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Róbert Bódizs1,2, Anna Kis3, Márta Gácsi4,5 and József Topál3

Available online at www.sciencedirect.com

ScienceDirect
The dog (Canis familiaris) is a promising non-invasive

translational model of human cognitive neuroscience including

sleep research. Studies on the relationship between sleep and

cognition in dogs and other canines are only just emerging, but

still very scarce. Here we provide insight into canine sleep and

sleep-related physiological and cognitive/behavioral

phenomena. We show that dogs do not only fulfil all behavioral

and polygraphic criteria of sleep, but are characterized by

sleep homeostasis, diurnal pattern of activity, circadian

rhythms, ultradian sleep cycles, socio-ecologically and

environmentally shaped wake-sleep structure, sleep-related

memory improvement, as well as specific sleep disorders.

Developmental patterns of sleep-related physiological indices,

as well as parallel trends in age-dependent changes in

cognition and sleep were evidenced in dogs.
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Introduction: why is dog sleep relevant for
humans?
Behavioral sleep is common in the animal kingdom,

whereas polygraphically defined sleep is best characterized

in mammals [1], including thedog(Table1). The dominant

(and somewhat implicitly idealized) subject of sleep

research is the young, healthy human and the laboratory
www.sciencedirect.com 
rodent (most often the rat). Most of our current knowledge

on sleep comes from these species (and age group), thus

the available knowledge is seriously restricted. The non-

human/non-rodent sleep studies are mainly performed on

laboratory cats [2].

In accordance with shared evolutionary history (domes-

tication) and social environment of family dogs and

humans, the dog has been successfully applied as a

model species for comparative investigations of several

human socio-cognitive skills [3�]. Considering estab-

lished parallels in dog and human psychopathology

[4], research of brain mechanisms underlying the dog’s

cognitive, behavioral and social dysfunctions, in the long

run, hold promise for an improved understanding of

human neuropsychiatric conditions, such as obsessive-

compulsive disorder [5], autism [3�], or sleep disorders,

like narcolepsy, sleep-disordered breathing and REM

behavior disorder (Box 1).

Methodological issues in canine sleep studies
Sleep studies on dogs have been carried out with

methods ranging from behavioral observations to sur-

gical procedures, differing in invasiveness, ecological

validity and specificity (Table 2). The advantages of

the recently established family dog sleep model [13��]
include (i) dogs’ unique willingness to cooperate during

the measurements to an extent comparable to or even

exceeding children (thus allowing the use of fully

non-invasive methods), (ii) a relatively large sample

size (availability of a large number of pet dogs), (iii)

subjects that live (and can be measured) in their natural

environment, and (iv) significant inter-breed and inter-

individual variability in their human analogous social

behaviors and cognitive performance, including natural

extremes (Figure 1).

Sleep-wake cycle basics in the domestic dog
Overall sleep length in dogs

Comparative databases use the value of 10.1 hours of

average daily sleep for the domestic dog [14]. Reported

values vary between 7.7 and 16 hours [15]. Whether the

21%/day of drowsiness seen in dogs and several other

species but neither humans nor rodents, can be consid-

ered ‘light sleep’ [11] or a transitional state [16] is a

matter of debate, and alters the estimations of total sleep

time in this species [15]. To put in context, laboratory

rats sleep around 13 hours, whereas humans sleep 7–8

hours daily [14].
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Table 1

The criteria of sleep and theirs fulfilment in dogsa

Specific criteria Presence in dogs Type of evidence

(methodology)
N Reference(s)

Behavioural criteria Motor rest . . . is evidently associated

with other signs of sleep

Video recordings,

polysomnography

(including EMG)

23 [19,24]

Stereotyped

posture(s)

Lying with head on or

between the forepaws, or on

the side or back, with neck

muscles relaxed

Video recordings 24 [24]

Increased

sensory

thresholds

Slow wave sleep: ‘The dogs

do not react behaviorally to

external stimuli, but may

show a short-lasting

desynchronization of the

EEG.’

Invasive

EEGb/ polysomnography

7 [16]

Reversibility-

arousability

. . . was proven by auditory

stimulation

Invasive

EEG/ polysomnography

5 [56]

Specific rest sites . . . are used for sleeping

and are frequently provided

by the owners

Video recordings 17 [57]

Homeostatic

regulation

. . . was reported in terms of

both motor and EEG activity

Actigraphy, invasive

EEG/ polysomnography

10 [17,18]

Circadian

organization

Dogs are diurnal in terms of

motor activity, core body

temperature, plasma

melatonin rhythm and

EEG/polygraphic criteria

Actigraphy, metabolism

kennels, repeated blood

sampling, non-invasive

polysomnography

15 [17,28��,58,59,25��]

Eye closure . . . is present in resting/

sleeping dogs

Video recordings 24 [24]

Polygraphic criteria

(mammalian type)

NREMc EEG slow waves and

spindles, lack of rapid eye

movements; HRe <60

beats/min; slow, deep,

and less variable breathing;

reduced EMGf

Invasive and

non-invasive

EEG/polysomnography

14.2 [16,19,32,33�,60]

REMd Low amplitude high

frequency EEG activity

(cortex), hippocampal

rhythmic slow activity, rapid

eye movements; HR <60

beats/min; rapid, shallow,

and irregular breathing;

reduced EMG with

occasional phasic increase

(twitches)

Invasive and

non-invasive

EEG/polysomnography

a The list of features is based on the criteria summarized by Nicolau et al. [1].
b EEG – electroencephalography.
c NREM – non rapid eye movement sleep.
d REM – rapid eye movement sleep.
e HR – heart rate.
f EMG – electromyography.
Sleep homeostasis in dogs

Several findings indicate the presence of sleep homeo-

stasis in dogs. Lost sleep is recovered in terms of

decreased motor activity [17], increased initial slow wave

sleep and a later increase in the percentage of REM sleep

[18], as well as in increased electroencephalogram (EEG)

slow wave/delta activity during NREM sleep [19].

Growth hormone release is strongly associated with early

episodes of deep (slow wave) sleep in humans [20], whereas
Current Opinion in Behavioral Sciences 2020, 33:25–33 
such association is not seen under baseline conditions in

dogs [21]. However, canine growth hormone secretion

becomes associated with slow wave sleep during rebound

sleep after sleep deprivation (i.e. during deeper, more

intense sleep containing more slow waves) [21]. That

is, the unique neuroendocrine state characterized by

increased growth hormone and decreased cortisol during

early sleep and its proposed restorative and neurocognitive

functions [22] is not emerging during baseline conditions in

dogs, but can be induced by increasing sleep pressure.
www.sciencedirect.com
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Box 1 Sleep disorders and behavioral problems in dogs

Canine narcolepsy is characterized by fragmented sleep, REM

sleep dysregulation, frequent sleep attacks (excessive sleepiness)

and emotion-induced losses in muscular tonus (cataplexy) during

play, before feeding, and so on. The condition is caused by the

mutation of the canine orexin receptor 2 gene or by the loss of

production of the orexin peptides [6,7].

Sleep disordered breathing is associated with episodes of O2

desaturation and loud snoring during sleep, as well as daytime

hypersomnolence, sluggishness, and shortened sleep latency. The

English bulldog, the Cavalier King Charles spaniel, as well as other

brachycephalic breeds are most commonly affected. The English

bulldog has been proposed as a natural model of sleep-disordered

breathing [8,9�].

REM sleep behavior disorder is characterized by violent motor

activity and/or complex behavioral phenomena emerging during

REM sleep. Clinical signs include episodes of violent limb move-

ments, howling, barking, growling, chewing, or biting. Episodes

occur both at night and during daytime naps [10]. Behavioral output

is clearly unrelated to the actual environment (‘hallucinatory’). In

some of the dogs, REM sleep behavior disorder was associated with

other neurological conditions, whereas congenital forms were also

reported [11,12].
Circadian regulation of sleep in dogs

The majority of motor inactivity/polygraphic sleep of dogs

occurs between 21.00 and 6.00 with a period of rest during

the afternoon [17,23,24]. Night sleep was characterized by

higher sleep efficiency and continuity as compared to

afternoon naps [25��]. Corroboration of these findings with

the reported core body temperature rhythms (increasing

temperature during most of the light period and decreasing

during the dark) [26,27,28��] clearly indicates a diurnal type

of wake-sleep pattern in dogs.
Table 2

Methodological approaches in studying dog sleep

Method Ethical consideration A

Invasive Cisternal puncture/

cerebrospinal fluid

extraction (associated

with sleep deprivation)

Extremely painful and

distressing, potentially lethal

N

b

Surgically inserted

stimulation/recording

electrodes

Seriously painful and

distressing

H

q

Needle electrodes

introduced into the skin

and the cranial muscles,

contacting the skull

Moderately painful and

distressing (semi-invasive)

T

q

Non-invasive Video recordings No distress is caused to

subjects

H

Actigraphy Not painful, depending on

subjects’ individual

sensitivity might be

moderately distressing

H

Polysomnography Not painful, depending on

subjects’ individual

sensitivity might be

moderately distressing

H

c

e

p
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It has to be noted however, that unlike in humans, the

circadian variation in cortisol level is not always found in

dogs [21,26]. In contrast to human mRNA levels of clock

genes period1 and period2 measured in peripheral blood

mononuclear cells reflecting evident circadian expression

profiles, only period1, but not period2 was characterized

by such profile in dogs [26]. Diurnal activity of domestic

dogs is hypothesized to reflect an adaptation to humans,

as there is evidence for nocturnal, crepuscular or arrhyth-

mic activity pattern in most other canines, like red and

arctic foxes, as well as arctic and grey wolves, whereas

diurnal activity is a rare observation [15,29]. The weaker

circadian regulation (see for example [30]) might result in

greater flexibility in the timing of activity in dogs as

compared to humans. Thus, patterns of video-recorded

sleep-wake cycles in drug detector dogs were not altered

when handler-dog teams worked in different day and

night shifts. The ability of dogs to cope with changing

shifts may be due to their natural brief and frequent

sleep-wake cycles which may allow them sufficient and

easy adjustment to changing routines, which is usually not

the case in humans [31].

Ultradian regulation of sleep in dogs

Ultradian sleep cycles of about 20-min length were

described in dogs (12 min of drowsiness/NREM and

6 min of REM sleep episodes) with well discernible

EEG, EOG (electrooculography), EMG (electromyogra-

phy), ECG (electrocardiography) and respiration-related

features (Figure 2; Table 3) [16,19,23,32,33�]. Rats and

humans are characterized by 11 and 90 min cycles, respec-

tively. Dog sleep was found to be mainly polyphasic, with

an average of polyphasic wake-sleep cycle length of 83 min
dvantage Disadvantage Reference

eurochemical factors can

e measured

Low ecological validity,

restricted subject pool and

sample size

[61]

igh specificity, good signal

uality

Low ecological validity,

restricted subject pool and

sample size

[62,32]

rade-off between signal

uality and invasivity

Somewhat restricted subject

pool and sample size,

pharmacologically altered

sleep

[45]

ighest ecological validity Low construct validity [24]

igh ecological validity Low specificity in

differentiating different sleep

states, restricted to motor

activity

[17]

igh ecological validity

ombined with

lectrophysiology,

otentially high sample size

Lower signal quality,

potential need for adaptation

occasion(s) before reaching

full ecological validity

[19]

Current Opinion in Behavioral Sciences 2020, 33:25–33
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Figure 1
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Non-invasive polysomnography in the pet dog. (a) Placement of the

recording electrodes and devices as follows: (i)

Electroencephalography (EEG) is performed by frontal midline (Fz),

central midline (Cz), left orbitofrontal (F7) and right orbitofrontal (F8)

contacts, with the A1 used as common reference and Gnd as ground

(because of lower artifact contamination the offline re-referencing of

Fz-Cz is most frequently used), (ii) Electro-oculography (EOG) is

performed by the bipolar reference between F7 and F8 (which are the

same as EOG1 and EOG2), (iii) Electromyography (EMG) electrodes

assessing muscular tonus were bilaterally placed on the musculus

iliocostalis dorsi, (iv) Electrocardiography (ECG) is assessed over the

second rib, (v) Respiration (Rsp) is assessed by respiratory inductance

plethysmography using a respiratory belt. The owner is present and

the dog is positively reinforced during the electrode attachment

procedure (technical details of the attachment are equivalent to the

ones used in human studies). (b) A photo of a dog with electrodes

attached. Note the close proximity of the owner. (Modified from Refs.

[33�] and [25��]).
[16,23]. In dogs, 2.9 hours is the estimated daily amount of

REM sleep, whereas humans and rats are characterized

by 1.9 and 2.4 hours, respectively [14]. Similar to some

other species like the rat, the hedgehog and the rabbit,

awakening after active sleep (assumed REM sleep, based
Current Opinion in Behavioral Sciences 2020, 33:25–33 
on video-recordings) was found to be more common in

dogs, than in humans, providing perhaps an opportunity to

be more alert towards their surroundings after a period of

reduced responsiveness [24].

Is there an intraspecies allometric scaling of sleep

physiology in dogs?

An additional factor to be considered is the huge individual

(between-breed) variation that characterizes dog morphol-

ogy [34]. Although the effect of body size on dogs’ longevity

is well-documented [35], the hypothesis of the intraspecies

allometric scaling of physiological measures, like heart rate

is controversial, as both confirmatory findings [36] and

recent null-results on datasets containing rest/sleep mea-

surements [33�,37] were reported. Although intriguing, the

intraspecies allometric modulation of sleep in dogs was not

yet systematically investigated, thus we do not know

whether measures like total sleep time or sleep cycle length

are different among breeds with different body weights.

Behavioral and learning-related aspects of
sleep in dogs
Effects of sleep location and pre-sleep experiences on

sleep

Dogs sleeping indoors were reported to spend 80% of the

night in behaviorally defined sleep, whereas this ratio was

70% for dogs sleeping outdoors in a yard, and 60% for dogs

sleeping outdoors in a non-fenced area [24]. A polysom-

nography study demonstrated a later emergence of the

first REM episode in laboratory conditions as compared to

home sleep [25��]. These findings cohere with the view

that active sleep (a behavioral definition of a REM sleep-

like state) is emerging in safe sleeping conditions mainly

[24]. Following a behaviorally active day, dogs, like other

mammals, including humans slept more, were more likely

to have an earlier drowsiness and NREM, and spent less

time in drowsiness and more time in NREM and REM

sleep [19,25��]. In addition to physical settings and

circumstances, the social context plays a decisive role

in the sleep of dogs and other canines as well (Supple-

mentary text). Pre-sleep socio-emotional experiences

with negative valence (separation from the owner, threat-

ening approach by a stranger) were followed by shorter

REM sleep latency and increased REM sleep time

compared to sleep following positive social interactions

(petting and ball play). Within-subject changes in sleep

structure were associated with behavioral reactions to

pre-sleep social interactions (e.g. time spent playing or

looking at the door [38��]). Pre-sleep social interaction-

dependent changes in cardiac activity were not seen

during sleep in dogs, whereas increased heart rate

(HR) and decreased heart rate variability (HRV) after

positive as compared to negative interaction could be

observed during post-interventional wakefulness. This

direction of change is in contrast with the expected

findings and previous research on humans, perhaps
www.sciencedirect.com



Sleep in the dog Bódizs et al. 29

Figure 2
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Exemplary segments of a non-invasive polysomnography records of night time sleep in an adult dog. Horizontal broken lines delimit the states of

wakefulness, drowsiness, non-rapid eye movement (NREM) sleep and Rapid eye movement (REM) sleep (see notation on the left). Wakefulness is

characterized by low amplitude, high frequency electroencephalogram (EEG) (frontocentral midline, bipolar derivation Fz-Cz) with occasional (eye

movement) artifacts, clear eye movements and blinking as indicated by large deflections of the electro-ocuologram (EOG), a respiratory (RSP)

www.sciencedirect.com Current Opinion in Behavioral Sciences 2020, 33:25–33
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Table 3

Reported polygraphic signs of different sleep-waking states in dogs

Ref. Wakefulness Drowsiness NREM REM

[32] low amplitude and fast

frequency pattern cortical

activity (desynchronization),

mixture of low voltage slow

and fast waves in the

hippocampal traces

slow waves and spindles in the cortex, irregular slow activity in the

hippocampus

neocortical

desynchronization,

3-5 Hz rhythmic

hippocampal activity

[23] low-voltage (5-10 mV) fast

frequency (> 15 Hz) EEG

from one or both cortical

areas, frequent eye

movements and a tonic but

irregular neck EMG

high voltage slow waves

(up to 40 mV) EEG

12-14 Hz spindle bursts

(40-50 mV) against a

background of slower

4-8 Hz activity (10-20 mV)

recorded from the

sensorimotor cortex

(light sleep); high

amplitude (up to 50 mV)

stow waves (2-8 Hz)

recorded from the visual

cortex (slow wave sleep)

relatively low-voltage

(5-10 mV) fast

frequency (>15 Hz)

tracing recorded from

the cortical leads,

frequent and

characteristic

binocular, conjugate,

rapid eye movements

and a suppression of

the neck EMG

[16] beta activity of <50 mV in

cortical derivations (ratio

alpha/beta power �1), no

spindles; short-lasting theta

activity (2-10 s) in the

hippocampus with higher

frequencies superimposed;

EMG is relatively great

mixed and unstable frequency

pattern: 9.5-13.5 Hz waves vary

with synchronous waves at 4–7 Hz,

50-100 mV on a background of low

voltage fast activity (ratio alpha/beta

power >1); spindles are lacking;

slow eye movements may be

present

waves of 3-4 Hz become

predominant; spindles of

>100 mV, lasting 0.2-0.5

s, mainly in the frontal

cortex; the EMG is small

and there are no eye

movements (light sleep);

slow waves (1–4 Hz) of

100-250 mV,

superimposed on waves

of 6-7.5 Hz of 50-100 mV;

spindling at 10–14 Hz,

200 mV or more; EMG is

small and there are no

eye movements (deep

slow wave sleep)

beta activity of

50-100 mV (ratio

alpha/beta power

<1); hippocampal

theta activity (5 Hz);

rapid eye

movements; the EMG

is small, but

amplitude increases

appear

simultaneously with

facial or leg twitches

or myoclonic jerks

[19] fast activity in the EEG, high

amplitude and frequency eye

movements in the EOG,

elevated muscle tone and

frequent movements

(EMG channel)

fast EEG activity in the EEG channel,

decreased amplitude and frequency

eye movements, lowered but

observable muscle tone, fairly

regular respiration

�15 mV delta (1–4 Hz)

activity, no or low

amplitude eye

movements, regular

respiration, decreased

muscle tone

rapid eye

movements, fast EEG

activity, muscular

atonia, irregular

respiration and heart

beat
indicating that increased activation/emotion intensity is a

key factor, irrespective of emotional valence [39�].

Sleep and memory in the domestic dog

Sleep-related improvement in memory consolidation of

humans and rats [40] may apply to dogs’ inter-specific

communication skills (learning new commands). A

3-hour-long post-learning non-invasive polysomnogra-

phy study [41��] indicated increased NREM delta and

REM theta, as well as decreased NREM alpha activity

in post-learning as compared to baseline sleep in dogs.
(Figure 2 Legend Continued) frequency (frequency range) of 15/min as ind

respiratory sinus arrhythmia (the heart rate as indicated by electrocardiogra

as in all further panels and corresponding states). Muscular tonus is indicat

theta-alpha frequency EEG components, slower eye movements, slow regu

waves of 1�2 Hz frequency, around 12/min respiratory frequency, lowered 

amplitude, high frequency EEG, rapid eye movements (EOG), relatively acce

Note that the vertical scale refers to the EEG traces only. The rest of the de

scaling is consistent across the panels. Filter settings: EEG: 0.5–50 Hz; EOG

Current Opinion in Behavioral Sciences 2020, 33:25–33 
Behavioral performance significantly increased after

the 3-hour-long rest/sleep compared to the pre-sleep

baseline, whereas the within-subject increase in perfor-

mance correlated with certain aspects of the sleep EEG

spectrum (REM beta and delta power). Besides sleep,

post learning walk and play were also associated

with increasing performances approximately one

week later, whereas learning of unrelated tasks had

detrimental effects on memory consolidation [41��]. A

behavioral study [42] somewhat contrastingly found

that playful activity during retention enhanced memory
icated by respiratory inductance plethysmography and clear

phy [ECG] increases during inspiration and decreases during expiration

ed by the amplitude of the electromyogram (EMG). Drowsiness: slower

lar breathing and maintained muscular tonus. NREM sleep: slow EEG

heart rate and decreased muscular tonus are seen. REM sleep: low

lerated respiration (15/min) and a further decrease in muscular tonus.

rivations are adapted for illustrative purposes and visibility, but their

: 0.2–10 Hz; RSP: 0–1 Hz; ECG: 0,5–50 Hz; EMG: 10–50 Hz.

www.sciencedirect.com
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performance in the short run to a greater extent com-

pared to a resting period.

The effect of learning on sleep was apparent when analyz-

ing the same dataset [41��] for sleep spindles [43��]. Sleep

spindles are major hallmarks of NREM sleep in humans

playing a definitive role in offline neuroplasticity [44].

Spindle waves are not easy to assess in dogs, as they are

both shorter in duration (0.2–0.5 s) as compared to humans

(>0.5 s) and of a very low amplitude (at least in surface/non-

invasive traces). Sleep spindles have, however, been

described in dogs using both invasive [16] and semi-

invasive [45] sleep/propofol restraint EEG recordings,

whereas quantitative EEG analyses seem to be effective

in detecting spindle-like activity in dogs even from non-

invasive scalp recordings [43��]. The occurrence rate of

such automatically measured sleep spindles in the surface

(non-invasive) EEG records was higher after learning

compared to control dogs and the same measure correlated

with performance increase.

Development and aging: changes in sleep and cognition

Developmental steps in the sleep EEG of dogs are

characterized by gradual emergence of sleep slow-wave

activity transiently peaking around 6–8 weeks of age and

thereafter decreasing till at least 16 weeks of age [46].

Such transient peaking in the amplitude of NREM sleep

slow wave activity is well known in prepubertal human

subjects and laboratory rats paralleling the age-dependent

trends in synaptic density and brain energy consumption

[47]. In addition, adult-like sleep spindles emerge around

5 weeks in dogs [46] and around 12 weeks in humans [48].

Dogs have been shown to manifest a cognitive decline with

increasing age (called the Canine Cognitive Dysfunction

Syndrome; [49]), which parallels human ageing in many

aspects. Cognitive decline in dogs has been associated with

several behavioral signs, including owner-reported sleep-

wake cycle alterations [50]. Furthermore, lower amplitude

of circadian core body temperature rhythm was reported in

aged dogs with lowest spatial memory ability [28��]. Aging

was also characterized by reduced overall REM sleep

amount, as well as increased NREM sleep during daytime

and wakefulness during nighttime [51]. This type of wake

and sleep fragmentation during day time and night time,

respectively, together with reduced REM sleep are well

known features of sleep in the aged human subjects and

were shown to relate with cognitive aspects of aging [52,53].

Older dogs (within an age range of 2–8 years-old) were

characterized by decreased delta activity and increased

alpha and beta activity both during NREM and REM,

but not during drowsiness [19]. In addition, sleep spindle

analysis in over 150 dogs indicated that centrally measured

(Cz) slow (9–13 Hz) spindle density declined and fast

(13–16 Hz) spindle frequency increased with age, while

on the frontal electrode (Fz), an age-related amplitude

decline in slow sleep spindles was observed [54��]. There
www.sciencedirect.com 
is also some indication that contrary to the age-dependent

decline of rapid eye movement density (REMD) reported

in humans, dogs’ age is positively associated with REMD.

It has to be noted however, that the above mentioned effect

seems to characterize male dogs with short REM sleep

duration, but not the whole population, indicating the need

for further studies clarifying its generalizability [55�].

Conclusion
Like most terrestrial mammals, the domestic dog is char-

acterized by unequivocal sleep in terms of behavioral and

physiological criteria. The relationship between socio-

ecological and physical environmental, as well as cogni-

tive-behavioral factors with sleep improves our insight into

the functional significance of sleep, as well as into the still

unraveled mysteries of dog behavior. This new emerging

evidence strongly suggests that dogs are valid and useful

models of sleep-related cognition. However, the achieve-

ment of these goals needs further research investment,

some of which could deepen our knowledge on both dog

and human behavior and physiology.

Research agenda:

� Selective breeding for deeper (more intense, thus

cognitively more efficient) sleep

� Investigating the parallelism between cognitive devel-

opment and sleep EEG maturation in dogs by means of

non-invasive methods

� Unravelling the functions of NREM and REM sleep by

selective manipulations (e.g. deprivation) of these

sleep stages

� Integrating cognitive and affective aspects of sleep-

related memory consolidation

� Depicting sleep electrophysiological profiles of natural

dog models of human psychiatric conditions

� Understanding the effects of domestication on sleep by

further comparisons of dogs and wolves in terms of

sleep phenotypes and physiology

� Understanding the effects of different lifetime experi-

ences (free-ranging dogs, pet dogs, and shelter dogs) on

sleep and sleep-related cognitive processes
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Róbert Bódizs: Conceptualization, Funding acquisition,

Visualization, Data curation, Writing - original draft,

Writing - review & editing. Anna Kis: Conceptualization,

Funding acquisition, Visualization, Writing - original

draft, Writing - review & editing. Márta Gácsi: Concep-
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