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Abstract. The phase analysis based on the X-ray diffraction method is a well-known procedure 

for determining the phases crystalline in the sample. The phase identification is simple in case 

of the isotropic powder samples, however the standard investigation protocol cannot always be 

used, e.g. in case if the presence of anisotropy like preferred orientation (PO) is observed. In case 

of steels, the diffracted intensity of a given phases is influenced by the directional phase 

development having a needle character caused by the martensitic transformation; some 

reflections can even disappear from the diffractograms as a consequence of the strong PO. One 

impacting consequence of PO is over quantitative evaluation, percentages close to actual values 

are obtained only if diffracted intensity is integrated for the whole measured 2θ range for each 

phase and anomalous intensities caused by PO are corrected. 

Incorrect quantitative values were obtained by using the full-profile analysis method in the 

course of our earlier investigations, because no correction method had been available for the 

recognition and evaluation of the orientated structures in phase-identification of metals. By using 

the Rietveld refinement method for whole measured 2θ range, both the PO and the size-strain 

broadening effects are accounted for. Strain results from stress developing in the lattice and can 

be taken into consideration in the calculated model and results are corrected to accurately 

describe the real structure. In the course of our research work, orientated, complex structures 

developing in the Cu-base alloys were investigated by using the Rietveld refinement method. 

The quantity of phases was determined in the different samples in which clear signs of the used 

technological processes could be observed in the structures. The character of orientation 

appearing in the structure was observed, evaluated and the necessary corrections were 

performed.  

1.  Introduction 

Complex structures showing clearly anisotropic character (size, strain and crystallite arrangement) often 

develop in the course of the solidification or transforming during cooling in the metallic alloys [1]. The 

crystallite arrangement anisotropy – lack of randomness – results in the preferred orientation (PO) of 

phases.  PO and the stress of lattice-structure are not taken into consideration by the majority of methods 



12th Hungarian Conference on Materials Science (HMSC12)

IOP Conf. Series: Materials Science and Engineering 903 (2020) 012028

IOP Publishing

doi:10.1088/1757-899X/903/1/012028

2

 

 

 

 

 

 

suitable for the exact determination of phases quantity during the identification of phases developed in 

the microstructure. 

In case of alloys, the production as well as the applied technological processes leave clear signs in the 

microstructure. An oriented structure can develop under the influence of heat extraction in the cast 

structure while the uniaxial- or multiaxial deformation of the material occurs by the forming processes 

e.g. by rolling or drawing where the main orientation is determined by the direction of deformation [2,3]. 

The PO can appear in metals as a result of the different heat treatment methods as well, e.g. following 

the crystal-oriented phase transformation [4]. Moreover, it is very important to take into consideration 

the dissolution of the individual alloying elements in the crystal lattice and the change of unit cell 

building up the crystal lattice in case of the alloy-families [5].  

The phase analysis based on the X-ray diffraction method is a basic procedure for determining the phases 

existing in the sample. It is a universally recognized method in case of isotropic materials consisting of 

some components (mainly in case of powder samples) however it is probable that the standard 

investigation protocol can rarely be used owing to the presence of anisotropy. The diffracted intensity 

received from the measured phases is influenced by the presence of PO; certain reflections can even be 

missing from the diffractogram. Quantitative results are strongly altered by presence of PO, since phase 

percentages are calculated from measured intensity. The presence of PO leaves a clear sign on the 

diffractogram, and it is necessary to identify these signs and correct their effect [6,7]. E.g. the strong PO 

for phase x on given d(001) peak results in increased measured diffracted intensity, which needs to be 

corrected in relation to all the measured peaks to obtain the theoretical intensity ration, a.k.a. relative 

intensity. 

All the reflections coming from the material are taken into consideration in case of the phase analysis 

performed by using the full pattern analysis applied mostly in case of metallic materials. In an ideal 

case, the integrated intensity of all the possible reflections are taken into consideration for each phase 

existing in the material, however merely the reflection appearing in the diffractogram can be taken into 

consideration in case of orientated structures. Correction methods are available in this procedure, by 

which the presence of anisotropy can be taken into consideration and correct for the orientation effects, 

like March-Dollase or spherical harmonics [8]. A realistic structure can be described more exactly by 

using the Rietveld refinement method [9,10] which relies on minimizing the differences of the measured 

pattern in relation to a calculated pattern by minimizing the sum of least squares. The method is 

convolution based, instrumental profile is defined to calculate the individual diffraction pattern of the 

identified phases, while background and baseline are modelled by polynomial functions. Peak 

broadening is modelled by crystallite size and strain contribution. In case of the phase analysis 

performed by the Rietveld refinement method, it is possible to take into consideration and to correct 

both the PO and the strain accumulated in the lattice, while crystallite sizes are calculated [9]. During 

this procedure, each phase is fitted individually and the unique PO characterizing the phase and the 

lattice strain are corrected.   

In the course of our experiments, the usability of Rietveld refinement method was investigated in the 

complex structures developing as a consequence of heat treatment and plastic deformation in the Cu-

based alloys. The microstructure of samples was investigated by optical and electron microscopy 

method, the phases were identified by X-ray diffraction method. The phase amounts were determined 

by Rietveld refinement method. 

2.  Experimental 

The investigations were performed on Cu-Zn alloy of Standard No. C35000 medium leaded brass. The 

composition of alloy can be seen in Table 1. 

Table 1. Composition of C35000 alloy 

Chemical composition (wt%) 

Cu Zn Pb Mn Si 

59.3 36 1 2.2 1.5 
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Samples of complex structures used for performing the investigations were obtained by heat treatment 

and plastic deformation. The heat-treated sample was homogenized at a temperature of 800°C for half 

an hour, it was tempered at 550°C for 4 hours and it was cooled on air. The plastic deformation of the 

hot-formed sample was performed by forging at a temperature of 750°C. The structure of samples was 

investigated by using optical- and scanning electron microscope (SEM); the chemical composition of 

phases was analysed by energy dispersive X-ray (EDX) microprobe. The phases developing in the 

microstructure were identified by X-ray diffraction (XRD) and they were matched with the microscopy 

results. Grinded and polished samples were used for the investigations, after etching with 5% 

hydrochloric acid and ferric-chloride solution. A Zeiss Imager m1M type light microscope and a Zeiss 

EVO MA 10 type scanning electron microscope were used for the microscopic investigations performed 

in the Institute of Physical Metallurgy, Metalforming and Nanotechnology of University of Miskolc. 

The XRD investigations were performed on a Bruker D8 Discovery XRD equipment, in Bragg-Brentano 

geometry with Cu Kα source (40 kV and 40 mA generator settings) in a range of 20-120 °(2θ), an 

increment of 0.01 °(2θ) and a counting time of 1s using a LynxEye X-ET energy dispersive detector 

with linear 2° opening. Evaluation was done in Bruker EVA 5.0 software and a PDF2 database were 

used for the identification of phases and Bruker TOPAS 6.0 software was used for Rietveld refinement. 

The instrument is aligned with SRM NIST 1976b corundum standard and calibrated with SRM NIST 

640d silicon powder standard. Instrumental profile is calculated with the Fundamental Parameters 

Approach (FPA), baseline is modelled with 1st order Chebyshev polynomial. PO is corrected with 

March-Dollase function [8] or spherical harmonic functions [10], where required. Peak broadening was 

resolved by simultaneous size and strain calculation by size(nm)=FWHM(2θ)*cos(θ)/λ and 

ε0=FWHM(2θ)/(4tanθ), a dimensionless parameter which can be related to distortion of lattice 

parameters. The two parameters were refined until the best fit, i.e. the smoothest difference curve was 

obtained. In cases when size-strain modelling did not resolve the measured pattern, a second structure 

of the same phase was implemented to distinguish between fractions defined by size range and/or strain 

amount. Measurements were made in the 3DLab Fine Structure Analysis laboratory of the University 

of Miskolc. 

3.  Results and Discussion 

On the basis of the metallographic investigations, it was stated that oriented, long-shaped beta’-CuZn 

grains with protracted shape developed in the alpha-CuZn solid-solution matrix in the heat-treated 

structure created during the equilibrium cooling. A structure having a martensitic character was formed 

in the hot-forged sample as a consequence of the faster cooling process. In the microstructure, the alpha-

CuZn solid solution forms well defined grains besides the beta’-CuZn acicular phase. The Pb droplets 

added to the alloy for the sake of the easier processing are distributed uniformly. The long-shaped phase, 

i.e. the Mn5Si3 compound-phase which is of blue colour (Fig 1) in etched state and can be recognised in 

the structure, develops during casting. 

  
Heat treated (cross section) Hot forged (cross section) 

Figure 1. Optical microscopic images about the microstructure of samples 
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Heat treated (cross section) Hot forged (cross section) 

Figure 2. Scanning electron microscopic images about the microstructure of samples 

On the basis of EDX measurements and X-ray diffraction phase analysis, it can be stated that an alpha-

CuZn solid solution (face centered cubic unit cell, space group Fm-3m (225), a: 3.697Å) and a beta’-

CuZn (face centered cubic unit cell, space group Pm-3m (221), a: 2.949Å) phase as well as Mn5Si3 

intermetallic phase (mavlyanovite, hexagonal unit cell, space group P63/mcm (193), a: 6.910Å, c: 

4.8168182Å) and Pb (face centered cubic unit cell, space group Fm-3m(225), a: 3.704Å) can be 

identified in the alloy. 

The exact quantity of phases can be obtained by Rietveld refinement in case if the phases contained in 

the alloy are known. In this paper, we show a step by step application of this method for oriented 

structures. In the course of Rietveld refinement, the measured curve obtained from the sample is fitted 

with the cumulative calculated curve obtained from the single curves calculated from identified phase’s 

crystal structures, comprising all the corrections (PO) and broadening modelling (size and strain) that 

we apply. We aim at minimizing the difference between the measured and calculated curve. Conclusions 

concerning the phenomena (e.g. orientation) causing the difference can be drawn from the shape of 

difference curve and from the absolute value of residual peaks on the difference curve.   

After identification of phases, the calculated patterns are fitted to the measured diffractogram (Fig. 3) 

without any PO correction, theoretical unit cell parameters, peak broadening modelled with crystallite 

size calculation.  

 
Figure 3. Fitting the diffractogram of heat-treated sample, without PO correction, theoretical unit cell 

sizes 
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Since unit cell parameters reflect the presence of alloying elements in the phases, this is the first 

parameter to be fitted, after which the peaks presenting PO and strain broadening can be identified. In 

Fig 3. and Fig 4. dotted line box marks the enlarged regions in which the differences after each step can 

be traced, beyond the more visible high intensity peaks. The residual peak intensities on the difference 

curve are significantly reduced by the fitting of cell parameter (Fig. 4). 

The following step requires to perform the PO correction to the (hkl) peaks marked in Fig 4. With the 

March-Dollase function we can correct for two (hkl) series – defined by the user – of each phase. 

Correcting for one or two (hkl) sets can be decided based on the peaks on the difference curve, as well 

as the corresponding values of (hkl), which may require several trials until the necessary correction is 

found. 

In case of the alpha-CuZn solid solution, residual intensity value of the third peak (200) at 49°(2θ) on 

the difference curve decreases significantly as well, simultaneously with the PO correction for (111) at 

43°(2θ) and (220) at 72°(2θ) peaks (Fig. 5A). Thereafter the difference curve was further reduced by 

modelling the lattice strain contribution to peak broadening. For the alpha-CuZn solid solution, the 

modelling of lattice strain contribution resulted in improvement for (111) and (022) peaks (Fig. 5B). 

Presence of lattice strain is reasonable in case of an orientated structure obtained by thermal or 

mechanical processing. Intensity distribution on the difference curve as well as on the measured pattern 

(the reflection has got a shoulder) indicates the presence of second fraction for both α and β’-CuZn 

phases. This phenomenon is easily visualized by modelling crystallite size on calculated pattern, since 

the model applies lognormal distribution, thus any bimodal size distribution in the size broadening (after 

strain is taken into account!) is leaving peaks on the difference curve. Therefore, the introduction of a 

further phase in the model with identical crystal-structure but lower size and smaller lattice parameters 

becomes necessary and is supported by the minimization of the difference curve (Fig. 6A). 

 
Figure 4. Fitting the diffractogram of heat-treated sample, unit cell parameter fitting, no PO correction 

It seems reasonable to perform the PO correction even for these second phases introduced into the 

model. In case of alpha2-CuZn phase, this step means the orientation correction of (311) and (400) peaks 

while in case of beta’2-CuZn phase, it means the orientation correction of (031) peak and by this action 

the difference curve is further minimized (Fig. 6A). 

It is very important to note that this fraction having a lower crystallite size shows a clearly different 

orientation in the complex structure, both in case of alpha2-CuZn and beta’2-CuZn phases. In case of 

the alpha-CuZn phase, the introduction of a 3rd fraction arose as the difference curve, especially the peak 

at 114 °(2θ) was not solved under the influence of any fitting possibility. 



12th Hungarian Conference on Materials Science (HMSC12)

IOP Conf. Series: Materials Science and Engineering 903 (2020) 012028

IOP Publishing

doi:10.1088/1757-899X/903/1/012028

6

 

 

 

 

 

 

 
Figure 5. Fitting the diffractogram of heat-treated sample A: correction of PO, B: lattice strain 

correction 

 
Figure 6. Fitting the diffractogram of heat-treated sample A: new size fraction introduced for alpha- 

and beta-CuZn, unit cell fitted and PO corrected; B: new fraction introducing 

This 3rd phase with strong PO on (002) peak did solve the last major peak on the difference curve (Fig. 

6B), thus its presence is reasonable. 

  
Figure 7. Final fitting result with all corrections and modelling, heat treated sample (upper part 

omitted) 

At last the refinement procedure is completed by fitting the Debye-Waller thermal parameters (Fig. 7). 

As observed on the fitted pattern, only minor changes are obtained, while phase percentages (Table 2) 
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are not affected significantly. The phase quantities obtained during the different fitting steps are shown 

in Table 2. During the first steps, the quantity of alpha-CuZn is approximately 60wt%, the sum of the 

two phases corresponds to this value when introducing the alpha2-CuZn phase as well. The quantity of 

beta’-CuZn phase is around 20-25wt%. As soon as the third alpha-CuZn fraction is introduced, the 

quantity of sum alpha decreases to about 30wt% while the quantity of beta’-CuZn reaches a value of 

more than 50wt%. It can clearly be observed from the change of phase quantities that the results obtained 

without performing the corrections does not reflect the real phase composition. 

Table 2. Amounts of phases in the different steps of Rietveld refinement 

Refinement step Phases (wt%) 

 ’ Pb Mn5Si3 2 ’2 3 

Without correction 64.72 23.20 0.90 11.18 - - - 

Cell parameter fitting 69.54 19.48 0.67 10.30 - - - 

Orientation correction 64.95 25.22 0.63 9.21 - - - 

New fraction introduced, cell 

parameter fitting, orientation 

correction 

45.68 16.90 0.58 10.45 16.07 10.33 - 

New fraction introduced, cell 

parameter fitting, orientation 

correction 

7.56 44.91 1.36 16.37 9.90 7.64 12.26 

Thermal parameter fitting 7.61 45.50 1.38 16.18 9.50 7.37 12.47 

Hot-forged sample* 31.41 11.01 0.51 6.81 6.22 25.52 11.75 

* also contains 7.03 wt% CuZn(MnAl) martensite 

In case of the forged samples, the changes caused by the solidification and transformation as well as by 

the plastic deformation were taken into consideration when fitting the complex structure. Based on the 

residual peaks of difference curves, a martensite phase of possible CuZn(Mn) composition was 

identified (Fig. 8).  

 
Figure 8. Diffractogram of hot-forged sample, complete refinement (upper part omitted) 

As a discussion of limitations and possibilities of our calculations several remarks must be highlighted. 

Most important is related to quantitative phase analysis, which is improved towards realistic sample 

values by the corrections but is limited only to that volume of sample which is penetrated by the X-rays. 

Thus, such a measurement for metal or alloy block sample is problematic to carry out, since the 

distribution of phases is highly inhomogeneous. Even with all the correcting and measuring techniques 

an average (bulk) composition for block samples cannot be obtained with X-ray diffraction, it will 

always reflect the local composition of the illuminated area, depending on X-ray wavelength, 

instrumental configuration, sample stage and sample composition. 
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Average phase quantitative composition can be obtained only on proper powder samples. Another issue 

is size distribution of phases. In the XRD evaluation phases are generally regarded as one single structure 

with the according size, not a realistic model for most materials. Hot-forging and heat treatment 

inevitably produces new size fractions of existing phases through recrystallization. These fractions can 

be evidenced by Rietveld refinement of XRD patterns, if all corrections and modelling are done 

properly.  

4.  Summary 

Complex microstructures of alloys represent a problem in XRD analysis, due to preferred orientation, 

multimodal crystallite size distribution and lattice strain. These properties can be adequately modelled 

and corrected by Rietveld refinement to obtain reasonable quantitative phase composition and 

characterization of individual phases. The unit cell size, after fitting to the measured pattern gives 

information on alloying ratio, while strain present in the phase is also modelled. After PO corrections, 

the existence of multiple size +/- strain +/- orientation fractions are revealed for the modelled phases. 

All the properties are in connection with processing of analyzed sample. In the case of heat treated CuZn 

material, the alpha-CuZn phase develops 3 fractions, while the sample was obtained in three steps: 

homogenization at 800 °C, tempered at 550 °C and cooled in air. The Pb content, theoretical in the 0.8-

2.0 wt% range, is well reflected in the refinement. Also, phase transformation effect of forging is 

evidenced, probably left unrecognised without all the corrections and modelling. The 3rd fraction of 

alpha-CuZn represents a phase which is not influenced by heat treatment, neither forging, like relict 

grains of the original, unprocessed CuZn cast. Whatsoever, the numbering and development sequence 

of the different phase fractions is not readily linked to the processing steps, since it would require a step 

by step processing and Rietveld refinement investigation. 

Acknowledgement 

Supported by the ÚNKP-19-4 New National Excellence Program of the Ministry for Innovation and 

Technology. 

References 

[1] Fredrikson H, Akerlin U. 2012 Solidification and Crystallization Processing in Metals and Alloys 

(John Wiley & Sons Publication, Chichester) pp 267 

[2] Verhoeven J.D 1975 Fundamentals of Physical Metallurgy (John Wiley & Sons Publication, New 

York) 

[3] Van Vlack L.H. (1982) Materials forEngineering Concept and applications (Addison-Weslwy 

Publishing, Masssachusetts) pp. 71 

[4] Brooks C.R 1982 Heat Tratment, Structure and Properties of Nonferrous Alloys (ASM, USA) pp 

20. 

[5] Askeland D.R. (1989) The Science and Engineering of Materials (PWS Publishing Company, 

Boston) pp.175 

[6] Cullity B.D. 1956 Elements of X-ray Diffraction (Addison-Wesley, Massachusetts) 

[7] Krawitz A. 2001 Introduction to Diffraction in Material Science (John Wiley & Sons Publication, 

New York) pp. 255 

[8] Percharsky V.K, Zavalij P.Y 2003 Fundamentals of Powder Diffraction and Structural 

Characterization of Materials (Kluwer, Dordrecht) 

[9] Young R.A ed. 1993) The Rietveld Method (Oxford University Press, Oxford) 

[10] Popa N.C 2008 Microstructural properties: texture and macrostress effects, In Dinnebier R.E , 

Billinge S.J.L ed. 2008 Powder Diffraction:Theory and Practice (RoyalSociety of Chemistry, 

Cambridge) 

[11] Velterop  L et al 2000 J.Appl.Cryst. 33 296-306 

[12] Bergmann J et al 2001 J.Appl.Cryst. 34 16-19 




