
Journal Pre-proofs

Distance assessment and analysis of high-dimensional samples using varia‐
tional autoencoders

Marco Inacio, Rafael Izbicki, Bálint Gyires-Tóth

PII: S0020-0255(20)30653-8
DOI: https://doi.org/10.1016/j.ins.2020.06.065
Reference: INS 15628

To appear in: Information Sciences

Received Date: 6 December 2019
Revised Date: 1 May 2020
Accepted Date: 29 June 2020

Please cite this article as: M. Inacio, R. Izbicki, B. Gyires-Tóth, Distance assessment and analysis of high-
dimensional samples using variational autoencoders, Information Sciences (2020), doi: https://doi.org/10.1016/
j.ins.2020.06.065

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc.

https://doi.org/10.1016/j.ins.2020.06.065
https://doi.org/10.1016/j.ins.2020.06.065
https://doi.org/10.1016/j.ins.2020.06.065

Distance assessment and analysis of high-dimensional

samples using variational autoencoders

Marco Inacio1,2,3, Rafael Izbicki3, Bálint Gyires-Tóth4

Abstract

An important question in many machine learning applications is whether two

samples arise from the same generating distribution. Although an old topic in

Statistics, simple accept/reject decisions given by most hypothesis tests are often

not enough: it is well known that the rejection of the null hypothesis does not

imply that differences between the two groups are meaningful from a practical

perspective. In this work, we present a novel nonparametric approach to visu-

ally assess the dissimilarity between the datasets that goes beyond two-sample

testing. The key idea of our approach is to measure the distance between two

(possibly) high-dimensional datasets using variational autoencoders. We also

show how this framework can be used to create a formal statistical test to test

the hypothesis that both samples arise from the same distribution. We evaluate

both the distance measurement and hypothesis testing approaches on simulated

and real world datasets. The results show that our approach is useful for data

exploration (as it, for instance, allows for quantification of the discrepancy/sepa-

rability between categories of images), which can be particularly helpful in early

phases of the a machine learning pipeline.

Keywords: variational autoenconders; two-sample comparison;

high-dimensional data; hypothesis testing

1Corresponding author: m@marcoinacio.com.
2University of São Paulo.
3Federal University of São Carlos.
4Budapest University of Technology and Economics.

Preprint submitted to Information Sciences July 8, 2020

1. Introduction

An important question in many applications of machine learning and Statis-

tics is whether two samples (or datasets) arise from the same data generating

probability distribution [gretton2012kernel, holmes2015two, soriano2015bayesian].

Although an old topic in statistics [Mann47, Smirnov48], simple accept/reject5

decisions given by most hypothesis tests are often not enough: it is well known

that the rejection of the null hypothesis does not mean that the difference be-

tween the two groups is meaningful from a practical perspective [1904.06605,

Wasserstein2019]. Thus, tests that go beyond accept/reject decisions are

preferred in practice. In particular, tests that provide not only single and in-10

terpretable numerical values, but also a visual way of exploring how far apart

the datasets are from each other especially useful. This raises the question of

how to assess the distance between two groups meaningfully, which is especially

challenging in high-dimensional spaces.

In this work, we present a novel nonparametric approach to assess the dis-15

similarity between two high-dimensional datasets using variational autoencoders

(VAE) [vae]. We show how our approach can be used to visually assess how

far apart datasets are from each other via a boxplot of their distances and addi-

tionally, provide a way of interpreting the scale of these distances by using the

distance between known distributions as a baseline. We also show how a formal20

permutation-based hypothesis testing can be derived within our framework.

The remaining of this paper is organized as follows. In sections 1.1 and

1.2, we present a brief description of work related to our proposed method. In

Section 2, we present a review of variational inference and VAE, and show that

the latter can be interpreted as a density estimation procedure, which is the basis25

of the proposed method. In Section 3, we show how variational autoencoders

can be used as a method of exploring the differences between two samples. In

Section 4, we use our method to derive a formal hypothesis testing procedure.

Both sections also show applications of the methods to simulated and real-world

datasets. Finally, Section 5 concludes the paper with final remarks. Appendix 530

2

contains details on the configurations of the software and neural networks used,

as well as a link to our implementation, which is published open source.

1.1. Related work on two-sample hypothesis testing

Several nonparametric two-sample testing methods have been proposed in

the literature; they date back to Mann47, Smirnov48, WELCH1947: three35

classical two-sample tests (Mann-Whitney rank test, Kolmogorov-Smirnov and

Welch’s t-test, respectively) which were designed to work for univariate random

variables only. On the other hand, holmes2015two, soriano2015bayesian,

ceregatti2018wiks investigate Bayesian univariate methods for this task.

More recently, gretton2012kernel introduce a two-sample test comparison40

using reproducing kernel Hilbert space theory that works for high-dimensional

data. The test, however, does not provide a way of to visually assess the dissim-

ilarity between the datasets. two-sample-deep-learning proposes a method

for two-sample hypothesis testing utilizing deep learning, which contrary to

a permutation based test, only controls the type-1 error rate asymptotically;45

binary-two-sample proposes a test statistic built using binary classifier in the

context of causal inference and causal discovery, also relaying on asymptotic dis-

tribution for the test statistic (the distance between the performance of binary

classifiers) under the null hypothesis.

Other two-sample tests for high-dimensional data can be found in [mondal2015high,50

NIPS2016_6209] and references therein. Although these tests are robust and

effective in many settings, they do not provide a visual analysis to assess the

distance between the groups. Thus, they do not provide ways of checking if

the difference between the datasets is meaningful from a practical perspective,

a gap in literature which is filled by this article.55

1.2. Related work on two-sample comparison and distance measurement

There has also been some work devoted to two-sample comparison and re-

lated tasks: In particular deAlmeidaIncio2018, provides a framework for

assessing the distance between populations using density estimation methods.

3

However, the method provided in that work is based on MCMC (Markov Chain60

Monte Carlo) Bayesian simulations, and therefore it is unable to scale to large

datasets (see betancourt_mcmc_subsampling, for instance) and high-dimensional

spaces. In this work, we overcome these issues by using variational autoencoders

to estimate densities, and by introducing a specific metric which has an analytic

solution even in high-dimensional spaces).65

pmlr-v97-kornblith19a (and references therein) proposes a new method

of comparison of neural networks representation. pmlr-v48-larsen16 propose

a variant of variational autoencoders (VAE) that better measure similarities in

data space than a vanilla VAE. an2015variational uses VAEs for anomaly de-

tection: that is, with the goal of identifying whether a single instance is different70

from an observed sample. 1280752 evaluates existing similarity measurement

methods in the context of image retrieval. These papers however do not use

their methods for performing formal hypothesis tests.

Finally, for closely-related problems and applications, see also pfister2016kernel,

ramdas2017wasserstein, 1908.00105 for methods on how to solve the prob-75

lem of independence testing and desmistifying-gans which uses two-sample

tests as a tool to evaluate generative adversarial networks.

2. Variational Autoencoders

In this section, we review key aspects of the variational autoencoders frame-

work [vae] which are important to our proposed method.80

Variable Autoencoders are among the most famous deep neural network ar-

chitectures. The generative behaviour of VAEs makes these model attractive

for many application scenarios. VAEs are often used in computer vision re-

lated tasks. Introducing labeled data to the VAE training, attribute vectors,

such as smile vector [yan2016attribute2image], can be computed; i.e. in85

yan2016attribute2image the smile vector is computed by subtracting the

mean latent vector for images of smiling and non-smiling people. In the gen-

eration phase, this vector can be altered in the latent space to generate faces

4

with different smiling attributes. Another work utilizes VAEs to predict the

possible movement of objects on images, pixelwise [walker2016uncertain].90

Videos were also generated from text by combining VAEs with Generative Ad-

versarial Network (GANS) [li2018video]. VAEs are also successfully applied in

speech technologies. hsu2017learning learns latent representations from un-

labelled data with VAEs for speech transformation (including phonetic content

and speaker identity). In text-to-speech synthesis systems VAEs can be success-95

fully applied for learning attributes and thus, controllable, expressive speech can

be generated [akuzawa2018expressive]. Other types of sequences, like text,

can also be modeled with VAEs. semeniuta2017hybrid uses convolutional

encoder and deconvolutional decoder components, augmented with a recurrent

language model in a variational autoencoder architecture to model text. Further-100

more, there have been numerous theoretical research that focuses on or utilizes

VAEs, like for second-order gradient estimation [fan2015fast], for importance

weighting [burda2015importance], for anomaly detection [suh2016echo] and

for novel architectures, like ladder VAE [sonderby2016ladder].

2.1. Statistical definition105

Consider an i.i.d. random sample D = (X1, X2, ..., Xn). Variational au-

toencoders estimate the density of this sample by encoding the information of

each Xi using latent random variables Z = (Z1, Z2, ..., Zn), which are linked

to (X1, X2, ..., Xn) by a parameter θ. More precisely, the model assumes the

structure

Pθ(D = d|Z) =

n∏

i=1

N (Xi = xi; (µi, σi) = gθ(Zi)),

where Zi ∼ N (0, 1), gθ is a complex function (which is the output of a neu-

ral network) with parameter θ (i.e.: the parameters/weights of a neural net-

work), and µi and σi are the mean and standard deviation of the Gaussian

distribution. Inference on such model is performed by maximizing the evidence

P (D = d; θ) := Pθ(D = d).110

5

Note that, if gθ is complex enough, we can actually model any distribution

of Xi [devroye1986sample]. This is why gθ is parametrized using an artificial

neural network; it leads to flexibility (because of the richness of the space of

functions they can represent, Hornik1989) as well as scalability.

Unfortunately, maximization of the evidence cannot be directly solved due115

to the curse of dimensionality [tutorial_vae]. The next section shows how

variational inference can be used to overcome this.

2.2. Variational inference

The curse of dimensionality can be solved using variational inference, which

consists of optimizing

log Pθ(D = d) − DKL(Q
(Z|D=d)
φ |P

(Z|D=d)
θ)

= EQφ
[log Pθ(D|Z)| D = d]

− DKL(Q
(Z|D=d)
φ |P (Z))

where DKL refers to the Kullback-Leibler divergence and Q given by:

Qφ(Zi|Xi = xi) = N (Zi; (µi, σi) = hφ(xi))

This framework is called variational autoenconder and it solves the curse of

dimensionality [vae]. The training procedure for variational autoencoders is120

presented in Figure 1; for more details, see vae.

2.3. Generative model

The trained model can be used to generate new instances X̃j : this can

be done by applying P
θ̂
(X̃j) =

∫
P

θ̂
(X̃j |Z̃j = z)P (Z̃j)(dz) , i.e.: sample Z ∼

N(0, 1), apply it on the neural network gθ and then sample from a N ((µ, σ) =125

gθ(z)). Therefore, variational autoencoders are a Gaussian5 mixture model (of

5Note that variational autoencoders setup can be used with distributions other then Gaus-
sians; e.g.: discrete data with Bernoulli distribution.

6

++ loss

pass though
encoder network

sample

pass though decoder network

eval

eval

Figure 1: VAE training procedure.

an infinite number of Gaussians), and thus a density estimator.

2.4. Identifiability of the mixture of Gaussians

As per the structure of variational autoencoders, the distribution of such mix-

ture of Gausssians is not identifiable [teicher1961identifiability, wechsler2013bayesian]:130

two different configurations of the parameters, say θ1 and θ2, can lead to the

exact same distribution of (µ, σ). That is, gθ1
(Z) ∼ gθ2

(Z) even if θ1 6= θ2.

In other words: if we train a variational autoencoders framework on a

dataset, we will get a “generator” of pairs (µ, σ), say m1; and if we train a vari-

ational autoencoders framework with identical structure on the same dataset,135

we will get another “generator” of pairs (µ, σ), say m2. Generators m1 and

m2 do not necessarily give the same distribution over samples of pairs (µ, σ).

Nonetheless, the induced final density (i.e., the Gaussian mixture) should be

same analytically (i.e.: ignoring the stochastic variation that estimation meth-

ods induce).140

3. Two sample comparison: definition of the distance

We name our approach for assessing the similarity between two datasets,

D1 and D2 as vaecompare and describe it as follows. First, we train two varia-

7

tional autoencoders: one for D1 and one for D2. Let gθ1
and gθ2

be the learned

functions for each of the autoencoders. gθ1
and gθ2

, together with Z ∼ N(0, 1),

induce two distributions over the parameter space (µ, σ). Let S1 = (µ1, σ1)

and S2 = (µ2, σ2) be two samples generated from the enconders gθ1
and gθ2

,

respectively. We then measure the distance between S1 and S2. Now, recall

that each (µ, σ) is used to generate a new sample X ∼ N(µ, σ) (Section 2.3).

Thus, a meaningful distance between S1 and S2 should be in the space of the

random variables they generate. The key idea to make the method computa-

tionally feasible is to use a symmetric Kullback-Leibler divergence between the

distributions induced by S1 and S2:

D(S1, S2) :=
DKL(PS1

, PS2
) + DKL(PS2

, PS1
)

2d
,

where d is the dimension of the feature space, PSi
is a (multivariate) Gaussian

distribution with parameters (µi, σi), and DKL is the Kullback-Leibler diver-

gence. DKL has an analytical solution in the Gaussian case:

DKL(N (µ1, σT
1 I), N (µ2, σT

2 I)) =

1

2

[
2

(
d∑

i=1

log σ2,i − log σ1,i

)
− d

+

(
d∑

i=1

σ2
1,i/σ2

2,i

)
+

(
d∑

i=1

σ2
2,i(µ2,i − µ1,i)

2

)]
.

In case X represents an image, we use the standard approach of using

multi-dimensional Bernoulli distributions with dimensions independent from

each other (see [vae, tutorial_vae], for instance). In this case, the Kullback-

8

Leibler can also be obtained analytically:

DKL(Bernoulli(p), Bernoulli(q))

+ DKL(Bernoulli(q), Bernoulli(p))

=
d∑

i=1

(qi − pi)(log(qi) − log(pi) + log(1 − pi)

− log(1 − qi))

Using this approach, we can therefore assess the distance between one sample

generated from the first autoencoder and a sample generated from the second

autoencoder. In order to assess the divergence between the datasets D1 and

D2, we can repeat this procedure several times; this will give a sample of the145

distribution of distances.

Now, in order to overcome the identifiability issue discussed in Section 2.4,

we train the variational autoencoders multiple times (we call these “refits”) for

each dataset (using distinct initialization seeds for the network parameters) and

use the new instances pairs (µ, σ) from each of them in equal proportion. The150

full procedure is summarized in Algorithm 1 and Figure 2.

Note that from the perspective of applying this method to images, it can

also be interpreted as a data exploration tool, as it helps exploring the separa-

bility and uncertainty of classes of images and the relation between their data

generating processes.155

3.1. Assessing the magnitude of the distance

In Section 3, we defined a method to measure the distance between two

datasets. A yardstick is still required in order to say what is a “low” and “high”

distance. In order to create a baseline to interpret such distances, we proceed

in similar fashion as deAlmeidaIncio2018: we compute the distance between160

two known distributions.

In the case of Gaussian VAEs we can work for instance with D(N0, N1),

where N0 is a multivariate Gaussian with covariance given by an identity matrix

9

Figure 2: Schematic representation of the procedure to generate divergence samples
for data comparison.

Algorithm 1 Generating divergence samples using vaecompare

Input: dataset D1, dataset D2, number of desired samples per refit n, number of

desired refits R

Output: divergence samples S.

1: for i ∈ {1, . . . , R} do

2: Train VAE V1 from D1

3: Train VAE V2 from D2

4: for j ∈ {1, . . . , n} do

5: Generate a sample s1 from V1 (e.g.: a pair (µ, σ) for Gaussian VAE).
6: Generate a sample s2 from V2.
7: Calculate D(s1, s2) and store it on S.
8: end for

9: end for

10

and mean given by a vector of zeros and N1 is a multivariate Gaussian with

covariance given by an identity matrix and mean given by a vector of ones.165

We have that D(N0, N1) = 1/2. For binomial VAEs, we use known binomial

distributions as the baseline.

3.2. Evaluation (images)

Next, we apply the our method to CIFAR10 data [cifar10] using the VAE

as a generator of binomial distributions. The dataset consists of images from170

10 distinct categories (ranging from 0 to 9), with each category containing 5000

images. To make the comparison fair when comparing a category to itself and

when comparing a category to another, we chose to work with half of each cat-

egory dataset (2500 images) to train each VAE; i.e.: when comparing category

0 to category 1, one VAE is trained with 2500 images from category 0 and the175

other is trained with 2500 images from category 1; on the other hand, when

comparing category 0 to itself, each VAE is trained with half (2500 images) of

the category 0 dataset. We worked with 90 VAE refits for each dataset.

In Figure 3, we present the results of such experiment with boxplots of the

obtained divergences for all possible category combinations (note that the lower180

image of each plot is a zoomed-in version of the upper image). The figure also

shows the median and mean for each category, as well as the divergence of known

Bernoulli distributions (plotted as horizontal lines).

Except for categories 0, 2 and 4, the divergence samples were all concentrated

near zero when comparing a category to itself (a desirable behaviour). On the185

other hand, for these 3 categories, we can observe a considerable amount of

divergence samples spread far from zero indicating some uncertainty, but even

in this case, there was a considerable amount of them near zero. Note also

that the median for these three categories is much closer to zero than the mean,

indicating its resilience to outliers.190

On the other hand, when making comparisons between distinct categories,

there are cases with high uncertainty (i.e.: boxplots with wide extensions; gen-

erally with few points close to zero), as well as cases with higher certainty (i.e.:

11

Figure 3: Box plots of samples from our divergences comparing categories 0 to 8 to
all categories. Note that the lower image of each plot is a zoomed-in version of the
upper image.

12

boxplots with narrow extensions).

We conclude that the method is therefore useful for the purpose of data195

exploration as it works as expected in a complex space such as images.

4. Hypothesis testing

We can additionally use vaecompare to directly test if two samples come

from the same population. One way to do this is to find a threshold value

(cutpoint) from a decision theoretic stand point where we would reject the null200

hypothesis of the two samples coming from the same population. This is what

is done in [ceregatti2018wiks] in the case of a Dirichlet process prior, where

the threshold is chosen so as to control type I error of the hypothesis test.

Unfortunately, this is not possible in general and in general the cutpoint depends

on the true data generating function.205

Given that, we work instead with a simple permutation test where the

datasets are repeatedly permuted against each other (i.e.: their data is mixed),

and the average divergence of the samples is used as a test statistic. The p-

value is then given by the quantile of the non-permuted dataset among all the

statistics6. We note that for the hypothesis test to work in the sense of being a210

proper test (uniform under the null), it is not necessary to do VAE refits, but

refits increase the test power as we shall see next. We present the procedure in

Algorithm 2.

4.1. Evaluation (simulated data)

In this section, we apply the proposed hypothesis testing method to simu-

lated datasets from a known data generating function and plot the observed

p-value distribution. The data generating function for the datasets is defined

6For instance, if 43 of the permuted datasets had resulted on a lower divergence statis-
tic than that of non-permuted dataset and on the other hand 57 had resulted on greater
divergence, then the p-value would be 43/(43 + 57) = 0.43.

13

Algorithm 2 Obtaning the p-value for hypothesis testing using vaecompare

Input: dataset D1, dataset D2, number of desired samples per refit n, number of

desired refits R, number of permutations t, averaging function M (e.g. mean or me-

dian)

Output: p-value ρ.

1: for i ∈ {1, . . . , t} do

2: Run Algorithm 1, and store the results in Si.
3: Calculate M(Si) and store the result in Ki.
4: Permute the instances of datasets D1 and D2.
5: end for

6: Obtain the number of points q1 in {K2, K3, ..., Kt} which are greater than
K1.

7: Obtain the number of points q2 in {K2, K3, ..., Kt} which are greater than
or equal to K1.

8: Set q = (q1 + q2)/2
9: Store (q + 1)/(t + 1) in ρ.

as:

lgr(µ = log(2), σ = α) − lgr(µ = log(2), σ = 0.5)

+ gr(µ = 1, σ = 2) + k

where lgr stands for multivariate log Gaussian random number generator, and gr215

stands for multivariate Gaussian random number generator, both with diagonal

covariance matrices. Moreover, α = {0.2+0.7∗i/9}i=9
i=0, i.e.: αi = 0.2+0.7∗i/9

for i ∈ {0, 1, ..., 9}.

For simplicity, we do not use refits here. The value of the vector k is fixed

in zero for one of the datasets, and varied for the other. This is done in order220

to change the dissimilarity between the samples (i.e.: the larger k is, the more

dissimilar the sample distributions are) and from that, observe the behaviour of

the distribution of the p-value.

In Figure 4a, we present the results of such experiment using the permutation

test: the empirical cumulative distribution of the p-values; while in Figure 4b,225

we do the same simulation study using an Gaussian asymptotic approximate to

the permutation test.

14

The permutation test fulfilled the required properties of a frequentist hy-

pothesis test, as it has approximately (sub)uniform distribution under the null

hypothesis (as expected) and the test power increases as the divergence increases.230

Notice that, for simplicity, we do not use refits here; if we do, we expect the

power to increase as is the case in the next section. The asymptotic test, on the

other hand, performed poorly.

(a) Permutation. (b) Asymptotic.

Figure 4: Empirical cumulative distribution function of the p-values for distinct dis-
similarity values (when the dissimilarity is zero, the null hypothesis is true) using a
permutation test and asymptotic (approximate to permutation test).

4.2. Evaluation (images)

Here, we also applied the hypothesis testing method to the CIFAR10 dataset,235

using the same 2500 images for each category as described in 3.2. In Tables 1, 2,

3 and 4 we present the p-values obtained in the test while in Tables 5, 6, 7 and

8 we present the combinations that gave the correct results and type 2 error for

a significance level of 5%. We applied the tests both without VAE refits and

with 5 refits; we also tried the median as an alternative to the mean with the240

intuition that this might help remove the weight of outlier distance points.

In Table 9, we present a summary of the results. The method performed well

under the null for both the mean and median metrics. Moreover, the method

has shown to have a significant increase in test power when used with VAE

refits.245

15

In case of metrics performance comparison, it can be seem that the mean

had incurred in less type I errors while the median incurred in larger but an

admissible number given the critical rate of 5%. On the other hand the perfor-

mance of median metric was considerably better regarding type II errors, this

might be related to its robustness to outliers which have shown to be a frequent250

problem in the Figure 3.

Table 1: P-values for hypothesis testing for each category without refits and averaging
using the median.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

c0 0.99 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.40 0.01
c1 - 0.42 0.56 0.01 0.01 0.01 0.05 0.24 0.03 0.37
c2 - - 0.74 0.50 0.40 0.04 0.58 0.04 0.01 0.01
c3 - - - 0.78 0.31 0.26 0.49 0.22 0.01 0.01
c4 - - - - 0.39 0.21 0.29 0.23 0.01 0.01
c5 - - - - - 0.02 0.01 0.01 0.01 0.01
c6 - - - - - - 0.96 0.32 0.01 0.01
c7 - - - - - - - 0.78 0.01 0.01
c8 - - - - - - - - 0.06 0.01
c9 - - - - - - - - - 0.54

Table 2: P-values for hypothesis testing for each category with refits and averaging
using the median.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

c0 0.20 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
c1 - 0.26 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.02
c2 - - 0.36 0.20 0.05 0.04 0.07 0.01 0.01 0.01
c3 - - - 0.41 0.06 0.14 0.25 0.03 0.01 0.01
c4 - - - - 0.90 0.02 0.01 0.02 0.01 0.01
c5 - - - - - 0.94 0.02 0.01 0.01 0.01
c6 - - - - - - 0.02 0.01 0.01 0.01
c7 - - - - - - - 1.00 0.01 0.01
c8 - - - - - - - - 0.36 0.01
c9 - - - - - - - - - 0.03

16

Table 3: P-values for hypothesis testing for each category without refits and averaging
using the mean.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

c0 0.25 0.12 0.01 0.01 0.01 0.01 0.01 0.01 0.48 0.05
c1 - 0.82 0.50 0.23 0.03 0.05 0.07 0.15 0.01 0.05
c2 - - 0.19 0.49 0.48 0.44 0.09 0.02 0.10 0.01
c3 - - - 0.22 0.11 0.36 0.15 0.27 0.01 0.01
c4 - - - - 0.87 0.20 0.40 0.01 0.01 0.01
c5 - - - - - 0.19 0.05 0.23 0.01 0.01
c6 - - - - - - 0.73 0.01 0.01 0.01
c7 - - - - - - - 0.48 0.01 0.02
c8 - - - - - - - - 0.45 0.06
c9 - - - - - - - - - 0.48

Table 4: P-values for hypothesis testing for each category with refits and averaging
using the mean.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

c0 0.16 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01
c1 - 0.30 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.02
c2 - - 0.10 0.06 0.12 0.37 0.04 0.01 0.01 0.01
c3 - - - 0.83 0.08 0.45 0.15 0.02 0.01 0.01
c4 - - - - 0.53 0.05 0.10 0.20 0.01 0.01
c5 - - - - - 0.50 0.01 0.01 0.01 0.01
c6 - - - - - - 0.12 0.05 0.01 0.01
c7 - - - - - - - 0.48 0.01 0.01
c8 - - - - - - - - 0.18 0.01
c9 - - - - - - - - - 0.71

17

Table 5: Results of the hypothesis testing when applying a critical rate of 5% without

refits and averaging using the median. Here G stands for “good” and E2 for type 2
error.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

c0 G G G G G G G G E2 G
c1 - G E2 G G G G E2 G E2
c2 - - G E2 E2 G E2 G G G
c3 - - - G E2 E2 E2 E2 G G
c4 - - - - G E2 E2 E2 G G
c5 - - - - - E1 G G G G
c6 - - - - - - G E2 G G
c7 - - - - - - - G G G
c8 - - - - - - - - G G
c9 - - - - - - - - - G

Table 6: Results of the hypothesis testing when applying a critical rate of 5% with

refits and averaging using the median. Here G stands for “good” and E2 for type 2
error.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

c0 G G G G G G G G G G
c1 - G G G G G G G G G
c2 - - G E2 G G E2 G G G
c3 - - - G E2 E2 E2 G G G
c4 - - - - G G G G G G
c5 - - - - - G G G G G
c6 - - - - - - E1 G G G
c7 - - - - - - - G G G
c8 - - - - - - - - G G
c9 - - - - - - - - - E1

18

Table 7: Results of the hypothesis testing when applying a critical rate of 5% without

refits and averaging using the mean. Here G stands for “good” and E2 for type 2
error.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

c0 G E2 G G G G G G E2 G
c1 - G E2 E2 G G E2 E2 G G
c2 - - G E2 E2 E2 E2 G E2 G
c3 - - - G E2 E2 E2 E2 G G
c4 - - - - G E2 E2 G G G
c5 - - - - - G G E2 G G
c6 - - - - - - G G G G
c7 - - - - - - - G G G
c8 - - - - - - - - G E2
c9 - - - - - - - - - G

Table 8: Results of the hypothesis testing when applying a critical rate of 5% with

refits and averaging using the mean. Here G stands for “good” and E2 for type 2
error.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

c0 G G G G G G G G G G
c1 - G E2 G G G G G G G
c2 - - G E2 E2 E2 G G G G
c3 - - - G E2 E2 E2 G G G
c4 - - - - G G E2 E2 G G
c5 - - - - - G G G G G
c6 - - - - - - G G G G
c7 - - - - - - - G G G
c8 - - - - - - - - G G
c9 - - - - - - - - - G

Table 9: Summary of the results of the hypothesis testing when applying a critical
rate of 5%.

Averaging Refits Number Type I errors Number Type II errors

mean with 0 18
mean without 0 38
median with 2 10
median without 1 30

19

4.3. Evaluation (comparison with other methods)

Next, we apply our proposed hypothesis testing method (using the me-

dian as the averaging function and 10 refits) to simulated datasets from a

known data generating function and compare it with other well established two-255

sample comparison methods: Mann-Whitney rank test[Mann47], Kolmogorov-

Smirnov[Smirnov48] and Welch’s t-test[WELCH1947].

Given that such methods work only with univariate datasets, we choose

the true distribution of the generating data to be a mixture of 3 equiprobable

Gaussian distributions with means -2, 0 and 2 and standard deviation 1. For260

testing the alternative hypothesis, one of the datasets had a 0.1 disturbance

added (i.e., the dataset is generated from a mixture of 3 equiprobable Gaussian

distributions with means -2.1, 0.1 and 2.1). Each dataset being compared is

composed of n = 1000 instances generated independently from the true distri-

bution. Due to computational limitations, the power function was estimated265

using 500 simulations for vaecompare, while we used 10000 simulations for the

other tests.

Figure 5 shows the mean test power of each test with a confidence band of 2

times the standard error (i.e., an approximately 95% confidence). In order to

make the visualization of the results easier, we also present a smoothed version270

of this figure in Figure 6 with smoothing done by simple point interpolation7.

The figures indicate that vaecompare had competitive performance when

compared to the other methods.8 Additionally, it is the only method that can

be used exploratory data analysis (on two-sample comparison) instead of just

hypothesis testing and moreover, as shown in Section 4.2, the test power could275

potentially increase if an additional number of refits, which were set to be a small

number because of the computational restrictions of the simulation study.

7Such smoothed version could also be obtained by increasing the number of permutations
for each test, this has not been done due to computational constraints of such increase.

8Note in particular, that, contrary to the problems of classification and regression, is not
possible to easily data split the dataset to choose the best hypothesis testing method before
applying it the whole dataset (at least not without causing further problems such as bias
multiple comparisons).

20

Figure 5: Comparison of vaecompare with other hypothesis testing methods. Our
procedure shows good power.

Figure 6: Comparison of vaecompare with other hypothesis testing methods. Points
outside of the grid are smoothed by interpolation. Our procedure shows good power.

21

5. Discussion and Conclusions

In this work, we proposed and applied a novel method of two sample distance

measurement and hypothesis testing to simulated and real-world datasets. We280

conclude that both two sample distance measurement and hypothesis testing

were able to satisfactorily perform the intended tasks on the tested simulated

and real world datasets.

The proposed methods could be used for various tasks in the machine learn-

ing pipeline, including:285

• Distribution shift detection and measurement: a dataset from a experi-

ment done in one month (e.g.: opinions of customers on a product on a

specific month) might diverge in distribution from a dataset collected in

another month. With our method it is possible to measure and test this

diverge.290

• Dataset split: to address overfitting, the data is usually split into train, val-

idation and/or test parts. To be able to develop robust models, these parts

should be similar, but should also differ enough to ensure generalization.

With the proposed methods the dataset split can be done in a controlled

manner, an important speed on state-of-the-art predictive methods (e.g.:295

see Breiman1996StackedR, Coscrato2020 and references therein).

• Self-supervised clustering: based on the distance, by fine-tuning the thresh-

old (cutpoint), binary or multi-class clustering could be performed.

• Anomaly detection: applying the proposed method to processes where

anomaly may occur (e.g. malicious attack, malfunction, etc.). In this300

case, the distance measurement can give a direct feedback of how much

the actual behaviour differs from the normal one.

• To test the quality of data generated from GANs and similar approaches

(e.g.: see binary-two-sample).

22

Acknowledgments305

Marco Inácio is grateful for the financial support of CAPES (this study was

financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Su-

perior - Brasil (CAPES) - Finance Code 001). Marco Inácio is also grateful for

the financial support of the Erasmus Plus programme. Rafael Izbicki is grateful

for the financial support of FAPESP (grants 2017/03363-8 and 2019/11321-9)310

and CNPq (grant 306943/2017-4). Bálint Gyires-Tóth and Marco Inácio are

grateful for the financial support of the BME-Artificial Intelligence FIKP grant

of Ministry of Human Resources (BME FIKP-MI/SC). Moreover, Bálint Gyires-

Tóth is also greateful for the financial support of Doctoral Research Scholarship

of Ministry of Human Resources (ÚNKP-19-4-BME-189) in the scope of New315

National Excellence Program, by János Bolyai Research Scholarship of the Hun-

garian Academy of Sciences. The authors are also grateful for the suggestions

given by Rafael Bassi Stern and by anonymous referees.

Appendix: Neural networks configuration, software and package

We work with a dense neural network of 10 layers with 100 neurons on each320

layer (totaling 195060 parameters), for both encoder and decoder networks, and

the following additional specification:

• Optimizer: we work with the Adamax optimizer [adam-optim] with

initial learning rate of 0.01 and decrease its learning rate by half if im-

provement is seen on the validation loss for a considerable number of325

epochs.

• Initialization: we used the initialization method proposed by [nn-initialization].

• Layer activation: we chose ELU [elu] as activation functions.

• Stop criterion: a 90%/10% split early stopping for small datasets and a

higher split factor for larger datasets (increasing the proportion of train-330

ing instances) and a patience of 50 epochs without improvement on the

validation set.

23

• Normalization and number of hidden layers: batch normalization,

as proposed by [batch-normalization], is used in this work in order to

speed-up the training process.335

• Dropout: here we also make use of dropout which as proposed by [dropout]

(with dropout rate of 0.5).

• Software: we have PyTorch[NEURIPS2019_9015] as framework of

choice which works with automatic differentiation and the sstudy Python

package[2004.14479] for organizing the simulation studies and compar-340

isons. Moreover, the software implementation of this work is available at

https://github.com/randommm/vaecompare.

Additionally, we present in Figures 3 and 4 the algorithm to evaluate the

encoder and decoder neural networks, respectively.

Algorithm 3 Algorithm to evaluate encoder network g(.) presented in Figure 1

Input: x,

Output: µ, σ.

1: val = x
2: for i ∈ {1, 10} do

3: val = linear(val) (with output size 100).
4: val = ELU(val).
5: val = batch_norm(val)
6: val = dropout(val)
7: end for

8: µ = linear(val)
9: σ = exp{linear(val)}.

24

Algorithm 4 Algorithm to evaluate decoder network h(.) presented in Figure 1

Input: z, distribution

Output: (µ, σ) or p.

1: val = z
2: for i ∈ {1, 10} do

3: val = linear(val) (with output size 100).
4: val = ELU(val).
5: val = batch_norm(val)
6: val = dropout(val)
7: end for

8: if distribution is "gaussian" (i.e. continuous data) then

9: µ = linear(val)
10: σ = exp{linear(val)}.
11: else if distribution is "bernoulli" then

12: p = sigmoid{linear(val)}.
13: end if

25

