint of power-law
decay in particles long-time distribution.

IV. SUMMARY AND CONCLUSION

In this paper, we obtained the diffusion coefficient and
escape rate in the open standard map (p ∈ (−∞,+∞))
with two finite size holes placed symmetrically to the
origin along the p coordinate. Our main goal was to
explore the difference between the diffusion coefficients
in the presence of artificial leaks in the system.

Based on numerical investigation of large ensembles of
particles in the phase space, we found the followings.

First of all, it becomes clear that punching the phase
space by artificial holes results difference in diffusion co-
efficients in leaky and non-leaky version of open standard
map. This can be understood from the fact that disap-

pearing particles have direct influence to the diffusion
coefficient D via square of the displacement in p−p0. We
have also shown that for a given non-linearity parame-
ter the relative position and size of the leaks influences
significantly ∆D = D − Dleaky. That is, leaks closer to
the initial conditions or with larger size have a remark-
able impact on the ∆D. These statements are strongly
correlated to the parameter K. Since either in normal or
in acceleration modes both D and Dleaky depends on K.

Since the escaping particles play an important role
in diffusion coefficients, we also investigated the escape
dynamics for short and long timescales. We found it
surprising that the distribution of the survived parti-
cles for short times is not exponential as expected for
strong chaos. We believe that the reason of this is none
other than that in cylindrical phase space without peri-
odic boundary conditions in momentum the particles can
take large excursions in the phase space before they come
back again to the vicinity of the leaks and escape. This
behavior implies that the perfect mixing is not fulfilled
although it is required to observe the Poisson distribution
in escape time statistics.

A more classical result corresponding to the long time
escape statistics has been achieved. That is, the well-
known power-law decay of particles with nearly identi-
cal exponent (σ = 0.5) is manifested in open-leaky SM.
Nevertheless, the escape rate also depends on whether
accelerator modes are operating in phase space.

Additionally, we presented the fact that direct escape
(forward particles) is common only for low values of K
and realized that quite a large amount of particles, es-
pecially for large K values, travel far in the phase space
before they fall into one of the leaks (backward parti-
cles). As the backward particles can reach very larger
distances to their origin in p co-ordinates, we might have
to wait for them to come back and escape. That is why
a power-law distribution describes the escape rate.

The universality of the standard map allows us that
the results established in this study can be applied in
other fields of science where the open-leaky properties of
the phase space are relevant, such as hydrodynamics, en-
vironmental flows, chemical reactions, or formation and
evolution of planetary systems.
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