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Abstract

We develop a new method to compute the exact overlaps between integrable
boundary states and on-shell Bethe states for integrable spin chains. Our method
is based on the coordinate Bethe Ansatz and does not rely on the “rotation
trick” of the corresponding lattice model. It leads to a rigorous proof of the
factorized overlap formulae in a number of cases, some of which were inaccessible
to earlier methods. As concrete examples, we consider the compact XXX and
XXZ Heisenberg spin chains, and the non-compact SL(2,R) spin chain.

1 Introduction

The overlap between an integrable boundary state and an on-shell energy eigenstate is an
important quantity in integrable models. In integrable quantum field theories, when the
energy eigenstate is the ground state, the overlap is known as the exact g-function. The
g-function is a measure of boundary degrees of freedom and is thus also called the boundary
entropy. Very recently, this quantity made its appearance in the context of AdS/CFT where
it is shown [1, 2] that the structure constant of two determinant operators and one non-BPS
single trace operator at finite coupling is given by an exact g-function on the string world
sheet.

Turning to integrable lattice models such as integrable quantum spin chains and classical
statistical lattice models, these overlaps also play an important role. They are crucial
ingredients in the context of quantum quenches, partition functions of integrable lattice
models [3], as well as the weak coupling limit of integrability in AdS/CFT [4–6].



The first exact result for on-shell overlaps appeared in [7] based on the earlier works
[8, 9]. It was found that only the Bethe states whose rapidities are parity symmetric lead to
non-vanishing overlaps. This finding was explained in [10], where an integrability condition
was formulated for the boundary states. It was further argued in [11] that it is only these
integrable states where simple factorized results can be expected. This expectation was
confirmed in all known cases (see [12] and references therein). It is now understood that
the integrable boundary states are closely connected to integrable boundary conditions
[10, 11, 13], generalizing the seminal results of Ghoshal and Zamolodchikov on integrable
boundary QFT [14].

The exact finite volume overlap formulae have the same structure in all known cases:
they are given by a product of two parts. One part is universal and is given by the ratio
of two so-called Gaudin like determinants (which are replaced by Fredholm determinants in
the continuum limit or in the AdS/CFT situation). The other part depends on the details
of the boundary state and is a product of simple scalar factors, or a sum of such products.
We note that the first work which derived this structure was [15], although the early results
of [15] only pertained to integrable QFT and they were not used in the later studies of the
spin chain overlaps.

The works mentioned above concern compact spin chains, where the quantum space
at each site is finite dimensional. On the other hand, non-compact chains with infinite
dimensional local Hilbert spaces are highly relevant in QCD and AdS/CFT. To the best
of our knowledge, integrable boundary states of non-compact spin chains have never been
studied before. Recently, an exact overlap formula with a specific boundary state in a non-
compact chain was conjectured [1] in the context of AdS/CFT. The factorized overlap takes
the same form as in the compact case. In the present paper we show that this boundary
state is indeed integrable, and provide an actual proof for the conjectured overlap formula.

We stress that up to now there have been no methods to actually prove the exact overlap
formulae, except for the simplest cases in the Heisenberg spin chains which are related to the
so-called diagonal K-matrices [7]. The proof of [7] uses an off-shell overlap formula, which
goes back to the work of Tsushiya [16] (see also [8, 9]). It is most likely that such an off-shell
formula does not exist in other cases, which are related to off-diagonal K-matrices in the
XXZ chain, or any K-matrix in higher rank cases. The follow-up works assumed that the
structure of the factorized overlap is the same in all cases, and determined the one-particle
overlap functions using a generalization of the Quantum Transfer Matrix (QTM) method
[11, 12]. Alternatively, the one-particle overlap functions could be extracted from coordinate
Bethe Ansatz computations [4–6]. And while QTM approach was rather successful in the
compact spin chain, it is not evident whether it can be generalized to the non-compact
cases.

In this work we start from scratch. We develop a new method for the rigorous proof of
the overlap formulae, using only the coordinate Bethe Ansatz solution of the models. We
work directly in finite volume, and investigate certain apparent singularities of the overlaps.
Our approach is a generalization of the work of Korepin [17], where it was rigorously proven
that the norm of the on-shell Bethe states is given by the Gaudin determinant.
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The rest of the paper is structured as follows. In Section 2 we introduce the local spin
chains that we study in this paper and review their solution by coordinate Bethe Ansatz.
In Section 3 we discuss integrable boundary states for these spin chains. We also prove
the boundary state proposed in [1] is indeed integrable. We give the general strategy for
the proof of exact overlap formulae using coordinate Bethe Ansatz in Section 4. Concrete
examples for both compact and non-compact spin chains are presented in Section 5. We
conclude and discuss some future directions in Section 6.

2 Integrable local spin chains and Bethe Ansatz

We review the definitions of various local integrable quantum spin chains and their solutions
by Bethe Ansatz. More specifically, we will consider the compact XXX and XXZ spin chains
and the non-compact SL(2,R) spin chain.

2.1 Local integrable spin chains

We consider integrable spin chains given by local Hamiltonians

H =
L∑
j=1

hj,j+1 (2.1)

with periodic boundary condition. We denote the Hilbert space of each local site j by Hj.
The dimension of Hj can be finite or infinite. Each term hj,j+1 act on the space Hj ⊗Hj+1.

Compact spin chain The Hamiltonian for the compact XXZ spin chain is given by

H =
L∑
j=1

(σxj σ
x
j+1 + σyjσ

y
j+1 + ∆(σzjσ

z
j+1 − 1)). (2.2)

where σαj (α = x, y, z) are the Pauli matrices. Here ∆ is the anisotropy parameter. The
isotropic XXX spin chain corresponds to taking ∆ = 1. For simplicity we focus on the
so-called massive regime ∆ ≥ 1 for XXZ spin chain in this paper.

The local Hilbert space at each site is C2. The two basis vectors are

|↑〉 =

(
1
0

)
, |↓〉 =

(
0
1

)
. (2.3)

The isotropic XXX spin chain has SU(2) symmetry. The local Hilbert spaces form the the
spin-1

2
representation of the su(2) algebra.
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Non-compact spin chain Now we consider the non-compact SL(2,R) spin chain1 [18,
19]. We first introduce the SL(2,R) algebra. The generators in the spin-s representation
can be written in terms of bosonic oscillators a, a† as

S− = a, S0 = a†a+ s, S+ = 2sa† + (a†)2a. (2.4)

We will focus on the spin-1
2

representation and take s = 1/2 from now on. The generators
satisfy the SL(2,R) algebra

[S0, S±] = ±S±, [S+, S−] = −2S0. (2.5)

The local Hilbert space for this spin chain is infinite dimensional. The basis vectors are
given by

|n〉 ≡ (S+)n

n!
|0〉, n = 1, 2, · · · . (2.6)

where |0〉 is the vacuum state defined by

S−|0〉 = 0. (2.7)

The action of the generators on the basis is given by

S+|m〉 = (m+ 1)|m+ 1〉, S−|m〉 = m|m− 1〉, S0|m〉 = (m+ 1
2
)|m〉. (2.8)

Similarly, the dual states are defined by

〈n| = 〈0|(S−)n

n!
, 〈0|S+ = 0 (2.9)

Using the definition of the states and the SL(2,R) algebra, it is straightforward to show
that the basis states are orthonormal

〈n|m〉 = δm,n. (2.10)

The Hamiltonian takes the local form as in (2.1). The local Hamiltonian density hj,j+1 acts
on Hj ⊗Hj+1 as

hj,j+1|mj〉 ⊗ |mj+1〉 =
(
h(mj) + h(mj+1)

)
|mj〉 ⊗ |mj+1〉 (2.11)

−
mj∑
k=1

1

k
|mj − k〉 ⊗ |mj+1 + k〉

−
mj+1∑
k=1

1

k
|mj + k〉 ⊗ |mj+1 − k〉.

1This spin chain is nothing but the Heisenberg XXXs spin chain with local quantum space in the non-
compact s = −1/2 representation. We choose to call it the SL(2,R) spin chain in accordance with the QCD
and AdS/CFT literature.
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where h(m) is the harmonic sum

h(m) =
m∑
k=1

1

k
. (2.12)

Like their compact cousins, non-compact spin chains also have many applications in physics.
For example, the SL(2,C) spin chain shows up in the study of Regge limit of QCD [20–22].
The SL(2,R) spin chain which we study in this paper first appeared in the study of baryon
distribution amplitudes in QCD [18]. Later in integrability in AdS5/CFT4, this Hamiltonian
describes the one-loop dilatation operator of the SL(2) sector. Recently, it also made its
appearance in non-equilibrium statistical mechanics [23].

2.2 Coordinate Bethe Ansatz

Both the compact and non-compact spin chains are integrable and can be solved by Bethe
Ansatz. We can use either the coordinate or the algebraic Bethe Ansatz to construct the
eigenstates. For our proof below, it is more convenient to use the coordinate Bethe Ansatz.
Regarding the spin-1

2
chains the method goes back to the works [24–27], whereas for higher

spin cases it was worked out in [28, 29]. In the case of the non-compact chain we can use
the results of [28] or those of [29] after analytic continuation to s = −1/2.

Reference state The eigenstates are constructed as interacting spin waves over a proper
reference state. For compact spin chain, the reference state is chosen to be the ferromagnetic
vacuum

|Ω〉 = |↑〉⊗L. (2.13)

For the non-compact spin chain, the reference state is chosen to be the Fock vacuum

|Ω〉 = |0〉⊗L. (2.14)

The reference states are eigenstates of the Hamiltonians. To obtain other eigenstates, we
introduce excitations on top of the vacuum state. A generic eigenstate is characterized by
a set of rapidities λN ≡ {λ1, λ2, · · · , λN}; The corresponding eigenstate will be denoted by
|λN〉.

Basis vectors Let us first introduce the basis vectors as

|x1, . . . , xN〉 ∼ S
(x1)
± S

(x2)
± · · ·S(xN )

± |Ω〉, (2.15)

where the xj denote the positions of the sites and S
(xj)
± denotes the local spin operator at

site xj that creates one excitation. Each xj runs from 1 to L. From our convention of

reference states, for the compact and non-compact chains the creation operators are S
(x)
−

and S
(x)
+ respectively. Now comes the crucial difference between compact and non-compact
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spin chains. For the compact spin chain, we can act with S
(xj)
− on each site xj only once,

thus each site can only hold one excitation. In the contrary, for non-compact spin chain, we

can act with any number of S
(xj)
+ on site xj.

In the non-compact case the precise normalization of the basis vectors is given by

|x1, . . . , xN〉 = E
(x1)
+ E

(x2)
+ · · ·E(xN )

+ |Ω〉 (2.16)

with
E

(x)
+ |m〉x = |m+ 1〉x. (2.17)

The E+ operators are conjugate to S+, and their usage leads to a convenient representation
of the coordinate Bethe Ansatz wave functions. See [29] for the detailed discussion of this
point.

The basis states are thus given in the two cases by

Compact chain : |x1, x2, · · · , xN〉 1 ≤ x1 < x2 · · · < xN ≤ L, (2.18)

Non-compact chain : |x1, x2, · · · , xN〉 1 ≤ x1 ≤ x2 · · · ≤ xN ≤ L.

The eigenstate |λN〉 is given by a proper linear combination of the basis states

|λN〉 =
∑
{xj}

χ(xN ,λN)|x1, x2, · · · , xN〉, (2.19)

where the range for the summation over xj are given in (2.18).

Bethe wave functions Now we discuss how to construct the wave function χ(xN ,λN).
It takes the following form:

χ(xN ,λN) =
∑
σ∈SN

∏
j>k

f(λσj − λσk)
N∏
j=1

eipσjxj , (2.20)

where pσj = p(λσj) is the momentum of the excitation with rapidity λσj . f(λ) is certain
known function which is related to the S-matrix of excitations by

S(λ, µ) =
f(λ− µ)

f(µ− λ)
. (2.21)

The summation in (2.20) is over all permutations of indices {1, 2, · · · , N}, which is denoted
by SN .

Different models are distinguished by the different p(λ) and f(λ) functions. For the
three spin chains under consideration, the two functions are given by

• Compact XXZ chain (∆ > 1)

eip(λ) =
sin(λ− iη/2)

sin(λ+ iη/2)
, f(λ) =

sin(λ+ iη)

sin(λ)
, S(λ) =

sin(λ+ iη)

sin(λ− iη)
, (2.22)

where η is related to the anisotropy by ∆ = cosh η.
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• Compact XXX chain

eip(λ) =
λ− i/2
λ+ i/2

, f(λ) =
λ+ i

λ
, S(λ) =

λ+ i

λ− i
. (2.23)

• Non-compact chain

eip(λ) =
λ− i/2
λ+ i/2

, f(λ) =
λ− i
λ

, S(λ) =
λ− i
λ+ i

. (2.24)

Our sign convention for the rapidity is such that p′(λ) > 0 in all cases.

Bethe equations Periodicity of the eigenstate implies that the rapidities {λ}N have to
satisfy Bethe equations

eip(λj)L
∏
k 6=j

S(λj − λk) = 1. (2.25)

The rapidities can be found by solving Bethe equations. After finding the rapidities, the
eigenvalue of the Hamiltonian is given by the total energy of the system

H|{λN}〉 = EN({λ}N)|{λN}〉, EN({λ}N) =
N∑
j=1

e(λj). (2.26)

For the XXX spin chains (both compact and non-compact) the function e(λ) is given by

e(λ) = − 2

λ2 + 1
4

. (2.27)

For the XXZ spin chain, the function is given by

e(λ) =
4 sinh2 η

cos(2λ)− cosh η
. (2.28)

Some notations For future use let us introduce the variables

lj = eip(λj). (2.29)

It follows from the concrete formulae (2.23)-(2.22) that f(λj − λk) is a rational function of
lj, lk. With some abuse of notation we will write it as f(lj, lk). We can thus regard the
Bethe wave function as a rational function of the l-variables:

χ(xN ,λN) =
∑
σ∈SN

∏
j>k

f(lσj , lσk)
N∏
j=1

(
lσj
)xj . (2.30)

This representation will play an important role in the overlap computations. The Bethe
equations are rewritten as

aj =
∏
k 6=j

f(lk, lj)

f(lj, lk)
, (2.31)

where we introduced the a-variables as

aj = lLj = eipjL. (2.32)
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3 Integrable boundary states

In this section, we discuss integrable boundary states for integrable spin chains. We first
review the proposal of [10] for characterizing integrable boundary states for general spin
chains. Although the proposal was motivated for compact spin chains, it is straightforward
to generalize it to the non-compact cases. On the other hand, some techniques for the
explicit constructions of the boundary states rely on the rotation trick and do not allow for
an immediate generalization to the non-compact case.

After the general discussion, we focus on explicit examples for the compact and non-
compact spin chains. The discussion for the compact cases mainly just reviews the known
results. The results on integrable boundary states of non-compact spin chains are new.
Finally we give the explicit formula for the exact overlap between a Bethe state and the
integrable state, which will be proven in later sections.

3.1 General discussion

We review the definition of integrable boundary states according to [10], which is inspired
from the definition of boundary states in quantum field theories [14].

Integrable models possess a family of conserved charges that are in involution with each
other:

[Qα, Qβ] = 0. (3.1)

In local spin chains these charges are also local, which means they can be written in the
form

Qα =
L∑
x=1

qα(x). (3.2)

where qα(x) is a local operator whose range can be chosen to be α. In other words it only
acts on sites x, x+1, . . . , x+α−1. The Hamiltonian of the spin chain is one of the conserved
charges, and usually we choose H ∼ Q2.

Let Π be the space parity operator which acts on the basis vector |i1, i2, · · · , iL〉 as

Π|i1, i2, · · · , iL〉 = |iL, iL−1, · · · , i1〉. (3.3)

The charges can be chosen in such a way that they have fixed parity under space reflection

ΠQαΠ = (−1)αQα, α ≥ 2. (3.4)

Integrable boundary states |Ψ〉 are defined as the elements of the Hilbert space satisfying
the condition

Q2k+1|Ψ〉 = 0, k = 1, 2, . . . (3.5)

A perhaps more natural integrability condition can be given using the transfer matrix (TM),
which generates the set of conserved charges. Such a TM can usually be constructed
systematically in the algebraic Bethe Ansatz. In the following we briefly review this
construction.
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In the local integrable spin chains related to the Lie-group G there is a rapidity dependent
TM tΛ(u) for all representation Λ of G, such that for all Λ,Λ′:

[tΛ(u), tΛ
′
(u′)] = 0. (3.6)

These transfer matrices are constructed using Lax operators as

tΛ(u) = TraT
Λ
a (u), Ta(u) =

L∏
k=1

LΛ
ak(u). (3.7)

Here LΛ
a,k are the so-called Lax operators, k is the index of the local Hilbert spaces, and a

stands for an auxiliary space, carrying the representation Λ of the group G.

Typically there are two distinguished transfer matrices, corresponding to the cases below:

• Λ is the defining representation of the group G. The corresponding TM will be called
“fundamental” and it will be denoted as τ(u).

• Λ is the representation of the physical spaces. The corresponding TM will be called
“physical” and it will be denoted as t0(u).

In our cases G = SU(2). In the compact XXX case the physical spaces carry the defining
representation, therefore the two TM’s mentioned above coincide. However, in the higher
spin cases and in the non-compact chain they are different.

Typically the physical TM is used to generated the local conserved charges. Expanding
it in a power series we define (see for example [30] and [19, 21] for the non-compact cases)

t0(u) = U exp

(
∞∑
n=1

βn
un

n!
Qn+1

)
, (3.8)

where βn are chosen to make the charges Qn+1 Hermitian. U = t0(0) is the the translation
or shift operator.

It follows from this expansion that the integrability condition for the boundary state can
be written as

t0(u)|Ψ〉 = Π t0(u) Π|Ψ〉. (3.9)

Several important remarks are in order.

First, this condition is somewhat stronger than (3.5), because it also implies

U2|Ψ〉 = |Ψ〉, (3.10)

which does not follow from (3.5). Although it has not yet been proven rigorously that (3.5)
implies (3.9), in interacting models there is no known case where the two-site invariance
(3.10) is not satisfied.

We can also require an integrability condition using the defining TM:

τ(u)|Ψ〉 = Π τ(u) Π|Ψ〉. (3.11)
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The equivalence of (3.11) and (3.9) is not guaranteed. Typically the different transfer matri-
ces are algebraically dependent, which is established through the so-called fusion relations
(also known as the Hirota equation). In the case of G = SU(2) these fusion relations
guarantee that (3.11) and (3.9) are equivalent, but for higher rank groups it is possible
that the integrability conditions with TM’s corresponding to different representations have
a different form [31].

We now give the explicit construction of the fundamental transfer matrix with the SU(2)-
symmetry, both in the compact and non-compact ones. The Lax operator at each site-j is
given by

Laj(u) = u+ i(~σa · ~Sj) = u+ i
(
σzaS

z
j + σ−a S

+
j + σ+

a S
−
j

)
, (3.12)

where it is understood that S± = Sx ± iSy, and for the compact spin chain Sα = 1
2
σα,

whereas for the non-compact spin chain the Sz, S± operators are given by (2.4).

This TM satisfies a crossing relation. The Pauli matrices satisfy the relation σyσaσy =
−(σa)T with a = x, y, z, where the superscript T denotes transposition. This implies

σyaLaj(u)σya = −LTa
aj (−u). (3.13)

For the TM this means
τ(−u) = Πτ(u)Π. (3.14)

The integrability condition is therefore equivalent to

τ(u)|Ψ〉 = τ(−u)|Ψ〉. (3.15)

We stress that this is not a generic feature of integrable models, and it is only valid for the
defining representation of the SU(2)-related models, and only with our specific choice for
the additive and multiplicative normalization of the local Lax operators.

In the non-compact case the integrability conditions have not yet been discussed before.
We take (3.11) (or the equivalent conditon (3.15)) as the fundamental definition of integra-
bility for the non-compact chain. Now we show that this ensures the pair property for the
overlaps, and thus the original condition (3.5) and also (3.9) will be satisfied.

It can be derived using the Algebraic Bethe Ansatz [30], that the eigenvalue of the
fundamental transfer matrix on the Bethe state given by (2.20) is

τ(u) = (u+ i/2)L
N∏
j=1

f(λj − u) + (u− i/2)L
N∏
j=1

f(u− λj). (3.16)

Here we used the same notation τ(u) also for the eigenvalue. This formula holds both in
the compact XXX case and the non-compact chain, with the f -functions given by (2.23)
and (2.24), respectively. It follows directly from the integrability condition (3.15) that the
overlaps can be non-zero only when the corresponding eigenvalues satisfy τ(u) = τ(−u).
This immediately leads to the requirement that the set λN be parity symmetric, both in
the compact and non-compact cases.
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3.2 The compact chains

In the literature two main classes of integrable states have been considered. The first class
is the two-site states which are defined as

|Ψ〉 = ⊗L/2j=1|ψ〉, |ψ〉 ∈ C2 ⊗ C2. (3.17)

It was shown in [10] that in the XXX and XXZ models every two-site state is integrable.
Furthermore they correspond to integrable K-matrices through

ψab = (K(σ)C)ba, (3.18)

where C is constant matrix describing the so-called crossing transformation and σ is a
special value for the rapidity parameter (for details see [10]). The K-matrix describes an
integrable boundary condition, and it satisfies the standard Boundary Yang-Baxter (BYB)
relation

K2(v)R21(u+ v)K1(u)R12(v − u) = R21(v − u)K1(u)R12(u+ v)K2(v), (3.19)

where R(u) is the so-called R-matrix in the fundamental representation, see [10].

The physical meaning of the correspondence (3.18) is that an integrable boundary in
space (described by the K-matrix) is transformed into an integrable boundary in time
(described by the boundary state). This is the generalization of the same picture in
integrable QFT, first developed by Ghoshal and Zamolodchikov [14].

Another class of states is given by integrable matrix product states (MPS) defined as

|Ψ〉 =
2∑

j1,...,jL=1

TrA [ωjL . . . ωj2ωj1 ] |jL, . . . , j2, j1〉. (3.20)

Here ωj, j = 1, 2 are matrices acting on one more auxiliary space denoted by A. The study
of such integrable MPS was initiated in the works [4, 5], and later it was shown in [13]
that these states are also described by solutions of the BYBE, although the corresponding
K-matrices have an inner degree of freedom. The work [13] also treated two-site invariant
MPS, and the two-site states above can be considered as MPS with “trivial”, one dimensional
auxiliary space.

It was argued in [11] that in the SU(2)-symmetric chains all integrable MPS are obtained
by the action of transfer matrices on two-site states. This is not true in spin chains with
higher rank symmetries: the works [12, 13] treated a number of “indecomposable” MPS’s.

We note that in the higher rank cases there are two main types of integrable boundary
conditions, described by the original and the twisted BYB relations. The integrable initial
states are always related to the twisted case [13]. However, in the SU(2) and SO(N)
related models the two types of boundary conditions are equivalent, which can be shown by
a crossing relation, see [13] for a detailed discussion on this issue. Here we do not treat this
distinction and only refer to the original BYB (3.19).
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3.3 The non-compact chain

Much less is known about integrable boundary states for non-compact spin chains compared
to the compact case. Here we present the first example which satisfy the integrability
conditions. It appears in the context of AdS/CFT [1] and an exact overlap formula has been
proposed. This integrable boundary state can be seen as a counterpart of the generalized
Néel state in the compact case [32].

A generalized Néel state To introduce the integrable boundary state, it is more conve-
nient to write the basis vectors of the Hilbert space as

|n1, n2, · · · , nL〉 ≡ |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nL〉, (3.21)

where nj denotes the number of excitations at the site-j; to be more precise

|nj〉 =
(S+)nj

nj!
|0j〉. (3.22)

Assuming that L is even, we define a family of states which depend on a free parameter κ:

|Néelκ〉 =
∑
{ni}

(
κNodd + κNeven

)
|n1, n2, · · · , nL〉, (3.23)

where the summation for each nj runs over all non-negative integers. Nodd and Neven are
the total number of excitations on odd and even sites

Nodd = n1 + n3 + · · ·+ nL−1, Neven = n2 + n4 + · · ·+ nL. (3.24)

There are two special cases for this generalized Néel state. This first one is κ = 1, where
|Néelκ=1〉 is simply the sum over all basis vectors of the Hilbert space. We will denote this
state by |XF 〉 in what follows; it is a one-site invariant ferromagnetic state.

The second special case is κ = 0. It follows from (3.23) that the non-vanishing con-
tributions at κ = 0 are given by Nodd = 0 or Neven = 0. The state |Néel0〉 takes the
form

|Néel0〉 =
∑
|j−k|
even

| ◦ · · · ◦ •j ◦ · · · ◦ •k ◦ · · · 〉, (3.25)

where the black dots stand for possible positions of excitations, and the sum is taken over
all possible distributions under the restriction that the distances between the black dots
have to be even. For example, for L = 4, we have the following state

|Néel0〉 = | ◦ ◦ ◦ ◦〉+ | • ◦ ◦ ◦〉+ | ◦ • ◦ ◦〉+ | ◦ ◦ • ◦〉+ | ◦ ◦ ◦ •〉 (3.26)

+ | ◦ • ◦ •〉+ | • ◦ • ◦〉.
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It is easy to see that the number of black dots cannot be larger than L/2. The precise
normalization for this notation is given by

|◦〉 ≡ |0〉, |•〉 ≡
∞∑
n=1

|n〉. (3.27)

Noticing that

eS+ |0〉 = |0〉+
∞∑
n=1

(S+)n

n!
|0〉 = |0〉+

∞∑
n=1

|n〉 = |◦〉+ |•〉, (3.28)

it is easy to see that |Néelκ〉 can be written as

|Néelκ〉 =
(
eκS+|0〉 ⊗ eS+|0〉

)L/2
+
(
eS+ |0〉 ⊗ eκS+ |0〉

)L/2
. (3.29)

Alternatively we can write

|Néelκ〉 = eκS+ |Ψ1−κ〉, (3.30)

where S+ = S
(1)
+ +S

(2)
+ + · · ·S(L)

+ is the SL(2,R) generator for the full spin chain. The state
|Ψα〉 is defined by

|Ψα〉 = (|0〉 ⊗ |α〉)L/2 + (|α〉 ⊗ |0〉)L/2 , (3.31)

where |α〉 is the coherent state |α〉 = eαS+|0〉. An on-shell Bethe state is the highest weight
state of SL(2,R) and hence

S−|λN〉 = 0. (3.32)

Therefore we have

〈Néelκ|λN〉 = 〈Ψ1−κ|eκS− |λN〉 = 〈Ψ1−κ|λN〉 (3.33)

From the definition of |Ψα〉, it is easy to see that

〈Ψα|λN〉 = αN 〈Néel0|λN〉 (3.34)

Combing this equation with (3.33), we arrive at the following relation:

〈Néelκ|λN〉 = (1− κ)N〈Néel0|λN〉, (3.35)

where N is the number of rapidities of |λN〉.
Now we prove that |Ψα〉 is indeed integrable by the criteria given in section 3.1, namely

the condition (3.11) holds for it. The strategy for the proof of integrability was developed
in [13], a closely related method already appeared in [33]. The idea is to write both sides of
(3.11) as a MPS, and to find a similarity transformation that connects the matrices involved.
This similarity transformation can be identified with the integrable K-matrix [13].
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First of all, it is clear that

Π|Ψα〉 = |Ψα〉. (3.36)

To proceed, it is useful to compute the action of the Lax operator at each site. We have

Laj(u)|0〉j =

(
u+ i

2
0

0 u− i
2

)
|0〉j +

(
0 0
i 0

)
S

(j)
+ |0〉j (3.37)

and

Laj(u)|α〉j =

(
u+ i

2
iα

0 u− i
2

)
|α〉j +

(
iα iα2

i −iα

)
S

(j)
+ |α〉j, (3.38)

where we have used (A.3) which is derived in the appendix. Taking direct product of two
sites, we have

La,j(u)La,j+1(u)|0, α〉j,j+1 =
4∑
i=1

Ai|i〉〉j,j+1, (3.39)

La,j(u)La,j+1(u)|α, 0〉j,j+1 =
4∑
i=1

Ãi |̃i〉〉j,j+1.

The states are given by

|1〉〉j,j+1 =|0〉j ⊗ |α〉j+1, |1̃〉〉j,j+1 =|α〉j ⊗ |0〉j+1, (3.40)

|2〉〉j,j+1 =S
(j)
+ |0〉j ⊗ |α〉j+1, |2̃〉〉j,j+1 =|α〉j ⊗ S(j+1)

+ |0〉j+1,

|3〉〉j,j+1 =|0〉j ⊗ S(j+1)
+ |α〉j+1, |3̃〉〉j,j+1 =S

(j)
+ |α〉j ⊗ |0〉j+1,

|4〉〉j,j+1 =S
(j)
+ |0〉j ⊗ S

(j+1)
+ |α〉j+1, |4̃〉〉j,j+1 =S

(j)
+ |α〉j ⊗ S

(j+1)
+ |0〉j+1.

The matrices Ai and Ãi are given by

A1 =

(
(u+ i/2)2 iα(u+ i/2)

0 (u− i/2)2

)
, Ã1 =

(
(u+ i/2)2 iα(u− i/2)

0 (u− i/2)2

)
, (3.41)

A2 =

(
0 0

i(u+ i/2) −α

)
, Ã2 =

(
−α 0

i(u− i/2) 0

)
A3 =

(
iα(u+ i/2) iα2(u+ i/2)
i(u− i/2) −iα(u− i/2)

)
, Ã3 =

(
iα(u+ i/2) iα2(u− i/2)
i(u+ i/2) −iα(u− i/2)

)
A4 =

(
0 0
−α −α2

)
, Ã4 =

(
−α2 0
α 0

)
.

A crucial observation for our proof is that Ai and Ãi are related by

K̃(u)Ai K̃(u)−1 = ÃT
i , i = 1, 2, 3, 4, (3.42)
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with the matrix K̃(u) given by

K̃(u) =

(
2u (u+ i/2)α

(u− i/2)α 0

)
. (3.43)

It was shown in [13] that such intertwiners can be interpreted as integrable K-matrices. In
fact, defining

K(u) = K̃(u)σy (3.44)

we obtain a solution to the BYB equations (3.19). The presence of the crossing matrix σy

is a feature of the SU(2)-related models, see the discussion above.

Using (3.39) we can write down the action of the transfer matrix on |Ψ〉 as

τ(u)|Ψα〉 = Tr (L(u)|0〉 ⊗ L(u)|α〉)L/2 + Tr (L(u)|α〉 ⊗ L(u)|0〉)L/2 (3.45)

= Tr
[
Ai1Ai2 · · ·AiL/2

]
|i1, i2, · · · , iL/2〉+ Tr

[
Ãi1Ãi2 · · · ÃiL/2

]
|̃i1, ĩ2, · · · , ĩL/2〉,

where repeated indices are summed over from 1 to 4 and the trace is taken over the auxiliary
space. The states are defined by

|i1, i2, · · · , iL/2〉 = |i1〉〉 ⊗ |i2〉〉 ⊗ · · · ⊗ |iL/2〉〉, (3.46)

|̃i1, ĩ2, · · · , ĩL/2〉 = |̃i1〉〉 ⊗ |̃i2〉〉 ⊗ · · · ⊗ |̃iL/2〉〉.

Acting the reflection operator, we obtain

Π τ(u)|Ψα〉 = Tr
[
Ai1 · · ·AiL/2

]
Π|i1, · · · , iL/2〉+ Tr

[
Ãi1 · · · ÃiL/2

]
Π|̃i1, · · · , ĩL/2〉 (3.47)

= Tr
[
Ai1 · · ·AiL/2

]
|̃iL/2, · · · , ĩ1〉+ Tr

[
Ãi1 · · · ÃiL/2

]
|iL/2, · · · , i1〉.

Now using the relation (3.42) we can show easily

Tr
[
Ãi1 · · · ÃiL/2

]
= Tr

[
AiL/2 · · ·Ai1

]
, (3.48)

Tr
[
Ai1 · · ·AiL/2

]
= Tr

[
ÃiL/2 · · · Ãi1

]
.

Plugging into the second line of (3.47), we find

Π τ(u)|Ψα〉 = Π τ(u) Π|Ψα〉 = τ(u)|Ψα〉 (3.49)

which demonstrates that the state |Ψα〉 is an integrable boundary state.

3.4 Exact overlap formulae

The integrability condition for the boundary state |Ψ〉 leads to a number of non-trivial
consequences which we discuss below.
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Paired Bethe roots It was first argued in [10], that the condition (3.9) imposes a strict
selection rule for the overlaps between |Ψ〉 and on-shell Bethe states |λN〉. Namely, the
overlap

〈Ψ|λN〉 (3.50)

is non-zero only if the set of the Bethe roots is parity symmetric. In the case of an even
number of particles this means that they come in pairs:

{λN} = {λ1,−λ1, · · · , λN/2,−λN/2}. (3.51)

which will also be denoted as

{λN} = {λ+
N/2,−λ

+
N/2}. (3.52)

Here {λ+
N/2} denotes the positive Bethe roots2. When the number of particles is odd, we

have

{λN} = {λ1,−λ1, · · · , λ(N−1)/2,−λ(N−1)/2, 0}. (3.53)

In this work we only consider overlaps with Bethe states with even numbers of particles.
The cases with odd number of Bethe roots can be treated similarly. For earlier studies with
an odd number of particles see [12, 15, 34].

Factorized Gaudin norm It is well-known that the norm of the on-shell Bethe state
constructed in (2.30) can be expressed as [17]

〈λN |λN〉 =
N∏
j=1

1

p′(λj)

N∏
j<k

f(λj − λk)f(λk − λj)× detG, (3.54)

where G is an N ×N matrix known as the Gaudin matrix whose elements are

Gjk = δjk

[
p′(λj)L+

N∑
l=1

ϕ(λj − λl)

]
− ϕ(λj − λk). (3.55)

The function ϕ(λ) is defined as

ϕ(λ) = −i d
dλ

logS(λ). (3.56)

The norm of an on-shell Bethe state whose rapidities are paired as in (3.51) factorizes further.
For such symmetric states the Gaudin matrix has a block structure and the determinant
can be factorized as

detG = detG+ detG−, (3.57)

2In principle, it does not matter which root among the pair we call ‘positive’. As a convention, we can
choose the one with positive real part as the positive Bethe root.
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where G± are N
2
× N

2
matrices with matrix elements

G±jk = δjk

p′(λ+
j )L+

N/2∑
l=1

ϕ+(λ+
j , λ

+
l )

− ϕ±(λ+
j , λ

+
k ) (3.58)

with
ϕ±(λ, µ) = ϕ(λ− µ)± ϕ(λ+ µ). (3.59)

The norm is then written as

〈λN |λN〉 =

N/2∏
j=1

f(2λ+
j )f(−2λ+

j )

(p′(λ+
j ))2

∏
1≤j<k≤N/2

[
f̄(λ+

j , λ
+
k )
]2 × detG+ detG−, (3.60)

where we defined

f̄(λ, µ) = f(λ− µ)f(λ+ µ)f(−λ− µ)f(−λ+ µ). (3.61)

Exact overlap formulae The most important property is that the non-zero overlaps
between many integrable boundary states and on-shell Bethe states take a remarkably simple
form:

|〈Ψ|λN〉|2

〈λN |λN〉
=

N/2∏
j=1

u(λ+
j )× detG+

detG−
. (3.62)

Here u(λ) is the so-called one particle overlap function, which depends on the initial state,
and G± are the same matrices that appeared in the factorized Gaudin norm. Below we will
prove this overlap formula in a number of cases.

If the integrable boundary state is a simple product state, then all known cases involve
only a single product as in (3.62). However, for other states such as the integrable MPS,
the pre-factor in front of the ratio of determinants can take more complicated forms. For
more details, see the discussions in [12]. We put forward that our present method allows
for a rigorous proof only in those cases when the overlap involves only a single product.

The simple form for the exact overlap formula (3.62) seems to hold for both the compact
and non-compact spin chains. In the case of the compact chain the one-particle overlap
function u(λ) can be determined by a “rotation trick” [10, 11]. The idea is to relate the
quantum system to a 2 dimensional classical lattice model, and to build partition functions
that are afterwards evaluated using the so called Quantum Transfer Matrix in the “rotated
channel”, after rotating the lattice by 90◦. For non-compact spin chains, the local Hilbert
space at each site is infinite dimensional and the rotation trick cannot be applied in a
straightforward way. Therefore a new method is called for. Below we develop such a
method for proving the exact overlap formula of the non-compact spin chain.
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4 Exact overlap formulae – General strategy

In this section we explain the general strategy of our method. We postpone the concrete
computations for different integrable boundary states to Section 5.

The method is most easily demonstrated on the compact XXX and XXZ chains, with
the initial state being

|Ψ〉 = |XF 〉 ≡ ⊗Lj=1

(
1
1

)
. (4.1)

The overlap of a given Bethe state with this state is particularly simple, because each spin
configuration has the same weight in the overlap. The result is thus simply the sum over
the wave function coefficients.

Regarding the Bethe states as given by (2.30), the un-normalized overlaps are

〈XF |λN〉 =
∑
σ∈SN

∏
j>k

f(lσj , lσk)
∑

0≤x1<···<xN≤L−1

N∏
j=1

lxjσj . (4.2)

Such an overlap is a rational function of the set {l1, . . . , lN}. For this set of variables we
will also use the notation lN .

We want to evaluate this rational function for the lN which satisfy the Bethe equations
(2.31). These equations depend on L, therefore the first natural question is: how do the
overlaps depend on the length of the spin chain L?

The scalar products (4.2) carry a formal dependence on L, which is hidden in the
summation limits. It is our goal to make this dependence more explicit. We will see that
the summations can be performed using algebraic manipulations, such that eventually (4.2)
will be expressed as rational functions of two sets of variables lN and aN = {a1, . . . , aN},
where the a-variables were introduced in (2.32). We will see that there will be no further L-
dependence. It will be this rational function where we can “substitute the Bethe equations”
such that the on-shell values of the overlaps can be obtained.

In order to explain the method we first consider the simplest examples.

4.1 One-particle states

In this case the overlap is given by the simple sum

〈XF |λ1〉 =
L−1∑
j=0

lj1 (4.3)

This sum can be computed readily

〈XF |λ1〉 =

{
L if l1 = 1
a1−1
l1−1

if l1 6= 1
. (4.4)
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Here we already used the new auxiliary variable a1 = lL1 .

The above formulae refer to the off-shell case: they are valid for arbitrary l1. Let us now
investigate the on-shell case. In the one-particle case the Bethe equation is simply

a1 = (l1)L = eip1L = 1. (4.5)

Assuming that l1 6= 1 we can substitute this into (4.4), and we see that the overlap vanishes
for all on-shell states with l1 6= 1. However, we will be interested in the on-shell states with
non-vanishing overlap, therefore we need to consider the case l1 = 1.

In this simple one-particle problem the summation for the exceptional case l1 = 1 is
rather trivial, and already given in (4.4). However, in order to get experience for the more
complicate cases we also derive this using a limiting procedure: we use the continuity of the
scalar product, and investigate the l1 → 1 limit of the l1 6= 1 case of (4.4). This gives

〈XF |λ1 = 0〉 = lim
l1→0

a1 − 1

l1 − 1
= lim

p1→0

eip1L1 − 1

eip1 − 1
= L, (4.6)

where we used the definition of the a- and l-variables.

Even though this is a trivial example, it already highlights a crucial observation: having
computed a generic off-shell overlap, the operations of “substituting the Bethe equations” and
“taking the limit towards the parity invariant states” do not commute, and it is important
to perform the second step first.

4.2 Two-particle states

We now consider the two-particle case. The structure of the overlaps of the integrable
boundary state and two-particle states has been studied in [4], where the role of the apparent
pole (to be discussed below) was explained.

In this case the overlap is given by the summation

〈XF |λ1, λ2〉 = f(l2, l1)
∑

0≤x1<x2≤L−1

lx11 l
x2
2 + f(l1, l2)

∑
0≤x1<x2≤L−1

lx12 l
x2
1 . (4.7)

Let us now introduce the function

B2(l1, l2|L) =
∑

0≤x1<x2≤L−1

lx11 l
x2
2 . (4.8)

Assuming that
l1 6= 1, l2 6= 1, l1l2 6= 1 (4.9)

we can perform the summation explicitly, yielding

B2(l1, l2|L) =
(l1l2)L − 1

(l1l2 − 1)(l1 − 1)
− lL2 − 1

(l2 − 1)(l1 − 1)
. (4.10)
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Substituting this back into (4.7) and the introducing the a-variables the overlap can be
written as

〈XF |λ1, λ2〉 =f(l2, l1)

[
a1a2 − 1

(l1l2 − 1)(l1 − 1)
− a2 − 1

(l2 − 1)(l1 − 1)

]
+

f(l1, l2)

[
a1a2 − 1

(l1l2 − 1)(l2 − 1)
− a1 − 1

(l2 − 1)(l1 − 1)

]
.

(4.11)

Let us now substitute the Bethe equations which in this case read

a1 =
f(l2, l1)

f(l1, l2)
, a2 =

f(l1, l2)

f(l2, l1)
. (4.12)

It can be seen by direct computation that after substitution we get identically zero! This
means that all on-shell overlaps vanish, unless one of the conditions in (4.9) is broken. Note
that we did not use the specific form of the function f(l1, l2): the vanishing of the overlap
follows directly from the functional form of the Bethe wave function.

The non-vanishing overlaps are obtained in the special cases, where l1 = 1, l2 = 1 or
l1l2 = 1. For on-shell states we can not have l1 = 1 or l2 = 1 except for very special cases
of fine tuned solutions. On the other hand, the condition

l1l2 = ei(p1+p2) = 1 (4.13)

is very natural: this is the requirement for the pair structure in the rapidities!

In order to get the overlaps with l1l2 = 1 we can choose two ways: either we compute
the function B2 directly for this special case, or we perform the limiting procedure from
off-shell rapidities to on-shell solutions with l1l2 = 1. We choose the second method because
it can be generalized to the multi-particle cases.

If we regard the expression (4.11) as a function of 4 variables l1, l2 and a1, a2, then it
has a pole 1/(l1l2 − 1) associated with the pair condition. The overlap itself is a regular
function of the original l-variables, therefore the residue has to be zero in the physical case,
when aj = lLj . Collecting the terms for the residue around l1l2 = 1 gives

〈XF |λ1, λ2〉 ∼
a1a2 − 1

l1l2 − 1

[
f(l2, l1)

l1 − 1
+
f(l1, l2)

l2 − 1

]
. (4.14)

In the physical case aj = lLj , and the pre-factor is a finite expression of the type 0/0; its
finite value is actually L. Now we argue that the finite value of the overlap comes only from
this apparent pole: all other contributions to the overlap add up to zero for on-shell states,
because they are zero for a generic configuration satisfying (4.9). We thus obtain the exact
result for on-shell states with the pair structure:

〈XF |λ1,−λ1〉 = L

[
f(l2, l1)

l1 − 1
+
f(l1, l2)

l2 − 1

]
, with l2 =

1

l1
. (4.15)
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4.3 Multi-particle states

The general strategy for the overlaps will mirror the one-particle case. First we introduce
some definitions and auxiliary functions.

We call a set of Bethe rapidities λN zero-free, if there is no subset of λN where the sum
of the rapidities is zero. Accordingly, the set lN is zero free, when there is no subset of
the l-variables such that their product is 1. States with the pair structure are clearly not
zero-free: they are the exceptional states that lead to non-zero overlaps.

Here we investigate overlaps with more general integrable initial states. For simplicity
we still restrict ourselves to product states, but we allow for an arbitrary two-site state, thus
we consider

|Ψ〉 = ⊗L/2j=1|ψ〉, |ψ〉 ∈ Hj ⊗Hj+1. (4.16)

In the XXZ chain all two-site states are integrable [10], but in models with higher dimension-
al local spaces the integrability condition puts a restriction on |ψ〉. Note that the one-site
invariant product state considered above is a special case of such two-site states.

The overlap with the reference state is

〈Ψ|Ω〉 = (ψ00)L/2, (4.17)

where ψ00 denotes the two-site overlap between the initial state and the reference state. In
the compact cases it is given by ψ00 = 〈ψ| ↑↑〉, and in the non-compact case by ψ00 = 〈ψ|00〉.

For simplicity we focus on cases where ψ00 6= 0. Furthermore we set the normalization
to ψ00 = 1, such that the overlap with the reference state is always 1. Initial states with
ψ00 = 0 can be treated with a limiting procedure, see for example the case of the Néel state
below.

We consider the overlaps
SN(λN) = 〈Ψ|λN〉 (4.18)

with the Bethe states given in (2.30). It follows from the explicit form of the wave function
that every such an overlap is a rational function of the l-variables. The L dependence is
hidden in the summation limits. We will show below that for zero-free sets the summations
can be performed explicitly, yielding formulae that only involve the lj and aj = (lj)

L for
each j, but they do not depend on the volume L in any other way.

Let us therefore introduce the function SN(λN ,aN), which is obtained after these formal
manipulations, and after introducing the a-variables:

SN(lN ,aN) = 〈Ψ|λN〉summed. (4.19)

Regarded as a function of a total number of 2N variables, this function does not depend on
L anymore. It follows from the form of the wave function and the real space summations
that these functions can always be written as

SN(lN ,aN) =
∑
σ∈SN

∏
j>k

f(lσj , lσk)BN(σlN , σaN), (4.20)
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where BN is the “kinematical” part of the overlap, which arises from a simple real space
summation. It depends on the initial state; explicit formulae will be given below. In the
formula above it is understood that σlN , σaN are the permutations of the corresponding
ordered sets, namely

σlN = {lσ1 , lσ2 , · · · , lσN}, σaN = {aσ1 , aσ2 , · · · , aσN}. (4.21)

The quantity BN for some special cases was already defined and computed in [4]. An
analogous computation for a non-integrable overlap was performed recently in [35].

Let us also define the function S̃N(lN) which is obtained from SN by the formal sub-
stitution of the Bethe equations. This means that for each aj we substitute the r.h.s. of
the corresponding equation from (2.31). It is clear from the above that S̃N is a symmetric
rational function of the set lN .

Theorem 1. The rational function S̃N(lN) is identically zero.

Proof. The function S̃N does not depend on the volume anymore, it only depends on the
l-variables. In the definition of SN we assumed that the set of rapidities is zero-free. The
zero-free sets can not satisfy the integrability condition, therefore their overlaps have to be
zero. This implies, that the function S̃N vanishes for all those sets lN that are zero-free
solutions to the Bethe equations for any volume. This means that the rational function S̃N
vanishes at an infinite number of points, therefore it is identically zero.

The non-vanishing overlaps are obtained from SN by a limiting procedure similar to the
two-particle case detailed above. The key observation is that for each pair of rapidities (or
l-variables lj,lk) there is an apparent simple pole of SN , which is proportional to

ajak − 1

ljlk − 1
. (4.22)

In the physical cases, when the a-variables are actually given by aj = (lj)
L, such a factor

simply produces L. However, it is important that we can substitute the Bethe equation
only after these pole contributions are correctly evaluated. Furthermore, all non-zero terms
in the overlap can only come from such terms, because if we substitute the Bethe equations
before the limit, we get zero identically.

Now we compute SN for paired rapidities. We regard lN and aN as independent variables
in the intermediate steps of the computation. We can still assume that there is a well-defined
function a(l) connecting the l- and a-variables, but we do not require the relation a(l) = lL

anymore. We will see below that a recursive computation of the overlaps will require to
treat more general a(l) functions.

We will consider the limit

l2j−1l2j → 1, a2j−1a2j → 1, j = 1, . . . , N/2. (4.23)

Let us now investigate the apparent pole at say l1l2 = 1.
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Proposition 1. The formal pole of SN around the point l1l2 = 1 is of the form

SN(L) ∼ a1a2 − 1

l1l2 − 1
F (λ1)

N∏
j=3

f(λ1 − λj)f(−λ1 − λj)Smod
N−2(�1, �2, L), (4.24)

where Smod
N−2 is the formal overlap for N − 2 particles not including 1 and 2, evaluated with

the following modified a-variables:

amod
j =

f(lj, l1)

f(l1, lj)

f(lj, 1/l1)

f(1/l1, lj)
aj. (4.25)

In (4.24) F (λ) is a rational function which carries the dependence on the initial state.

At present we do not have a general proof of this statement. However, we are able to
rigorously prove it in concrete cases. This leads to the determination of the function F (λ).
Examples for this will be shown in the next section.

Eq. (4.24) can be considered as a recursion relation for the overlaps. It is rather similar
to the recursion relations for scalar products of Bethe states [17] or form factors [36, 37] (see
also [38, 39]). In fact, the modification rule above is a rather straightforward generalization
of a similar rule for scalar products, first derived by Korepin in [17]. However, the origin of
the poles is different: in the previous cases in the literature the singularities are the so-called
kinematical poles of the scalar products or form factors, which appear when two rapidities
in the bra and ket vectors approach each other. On the other hand, here the two rapidities
responsible for the pole are within the same Bethe vector, and the apparent singularity is
associated with the pair structure. The role of such apparent poles was first recognized in
[4], and has been used in [35] to study the large L behaviour of the overlaps.

It is important that if the original l- and a-variables satisfy the Bethe equations, then
the restricted set of l-variables is still on-shell with respect to the modified a-variables.

We now investigate the limit of the paired rapidities on the basis of the above recursion
relation. Let us therefore introduce the set of “positive” rapidities λ+

N/2, such that the paired
limit is taken as

λ2j−1 → λ+
j , λ2j → −λ+

j , j = 1 . . . N. (4.26)

Similar notations are understood for the l- and a-variables.

For future use we introduce one more set of variables which will play an important role.
For each j = 1 . . . N/2 we define

mj = m(λj) = −i d
dλ

log(a(λ))

∣∣∣∣
λ=λj

. (4.27)

In the original physical case aj = lLj = eip(λj)L we have mj = p′(λj)L, but generally we will
treat the m-variables as independent.

Let us define the function D(λ+
N/2,m

+
N/2) as the limit of the function SN described by

(4.26). This is a symmetric function under a simultaneous permutation of its variables. It
is a rational function of λ+

N/2 and it is at most linear in each of the m-variables. The latter
property follows from the fact that SN has only single poles associated to each pair.
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Theorem 2. The function D satisfies the recursion

∂D(λ+
N/2,m

+
N/2|L)

∂m+
1

=
F (λ+

1 )

p′(λ+
1 )

N/2∏
l=2

f̄(λ+
1 , λ

+
l )×D(λ+

N/2−1,m
+,mod
N/2−1|L), (4.28)

where we defined the modification rule for the m-parameters

mmod(λ) = m(λ) + ϕ+(λ, λ+
1 ). (4.29)

Proof. This follows immediately from (4.24), using also Theorem 1. The modification rule
for the m-variables follows from

mmod(λ) = −i d
dλ

log(amod(λ)), (4.30)

and using (4.25) we get (4.29).

Theorem 3. The solution of the recursion (4.28) is

D(λ+
N/2,m

+
N/2|L) =

N/2∏
j=1

F (λ+
j )

p′(λ+
j )

∏
1≤j<k≤N/2

f̄(λ+
j , λ

+
k )× detG+

N/2. (4.31)

Proof. Our proof follows the method of Korepin derived originally for the Gaudin determi-
nant describing the norm of the Bethe states [17].

First we define a function D̃(λ+
N/2,m

+
N/2) through

D(λ+
N/2,m

+
N/2|L) =

N/2∏
j=1

F (λ+
j )

p′(λ+
j )

∏
1≤j<k≤N/2

f̄(λ+
j , λ

+
k )D̃(λ+

N/2,m
+
N/2|L). (4.32)

It follows from (4.28) that the linear parts in m+
j is given by

∂D̃(λ+
N/2,m

+
N/2|L)

∂m+
j

= D̃(λ+
N/2−1,m

+,mod
N/2−1|L), (4.33)

where it is understood that m+
j is not included in the arguments on the r.h.s. and the

modification rule is given by (4.29).

The function D̃ satisfies the following properties:

• It is symmetric in all its variables.

• It is at most linear in each mj.

• It is zero if all mj = 0.

• The linear piece in each mj is given by (4.33).
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It is easy to see that the unique solution for this linear recursion with the given properties
is

D̃ = det G̃N/2, G̃jk = δjk

m+
j +

N/2∑
l=1

ϕ+(λ+
j , λ

+
l )

− ϕ+(λ+
j , λ

+
k ). (4.34)

In the physical case we need to set m+
j = p′(λ+

j )L.

The normalized squared overlap is obtained after dividing by the norm (3.60). Using
the factorization (3.57) we eventually obtain∣∣∣〈Ψ|λ+

N/2〉
∣∣∣2

〈λ+
N/2|λ

+
N/2〉

=

N/2∏
j=1

|F (λ+
j )|2

f(2λ+
j )f(−2λ+

j )

 detG+

detG−
. (4.35)

The single particle overlap function is thus determined by the function F (λ) which
determines the apparent singularity of the off-shell overlap:

u(λ) =
|F (λ+

j )|2

f(2λ+
j )f(−2λ+

j )
. (4.36)

With this we have finished outlining our general strategy. What remains to be proven
is the fundamental singularity relation (4.24), together with finding the function F (λ) in
specific cases. This is presented in the next section.

5 Exact overlap formulae – Concrete cases

5.1 The state |XF 〉 in the Heisenberg chains

Here we consider the state |XF 〉 defined in (4.1). Now the overlap can be written as (4.20)
with the B-function given by

BN(l1, l2, . . . , lN |L) =
L−N∑
x1=0

L−N+1∑
x2=x1+1

· · ·
L−1∑

xN=xN−1+1

lx11 l
x2
2 . . . lxNN . (5.1)

Note that the positions of the particles go from 0 to L− 1.

Regarding the first function we get

B1(l1|L) =
lL1 − 1

l1 − 1
. (5.2)

The second function is determined by the simple difference equation

B2(L)−B2(L− 1) = lL−1
2 B1(L− 1), (5.3)
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which can be derived from the definition (5.1). In fact, we have the following general
recursion relation

BN(L)−BN(L− 1) = lL−1
N BN−1(L− 1). (5.4)

The proof of this recursion relation is as follows. Consider the chain of length L with N
particles, the corresponding quantity is BN(L). Note that from (5.1), BN(L) can be written
as the sum of two parts, corresponding to whether the last site is occupied or not. When
the last site is empty, all particles sit in the first L − 1 sites, the contribution is given by
BN(L− 1). When the last site is occupied, since the particle is ordered and the site can be
occupied by at most one particle, it must be the particle with lN which occupies the last
site. The contribution from this particle is lL−1

N . The rest N − 1 particles are distributed in
the first L − 1 sites whose contribution is given by BN−1(L − 1). This implies (5.4). This
recursion relation is very helpful for deriving a closed form formula for BN(L), as we will
show below.

Substituting (5.2) into (5.3) we get

B2(L)−B2(L− 1) = lL−1
2

lL−1
1 − 1

l1 − 1
=

(l1l2)L−1 − lL−1
2

l1 − 1
. (5.5)

The solution to this recursion is

B2(L) =
(l1l2)L

(l1l2 − 1)(l1 − 1)
− lL2 − 1

(l2 − 1)(l1 − 1)
+ C, (5.6)

where C is an L independent integration constant. It can be fixed easily by computing
B2(L) at L = 2, which is simply

B2(2) = l2. (5.7)

This fixes C and we get

B2(L) =
(l1l2)L

(l1l2 − 1)(l1 − 1)
− lL2

(l2 − 1)(l1 − 1)
+

l2
(l2 − 1)(l1l2 − 1)

. (5.8)

We can continue along these lines for N = 3. The recursion relation reads

B3(L)−B3(L− 1) = lL−1
3 B2(L− 1). (5.9)

Solving this with the appropriate initial condition B3(3) = l2l
2
3 we get

B3(L) =
(l1l2l3)L

(l1l2l3 − 1)(l1l2 − 1)(l1 − 1)
− (l2l3)L

(l2l3 − 1)(l2 − 1)(l1 − 1)
+

+
lL3 l2

(l3 − 1)(l2 − 1)(l1l2 − 1)
− l2l

2
3

(l1l2l3 − 1)(l2l3 − 1)(l3 − 1)
.

(5.10)

Continuing this for the general N -particle case we get

BN(L) =
N∑
j=0

(−1)j
(∏N

k=j+1 lk

)L∏j
k=2 l

k−1
k∏N

k=j+1

(∏k
o=j+1 lo − 1

)
×
∏j

k=1

(∏j
o=k lo − 1

) , (5.11)
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where we also used the general initial condition

BN(N) = l2l
2
3 . . . l

N−1
N . (5.12)

Substituting the a-variables leads to

BN({aj}, {lj}, L) =
N∑
j=0

(−1)j
∏N

k=j+1 ak
∏j

k=2 l
k−1
k∏N

k=j+1

(∏k
o=j+1 lo − 1

)
×
∏j

k=1

(∏j
o=k lo − 1

) . (5.13)

This will be the ingredient function for the overlaps, which will have a summation over
permutations, and multiplication with factors related to the S-matrix. We emphasize that
the L dependence is now all hidden in {aj} in the final expression (5.13) and no longer
appears in the limits of the summations. This manipulation makes it possible to impose the
Bethe equations. The formula (5.13) was first computed in [4].

5.1.1 Determining the singular piece

Now we intend to compute the residue of the pole 1/(l1l2 − 1) of SN . The overlap itself
is given by N ! terms, but from the actual form of the B-function it can be seen that the
desired pole will only be present in those permutations that put the particles 1 and 2 to
neighboring positions. This is equivalent to the statement that BN has a pole of the form
1/(ljlk − 1) if |j − k| = 1.

Let us therefore pick some number m and investigate the residue

Reslmlm+1→1BN(L). (5.14)

To this order we write the B-function as

BN(L) =
N∑
j=0

BN,j(L) (5.15)

with

BN,j(L) =
(−1)j

∏N
k=j+1 ak

∏j
k=2 l

k−1
k∏N

k=j+1

(∏k
o=j+1 lo − 1

)
×
∏j

k=1

(∏j
o=k lo − 1

) . (5.16)

Let us look at the poles of the type 1/(lmlm+1 − 1). There are two singular pieces given
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by BN,m−1 and BN,m+1, and their sum reads

(−1)m−1
∏N

k=m ak
∏m−1

k=2 l
k−1
k∏N

k=m

(∏k
o=m lo − 1

)
×
∏m−1

k=1

(∏m−1
o=k lo − 1

)+

(−1)m−1
∏N

k=m+2 ak
∏m+1

k=2 l
k−1
k∏N

k=m+2

(∏k
o=m+2 lo − 1

)
×
∏m+1

k=1

(∏m+1
o=k lo − 1

) =

(−1)m−1amam+1

∏N
k=m+2 ak

∏m−1
k=2 l

k−1
k

(lm − 1) (lmlm+1 − 1)
∏N

k=m+2

(∏k
o=m lo − 1

)
×
∏m−1

k=1

(∏m−1
o=k lo − 1

)+

(−1)m−1(lmlm+1)mlm+1

∏N
k=m+2 ak

∏m−1
k=2 l

k−1
k∏N

k=m+2

(∏k
o=m+2 lo − 1

)
× (lmlm+1 − 1) (lm+1 − 1)

∏m−1
k=1

(∏m+1
o=k lo − 1

) .

(5.17)

So altogether the singular piece in BN is

BN({aj}, {lj}, L) ∼ amam+1 − 1

lmlm+1 − 1
× 1

lm − 1

(−1)m−1
∏N

k=m+2 ak
∏m−1

k=2 l
k−1
k∏N

k=m+2

(∏k
o=m lo − 1

)
×
∏m−1

k=1

(∏m−1
o=k lo − 1

) ,
(5.18)

which can be written as

BN({aj}, {lj}, L) ∼ amam+1 − 1

lmlm+1 − 1

1

lm − 1
BN−2,m−1({1, 2, . . . ,��m,����m− 1, . . . , N}, L). (5.19)

In order to determine the singularity of SN we need to sum over all permutations that put the
particles 1 and 2 to neighboring positions and multiply with the f -functions corresponding
to the permutations. It is important that once we pick positions m and m + 1 there are
still two possibilities corresponding to the relative ordering of particles 1 and 2. These two
terms will have many common factors for each m, and the sum of those factors which are
different is

F (λm, λm+1) =
f(λm+1 − λm)

lm − 1
+
f(λm − λm+1)

lm+1 − 1
. (5.20)

Using the symmetry we can introduce

F (λ) =
f(−2λ)

l(λ)− 1
+

f(2λ)

l(−λ)− 1
. (5.21)

The remaining additional f -factors for these terms will be

m−1∏
j=1

f(λm − λj)f(λm+1 − λj)
N∏

j=m+2

f(λj − λm)f(λj − λm+1). (5.22)

This can be written in the form

N∏
j=1

j 6=m,m+1

f(λm − λj)f(λm+1 − λj)×
N∏

j=m+2

f(λj − λm)

f(λm − λj)
f(λj − λm+1)

f(λm+1 − λj)
. (5.23)
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Note that ratios of f -functions appear such that they multiply the a-variables in a well
defined way, namely the residue can be formulated by introducing the modification rule

amod
j =

f(λj − λm)

f(λm − λj)
f(λj − λm+1)

f(λm+1 − λj)
aj. (5.24)

It is important that if the original set λN satisfies the original Bethe equations, then the
set λN \ {λm, λm+1} satisfies the Bethe equations with the modified a-parameters.

Summing over all remaining permutations, altogether the singularity of the overlap at
l1l2 = 1 is

SN(L) ∼ a1a2 − 1

l1l2 − 1
F (λ1)

N∏
j=3

f(λ1 − λj)f(−λ1 − λj)Smod
N−2(�1, �2, L) (5.25)

with F (λ) given by (5.21).

In the XXX model the functions l(λ) and f(λ) are given by (2.23). Substituting them
into (5.21) we obtain F (λ) = 0. This means that all overlaps with N 6= 0 are zero. This is
in agreement with the fact that any ferromagnetic state is an eigenstate of the Hamiltonian,
which lies in the SU(2) multiplet of the reference state. The overlaps of these states with
any Bethe states are identically zero.

In the XXZ model the functions l(λ) and f(λ) are given by (2.22). This leads to

F (λ) =
sin(λ+ iη/2) sin(λ− iη/2)

cos2(λ)
. (5.26)

Computing the overlap pre-factor as given by (4.36) we get

u(λ) =
F 2(λ)

f(2λ)f(−2λ)
= tan2(λ) tan(λ+ iη/2) tan(λ− iη/2). (5.27)

This coincides with the result obtained in [11], see eq. (3.18) there.

5.2 Néel and generalized Néel states in the Heisenberg chains

Let us now consider the boundary state

|Nα〉 = ⊗L/2j=1

((
1
α

)
⊗
(

1
0

))
. (5.28)

This state satisfies the requirement ψ11 = 1, and for non-zero α it has finite overlaps with
all parity-invariant Bethe states. In the α → ∞ limit it turns into the Néel state after re-
scaling. It is our intention here to derive the overlaps, and also to show that in the α→∞
limit only the states with N = L/2 can have non-zero overlaps.

Now particles can only occupy every odd site. As a result, the computation of the
kinematical sum is almost the same as in the previous case, except that now the propagation
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of particles is restricted to an even number of hoppings. As an effect, the kinematical BN -
function is formally the same as before, except for the replacement L → L/2 and lj → l2j
for each j = 1, . . . , N . Also, the overlap receives an overall factor of αN . As an effect of
these changes, instead of the direct pole of the type 1/(l1l2 − 1) we obtain poles

1

l21l
2
2 − 1

=
1

l1l2 − 1

1

l1l2 + 1
. (5.29)

It can be seen that the residue at l1l2 = 1 gets an extra factor of 1/2. Putting these
modifications together we can extract the F -function as

F (λ) =
α2

2

[
f(−2λ)

l2(λ)− 1
+

f(2λ)

l2(−λ)− 1

]
. (5.30)

In the XXX model the substitution of (2.23) leads to

F (λ) = α2u
2 + 1/4

4u2
. (5.31)

Altogether the one-particle overlap function with the un-normalized state becomes

u(λ) =
F 2(λ)

f(2λ)f(−2λ)
= α4u

2 + 1/4

16u2
. (5.32)

In order to obtain the overlaps with the Néel state we need to perform the limit α → ∞
after re-scaling by αL. It follows immediately that only the overlaps with N = L/2 survive,
as expected.

The resulting overlap formula agrees with the earlier results [4, 7, 32].

5.3 Generalized Néel state in the SL(2,R) chain

Let us first consider the overlap with the generalization of |XF 〉, namely a one-site invariant
state

|XF 〉 = ⊗Lj=1

1
1
...

 = ⊗Lj=1

(
eS+ |0〉

)
= eS+|Ω〉 (5.33)

This state was already introduced in Section 3.1 as the special case of the generalized Néel
state |Néel1〉. This vector belongs to the multiplet of the reference state, so the overlaps
with the Bethe states will vanish, in accordance with relation (3.35) for κ = 1. However,
it is useful to compute the associated kinematical functions, which can be used later for
general κ.

The overlap with |XF 〉 is given by the same form as in (4.20) but now the kinematical
sum is

BN(l1, l2, . . . , lN |L) =
L−1∑
x1=0

L−1∑
x2=x1

· · ·
L−1∑

xN=xN−1

lx11 l
x2
2 . . . lxNN . (5.34)
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The difference from the compact XXZ model is that now an arbitrary number of particles
can occupy the same site, and this changes the summation limits.

In the one-particle case we get the same formula as before:

B1(l1|L) =
lL1 − 1

l1 − 1
. (5.35)

For N = 2 the relevant recursion relation is

B2(L)−B2(L− 1) = l1
(l1l2)L−1

l1 − 1
− lL−1

2

l1 − 1
. (5.36)

The initial condition is B2(1) = 1. The solution satisfying this condition is

B2(L) = l1
(l1l2)L

(l1l2 − 1)(l1 − 1)
− lL2

(l1 − 1)(l2 − 1)
+

1

(l1l2 − 1)(l2 − 1)
. (5.37)

Regarding the general multi-particle case the difference equation is

BN(L)−BN(L− 1) = lL−1
N BN−1(L) (5.38)

with the initial condition
BN(1) = 1. (5.39)

The general solution is

BN(L) =
N∑
j=0

(−1)j
∏N

k=j+1 l
L
k l
N−k
k∏N

k=j+1

(∏k
o=j+1 lo − 1

)
×
∏j

k=1

(∏j
o=k lo − 1

) . (5.40)

The analysis of the singularity of BN can be performed in a similar way as before. We
get the relation

BN({aj}, {lj}, L) ∼ amam+1 − 1

lmlm+1 − 1

lm
lm − 1

BN−2,m−1({1, 2, . . . ,��m,����m− 1, . . . , N}, L). (5.41)

The only change compared to (5.19) is the appearance of an extra factor of lm. Completing
the computation we obtain the F -function as

F (λ) =
f(−2λ)l(λ)

l(λ)− 1
+
f(2λ)l(−λ)

l(−λ)− 1
=

=
f(−2λ)

1− l(−λ)
+

f(2λ)

1− l(λ)
.

(5.42)

In the SL(2,R) case the corresponding functions are given by (2.24). Substituting them
into (5.42) we get F (λ) = 0 as expected.

Now we consider the generalized Néel state |Néel0〉. The difference is once again that we
need to perform the change lj → l2j . This leads eventually to

F (λ) =
1

2

[
f(−2λ)

1− l2(−λ)
+

f(2λ)

1− l2(λ)

]
. (5.43)
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and the overlap function becomes

u(λ) =
F 2(λ)

f(2λ)f(−2λ)
. (5.44)

Substituting (2.24) we get the same result as in the XXX case:

u(λ) =
F 2(λ)

f(2λ)f(−2λ)
=
u2 + 1/4

16u2
. (5.45)

This result agrees with the findings of [1].

6 Conclusions and discussions

We presented a new method to derive and prove exact overlap formulae in integrable spin
chains. The method is based on the coordinate Bethe Ansatz representation of the wave
functions. The key identity is the singularity property (4.24) of the off-shell overlaps. This
is a new result of the present work, which leads to the proof of exact overlaps in a number
of cases presented in Section 5.

It is important to compare the present method to the previous derivation of [7], which
was the only available rigorous proof before our work. The paper [7] derived the factorized
overlaps starting from an exact off-shell determinant formula, based on [8, 9] and going back
to the work of Tsushiya [16]. This method only works for the boundary states corresponding
to the so-called diagonal K-matrices. On the other hand, our method is applicable even for
off-diagonal K-matrices, when there is no determinant formula for the off-shell overlaps.

Nevertheless our method has its drawbacks and limitations. First of all, we were not
able to provide a general proof of the relation (4.24), we only proved it on a case by case
basis. Clearly, it would be important to find the deeper reason why such a relation holds.
Second, our method relies heavily on the coordinate Bethe Ansatz, and therefore it can not
be applied in situations where this method fails, for example in models with U(1)-symmetry
breaking. It would be desirable to study the same problems in more general frameworks such
as the Separation of Variables (SoV) method. Such a future study might also be helpful for
studying overlaps in models solvable by the nested Bethe ansatz, where the present method
seems rather cumbersome. We plan to return to this question in future work.

Regarding the interpretation of the factorized overlap formulae let us mention once more
the work [15], which treated excited state g-functions in integrable QFT. These objects are
completely analogous to the finite volume overlaps in the spin chain. In [15] the known
structure (3.62) of the overlaps was derived, even before the analogous results for spin chains
appeared in the context of the quantum quench. The work [15] compared the computation
of certain time-dependent one-point functions in finite and infinite volumes, and derived
the correct ratio of determinants using only the density of states for the restricted, parity
symmetric configurations. Therefore, [15] provides a rather natural interpretation for the
overlaps, much like the parallel observation that the original Gaudin-determinant describes
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both the density of states and the norm of the Bethe states (see also [40]). It would be
desirable to work out the arguments of [15] also in the spin chain situation, and to make
them precise. This would complete the understanding of the factorized overlap formulae.

Finally we note that the our method can be applied directly to the Lieb-Liniger model
to derive the overlaps with the BEC state, originally found in [41] and proven by a scaling
limit of the spin chain in [42].
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A Formula for coherent states

In this appendix, we collect some formula for coherent states which are useful in the main
text. From the SL(2,R) algebra and using the formula

eAB e−A = B + [A,B] +
1

2!
[A, [A,B]] + · · · (A.1)

we can prove the following results

e−αS+ S− e
αS+ =S− + 2αS0 + α2S+, (A.2)

e−αS+ S0 e
αS+ =S0 + αS+.

Using these relations, we can prove the action of generators on the coherent state

S0|α〉 =
1

2
|α〉+ αS+|α〉, S−|α〉 = α|α〉+ α2 S+|α〉. (A.3)
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