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Abstract

Using considerations based on the thermodynamical Bethe ansatz as well representation
theory of twisted Yangians we derive an exact expression for the overlaps between the Bethe
eigenstates of the SO(6) spin chain and matrix product states built from matrices whose
commutators generate an irreducible representation of so(5). The latter play the role of
boundary states in a domain wall version of N = 4 SYM theory which has non-vanishing,
SO(5) symmetric vacuum expectation values on one side of a co-dimension one wall. This
theory, which constitutes a defect CFT, is known to be dual to a D3-D7 probe brane system.
We likewise show that the same methodology makes it possible to prove an overlap formula,
earlier presented without proof, which is of relevance for the similar D3-D5 probe brane
system.
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1 Introduction and summary

A surprisingly fruitful cross-fertilization between holography and statistical physics has
taken place in recent years due to a common interest in overlaps between Bethe eigenstates
of integrable systems and states which are not easily expressible in terms of eigenstates.
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In statistical physics the latter type of state typically constitutes the initial state in a
quantum quench of an integrable system and the overlaps are key to investigating the time
development after the quench, see f.inst. [1–8]. In holography the typical state of interest
is a so-called matrix product state which encodes information about the vacuum of the
holographic system and the overlaps give the expectation value of the theory’s operators in
the vacuum state [9–14].

From the point of view of holography, systems which are amenable to an analysis of
this type are domain wall versions of N = 4 SYM theory where the vacuum is different on
the two sides of a co-dimension one wall. More precisely, the vacua on the two sides of the
wall differ by some of the scalar fields taking non-zero vacuum expectation values (vevs)
on one side, say for x3 > 0. These field theories constitute defect conformal field theories
(dCFTs) and are dual to probe brane systems with configurations of background gauge
fields which lead to non-trivial flux or instanton number [15–21]. There are essentially three
such systems, one being a D3-D5 probe brane system and the two others being D3-D7
probe brane systems, cf. table 1. In dCFT’s one can encounter non-vanishing one-point
functions and due to the non-trivial vacuum expectation values this will happen already
at tree-level for the set-ups in question. As first pointed out in [9, 10] the tree level one
point functions of scalar operators for x3 > 0 can conveniently be expressed as an overlap
between a matrix product state and a Bethe eigenstate of the SO(6) integrable spin chain.

Both from the point of view of statistical physics and from the point of view of
holography it is interesting to understand when a certain initial state or a matrix product
state is “solvable”, i.e. under what circumstances the various physical quantities associated
to the state can be computed exactly. One class of such quantities are the overlaps with the
Bethe eigenstates of the system. Based on the experience from a number of concrete studies
of overlaps [9–12, 22–25] a proposal for an integrability criterion was put forward in [5]. An
initial state or matrix product state was said to be integrable if it was annihilated by all
the conserved charges of the integrable system, which were odd under space-time parity.

All the overlaps which were known in closed form at that time were compatible with
this definition of integrability. This was in particular true for the dCFT dual to the 1/2
supersymmetric D3-D5 probe brane system with background gauge field flux where a closed
expression for all the one-point functions of the scalar sector had been found [13]. When
applied to the two non-supersymmetric D3-D7 probe brane set-ups with flux the proposed
integrability criterion implied a characterization of one of them as integrable and the other
one as non-integrable cf. table 1. This led to an apparent puzzle since for none of them a
closed expression for the overlaps had been found [12, 14].

In the present paper we resolve this apparent puzzle and provide another strong
consistency check of the proposed integrability criterion by explicitly deriving a closed
formula for the overlap giving the scalar one-point functions of the SO(5) symmetric D3-D7
probe brane set-up with non-vanishing instanton number. Our proof combines analyticity
considerations related to the thermodynamical Bethe ansatz with representation theory of
twisted Yangians. We also show that a similar approach can be used to prove the overlap
formula for the D3-D5 probe brane system, earlier presented without proof. For simplicity
we carry out the proof only for an SU(3) sub-sector in this case.
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D3-D5 D3-D7 D3-D7

Supersymmetry 1/2-BPS None None

Brane geometry AdS4× S2 AdS4× S2 × S2 AdS4× S4

|MPS〉 Integrable Non-integrable Integrable

Closed overlap formula Yes No Yes (this work)

Table 1. The dCFT versions of N = 4 SYM theory with non-vanishing vevs and their dual string
theory configurations. The discussion of the integrability properties of the corresponding matrix
product states can be found in [13, 14] and the closed expression for the overlap formula for the
D3-D5 case appears in [9–11, 13] for tree level and in [26] for one-loop.

We start in section 2 by briefly discussing the dCFT with SO(5) symmetric vevs and
the matrix product state which is used to calculate its one-point functions. In this section
we also present the closed form of the overlap for any scalar operator and for any value of the
instanton number. Subsequently, in section 3, we introduce some integrability tools that will
play an important role for our analysis. In particular, we explain the connection between
the overlaps and the Y-system. Based on analyticity considerations for the Y -system we
then in section 4 derive overlap formulas for a set of simple “base” states with respectively
SO(3) and SO(5) symmetry. In section 5 we review elements of the representation theory
of twisted Yangians and use these ideas to relate the base states to the desired matrix
product states and in that way derive the desired overlap formulas. Section 6 contains our
conclusion and outlook. Some technical details are relegated to appendices.

2 One-point functions in AdS/dCFT

2.1 The SO(5) symmetric domain wall theory

We will be considering a domain wall version of N = 4 SYM theory with gauge group
U(N) where the theory has a non-trivial vacuum on one side of the wall. More precisely, we
consider a co-dimension one wall placed at x3 = 0 and we allow for (some of) the scalar fields
of the theory to have non-vanishing classical values for x3 > 0. Assuming ψcl = Acl

µ = 0,
the classical values for the scalar fields have to fulfil the equation

∇2φcl
i =

[
φcl
j ,
[
φcl
j , φ

cl
i

]]
, i = 1, . . . , 6. (2.1)

By allowing the classical fields to depend on the distance to the defect x3 one can obtain
a defect CFT. An so(5) symmetric solution with such space-time dependence was found
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in [16, 27]

φcl
i (x) = 1√

2x3

(
Gi 0
0 0

)
, i = 1, . . . , 5, φcl

6 (x) = 0, x3 > 0, (2.2)

where the classical fields are N ×N matrices containing the sub-matrices Gi of dimension
dG × dG with

dG = 1
6(n+ 1)(n+ 2)(n+ 3), n ∈ Z. (2.3)

They can be constructed starting from a four-dimensional representation of the Clifford
algebra so(5)

{γi, γj} = 2δi,j I4×4, (2.4)

and symmetrizing the n-fold tensor product

Gi = 1
2
(
γi ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n factors

+ · · ·+ 1⊗ · · · ⊗ 1⊗ γi
)
sym, (2.5)

The commutators of the Gi then generate a dG-dimensional irreducible representation of
so(5). We refer to section 5 for a discussion of further properties of the Gi. For x3 < 0 all
fields are considered to be of dimension (N − dG)× (N − dG) with vanishing classical values
implying that the gauge group of the field theory is different on the two sides of the wall,
namely respectively (broken) U(N) for x3 > 0 and U(N − dG) for x3 ≤ 0 1.

This domain wall solution of N = 4 SYM theory has a string theory dual consisting
of a D3-D7 probe brane system where the D7-brane probes have geometry AdS4 × S4

and a non-trivial instanton bundle on the S4 carries instanton number equal to dG. The
probe is the string theory analogue of the gauge theory wall and the change in gauge group
across the wall is reflected in dG out of the N D3-branes being dissolved into D7-branes as
x3 → 0+ [31]. The probe brane system is stable in the parameter region

λ

π2(n+ 1)(n+ 3) <
2
7 , (2.6)

where λ is the ’t Hooft coupling, proportional to the inverse string tension according to the
AdS/CFT dictionary.

2.2 One point functions from matrix product states

Due to the restricted amount of symmetries of defect CFTs these theories allow for additional
classes of correlation functions compared to ordinary CFTs and their two- and three-point
functions are more involved than for ordinary CFTs. We shall normalize our operators

1The consistency of this set-up is confirmed by perturbative calculations. One finds that almost all field
excitations for x3 > 0 which are outside the (N − dG) × (N − dG) block become infinitely heavy as the
wall is approached and have propagators with support only in the region x3 > 0 [28]. For a few remaining
excitations this is not the case but for these one needs to impose Dirichlet or Neumann boundary conditions
at the wall to obtain the gauge symmetry U(N − dG) exactly at the wall [29, 30].The few special excitations
can be ignored in the large-N limit.
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such that the two-point functions take the canonical form of an ordinary CFT far from the
defect, i.e.

lim
z3→∞

〈Oi(x+ z)Oj(y + z)〉 = δij

|x− y|∆i+∆j
, (2.7)

where the ∆’s are the conformal dimensions of the operators involved. Our main object of
interest will be the one-point functions which are restricted to take the following form

〈O∆(x)〉 = C

x∆
3
. (2.8)

Due to the non-trivial vevs, one-point functions of operators built from the five scalars
φ1, . . . , φ5 will have non-vanishing one-point functions for x3 > 0 already at tree level. As is
well-known [32] the good conformal operators containing only scalar fields can be described
at the lowest loop level as the eigenstates of an integrable SO(6) spin chain given by the
R-matrix

R(u) = u(u+ 2)I + (u+ 2)P− uK, (2.9)

where P is the permutation operator and K is the trace operator. These eigenstates can in
turn be expressed in terms of three sets of Bethe roots

(
{ui}N0

i=1, {vj}
N+
j=1, {wk}

N−
k=1

)
which

fulfil a set of algebraic Bethe equations. The ui’s are the so-called momentum carrying
roots. We shall collectively refer to the Bethe roots as u and the corresponding eigenstate
as |u〉. Determining the one-point function of a conformal operator at tree level amounts to
inserting the vevs from eqn. (2.2) into the Bethe wave function describing the operator, a
procedure which can conveniently be formulated as calculating the overlap of the Bethe
eigenstate with a matrix product state (MPS) of bond dimension dG, i.e. [9, 10]

C =
(

8π2

λ

)L
2

L−
1
2 Cn, Cn = 〈u |MPSn〉

〈u|u〉
1
2

, (2.10)

where

|MPSn〉 =
∑
~i

tr[Gi1 . . . GiL ]|φi1 . . . φiL〉, (2.11)

with n referring to the dimension of the representation for the vevs via eqn. (2.3). In
practice it is more convenient to work with complex combinations of the scalar fields defined
as follows

X = φ1 + iφ2, Y = φ3 + iφ4, Z = φ5 + iφ6, (2.12)
X̄ = φ1 − iφ2, Ȳ = φ3 − iφ4, Z̄ = φ5 − iφ6. (2.13)

The dictionary between Bethe eigenstates |u〉 and operators built from complex fields can
be found for instance in [32].
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2.3 Exact results for one-point functions

Exploiting the symmetry properties of the G-matrices one can derive the following selection
rule that needs to be fulfilled in order for an operator to have a non-vanishing one-point
function [12]

(L,N0, N+, N−) = (L,N0, N0/2, N0/2), N0 even, (2.14)

where L is the number of fields of the operator. Furthermore, it was shown in [13] that the
matrix product state (2.11) is annihilated by all the odd charges of the integrable SO(6) spin
chain and hence obeys the integrability criterion proposed in [5]. The fact that the matrix
product state is annihilated by all the odd charges gives rise to a number of constraints
on the possible sets of Bethe roots. First, the momentum carrying roots have to come in
pairs with opposite sign of the momenta or rapidities. The same is the case for the other
two types of roots if their number N0/2 is even. If N0/2 is odd the paired roots must be
supplemented by a single additional root at zero [12, 13]. In the remaining part of this
paper we will show that in accordance with the integrability criterion being fulfilled there
does exist a closed formula for the one-point functions in the present case. The formula is
expressed in terms of objects well known from the study of integrable spin chains, namely
the Gaudin determinant [33, 34] which gives the norm of a Bethe eigenstate and three types
of Baxter polynomials corresponding to the three types of Bethe roots,

Q0(a) =
N0∏
i=1

(ia− ui), Q+(a) =
N0/2∏
j=1

(ia− vj), Q−(a) =
N0/2∏
k=1

(ia− wk). (2.15)

The overlap formula reads

〈u |MPSn〉2

〈u|u〉 = Λ2
n ·

Q0 (0)Q0
(

1
2

)
Q̄+ (0) Q̄+

(
1
2

)
Q̄− (0) Q̄−

(
1
2

) · detG+
detG−

, (2.16)

where the bar on the Q’s signifies that a Bethe root at zero should be excluded from the
Baxter polynomial and where detG is the determinant of the Gaudin matrix which for
Bethe states with the roots paired as above factors as detG = detG+ detG−.2,3

The pre-factor Λn is a specific transfer matrix eigenvalue, which will be explained later.
For n = 1 which corresponds to the Gi being the Dirac gamma matrices we find for the
pre-factor

Λ1 =
(
1 + (−1)L

) Q0 (1)
Q0 (0) + (−1)N−

Q−
(

3
2

)
Q−

(
1
2

) + (−1)L+N+
Q+

(
3
2

)
Q+

(
1
2

) , (2.17)

2As far as we know the first appearance of a finite volume overlap involving this ratio of Gaudin-like
determinants was in [35], where a rather general explanation for the ratio was given by focusing on the
density of states. The work [35] treated the excited state g-functions in integrable QFT, which are analogous
to the finite volume spin chain overlaps. In spin chains the same structure was found independently in [23].

3For an illustration of the factorization of the Gaudin determinant in a case with nested Bethe ansatz,
see [11].
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An expression valid for any n ∈ N can likewise be derived and takes the form

Λn = 2L
n
2∑

q=−n
2

qL
[ q∑
p=−n

2

Q0(p− 1
2)

Q0(q − 1
2)
Q−(q)Q−(n2 + 1)
Q−(p)Q−(p− 1)

][ n
2∑
r=q

Q0(r + 1
2)

Q0(q + 1
2)
Q+(q)Q+(n2 + 1)
Q+(r)Q+(r + 1)

]
.

(2.18)

If N0/2 is even the formula immediately gives the value of Λn. If N0/2 is odd and n is even
there can be singularities of the type 0/0 coming from the Baxter polynomials Q+ and Q−
being evaluated at zero. In this case the formula (2.18) still holds but should be understood
in a limiting sense so that for instance for n = 2 and N0/2 even we get

Λ2 = 2L+1 ·
[(1 + (−1)L

)
2 ·

Q0
(

3
2

)
Q0
(

1
2

) + Q−(2)
Q−(0) + (−1)L · Q+(2)

Q+(0)

]
, N0/2 even, (2.19)

whereas for n = 2 and N0/2 odd the result reads

Λ2 = 2L+1 ·
[(1 + (−1)L

)
2 ·

Q0
(

3
2

)
Q0
(

1
2

) + Q−(2)
Q̄−(0)

Q′0
(

1
2

)
Q0
(

1
2

) − Q′−(1)
Q−(1)

+ (2.20)

+ (−1)L · Q+(2)
Q̄+(0)

Q′0
(

1
2

)
Q0
(

1
2

) − Q′+(1)
Q+(1)

], N0/2 odd.

The generalization of this formula to arbitrary values of n can be found in appendix A.

2.4 Strategy of derivation

The overlap formula given by (2.16) and (2.18) has a rather intricate structure with the
pre-factor of the determinant term involving a sum over products of Q-functions. Most
overlap formulas for which an explicit derivation has been possible until now have only a
single product as a pre-factor. This holds for the overlaps of the XXZ spin chain between
Bethe eigenstates and general two-site product states [36], including the Néel state, the
dimer state and the q-deformed dimer state [22–24]. It also holds for overlaps of the XXX
Heisenberg spin chain with matrix product states which are built from the generators of
su(2) in the spin-1/2 representation [9]. An exception is the generalization of the latter
overlaps to higher representations for which a recursive strategy for the derivation could be
pursued [10].

In cases where the pre-factor in the overlap formula consists of a single product the
pre-factor can be found by making use of the thermodynamical Bethe ansatz and exploiting
certain analyticity properties of the Y -functions [36]. For instance, this method makes
it possible to prove an overlap formula, first presented in [11], for the SU(3) spin chain
between Bethe eigenstates and certain matrix product states built from Pauli-matrices, as
we shall show in section 4.1. However, if the pre-factor is more involved, the method only
gives its leading behaviour in the thermodynamical limit.
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Currently, there exists a number of more involved overlap formulas which have been
presented without proof. One gives the overlap formula of the SU(3) spin chain with
matrix product states built from generators of su(2) in higher representations and another
one gives the overlap formula for the integrable SO(6) spin chain with similar matrix
product states [13]. As a side-track of the investigations of the present paper we shall
prove the former of these two formulas which we characterize in terms of symmetries as
the (SU(3), SO(3)) case. Our main goal, however, is to derive the formula (2.16), for
which no proposal existed up to now. This case will correspondingly be denoted as the
(SO(6), SO(5)) case.

Our strategy for deriving the overlap formulas is the following. First we compute the
overlap for a simple matrix product state built from one or two-site states using the TBA
approach. Subsequently we use the representation theory of twisted Yangians to relate the
desired more complicated MPS’s to the simple ones, invoking in the process a reflection
matrix fulfilling the relevant boundary Yang Baxter equation.

In order to verify intermediate steps in the procedure as well as the final formula
we also calculated the desired overlaps numerically. The Bethe states were constructed
either by using the appendix E.5 of [37] or by explicitly diagonalizing the Hamiltonian.
The corresponding Bethe roots have been obtained with the “Fast Bethe Solver” program
[38–40].4 Details of the tests performed can be found in appendix A.

3 Integrability tools for overlaps

In this section we present the main ingredients needed for our derivation of the overlap
formula. First, we recall the definition of integrable initial states and explain that this
concept is related to the existence of an integrable boundary reflection matrix which can
be used to form a double row transfer matrix. Secondly, we review the construction of
the so-called fusion hierarchy of the double row transfer matrix as well as the associated
Y -functions. Finally, we explain how the Y -functions determine the singularity structure of
the overlap formulas via the thermodynamical Bethe ansatz (TBA).

3.1 The integrable boundary reflection matrix

We consider local integrable spin chains, where the local Hilbert space on each site is CN with
some N ≥ 2. The model has an associated fundamental R-matrix R(u) ∈ End(CN ⊗ CN )
which enjoys a symmetry with respect to a Lie group G. In the concrete examples we will
focus on G = SU(N) and G = SO(N).

We define the monodromy matrix of a homogeneous spin chain of length L as

T (u) = R0L(u) . . . R02(u)R01(u). (3.1)

Here 0 refers to the so-called auxiliary space, and in our examples V0 ≈ CN . The transfer
matrix is the trace over the auxiliary space:

t(u) = Tr0T (u). (3.2)
4We would like to thank to C. Marboe and D. Volin for informative discussions and for sharing their

code with us.

9



We also define the space reflected transfer matrix:

t̄(u) = Πt(u)Π = Tr0 R01(u) . . . R0L(u). (3.3)

An initial state |Ψ〉 is said to be integrable if the following condition is fulfilled [5, 8]

t(u)|Ψ〉 = t̄(u)|Ψ〉. (3.4)

We will be interested in a specific type of initial states, namely matrix product states defined
by

|Ψω〉 =
N∑

j1,...,jL=1
tra [ωjL . . . ωj2ωj1 ] |jL, . . . , j2, j1〉, (3.5)

where the matrices ωj , j = 1, . . . , N act on a further auxiliary space Va. Typically the
matrix product state (MPS) is invariant with respect a subgroup G′ ⊂ G. In this case we
say that the symmetry class of the problem is (G,G′). In the cases encountered so far the
two Lie groups are a symmetric pair. In [8] it was found that an MPS is integrable in the
sense described above if it can be embedded into the framework of the (twisted) Boundary
Yang-Baxter relation. We now describe this connection.

Let us consider a rapidity dependent two-site block ψ(u) ∈ CN ⊗ CN ⊗ End(Va). It is
useful to think about ψ(u) as a collection of matrices ψab(u), a, b = 1, . . . , N which act on
Va. As shown in [8], the matrix product state (3.5) is integrable if there exists a solution
ψ(u) to the equation

Ř23(u)(ω ⊗ ψ(u)) = Ř12(u)(ψ(u)⊗ ω), (3.6)

where Ř(u) = PR(u). Written out more explicitly

Řdeab(u)ωdψec(u) = Řdebc (u)ψad(u)ωe. (3.7)

This was dubbed the “square-root relation” because it involves half the steps of the full
Boundary Yang-Baxter (BYB) equation, and implies the initial condition (allowing for an
overall numerical factor)

ψjk(0) = ωjωk. (3.8)

It was also argued in [8] that if certain dressed MPS’s are completely reducible, then the
square root relation is equivalent to the BYB relation. A familiar form of the BYB can be
written down if we identify the K-matrix as

K(u) =
∑
a,b

Eab ⊗ ψab(u), (3.9)

where Eab are the elementary matrices acting on V0. Then the twisted Boundary Yang-
Baxter relation reads:

K2(v)Rt21(−u− v)K1(u)R12(u− v) = R21(u− v)K1(u)Rt12(−u− v)K2(v), (3.10)

where t is partial transposition with respect to one of the spaces:(
Rt(u)

)cd
ab

= Rcbad(u). (3.11)
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The R-matrix is symmetric with respect to the full transposition, therefore we can take the
partial transpose with respect to either space. Note that in the general case K is a matrix
composed of linear operators acting on Va. In our main case of interest where the matrices
ω are given by (2.2) one can show that the following two site block gives a solution of the
square root relation as well as the twisted boundary Yang-Baxter equation

ψab(u) = 2(u+ 1)GaGb − 2u(u+ 1) [Ga, Gb]− u(4u2 + C)δab, (3.12)
ψ66(u) = u(4u(u+ 2)− C), (3.13)

where a, b = 1, . . . , 5 and C is the quadratic Casimir

C =
5∑

a=1
G2
i = n(n+ 4). (3.14)

Via the relation to the reflection matrix (3.9) we thus have an understanding of the
integrability of the matrix product state (2.11) in a scattering picture. This particular
reflection matrix plays a key role for our derivation of the overlap formula (2.16) and (2.18).

3.2 Quantum transfer matrices and the fusion hierarchy

We now reformulate the overlap as a special case of a quantum transfer matrix as described
in [5, 6, 8, 41]. First, let us define inhomogeneous initial states

|Ψ(u1, u2, . . . , uL/2)〉 =
N∑

i1,...,iL=1
tra
[
ψiL,iL−1(uL/2) . . . ψi2,i1(u1)

]
|iL, . . . , i1〉, (3.15)

where ψ(u) is a solution to the BYB. Next, let us consider the scalar product of two matrix
product states corresponding to two solutions ψA(u) and ψB(u), not necessarily coinciding.
For that purpose, we define the dual MPS vectors as

〈
Ψ(u1, u2, . . . , uL/2)

∣∣∣ =
N∑

i1,...,iL=1
tra
[
ψiL,iL−1(−uL/2) . . . ψi2,i1(−u1)

]
〈iL, . . . , i1|. (3.16)

Here the sign difference is important. Next, let us construct the partition functions

ZAB(v1, . . . , vm|u1, . . . , uL/2) =〈
ΨB(u1, . . . , uL/2)

∣∣∣ m∏
j=1

t(vj |u1, . . . , uL/2)
∣∣∣ΨA(u1, . . . , uL/2)

〉
,

(3.17)

where

t(v|u1, . . . , uL/2) = Tr0R0L(v − uL/2)R0L−1(v + uL/2) . . . R02(v − u1)R01(v + u1).

The ZAB are completely symmetric in both the u- and the v-parameters [8]. The ZAB can
be evaluated in the mirror channel by means of certain double row transfer matrices. We
define

TAB(u) = Tr
(
MA(u)Kt

B(−u)
)
, (3.18)

11



where
MA(u) = T (u)KA(u)T t(−u), (3.19)

is the “quantum monodromy matrix”. The partition function is then computed as [8]

ZAB(v1, . . . , vm|u1, . . . , uL/2) = Tr

L/2∏
j=1
TAB(uj |v1, . . . , vm)

 . (3.20)

In the physical cases we require that the “initial state” and the “final state” are adjoints of
each other.

Let us explain the construction of the fusion hierarchy in the case where the symmetry
group is SU(N) and the physical spaces of the spin chain carry the defining representation.
The construction of the fusion hierarchy is rather similar for the periodic case and the
boundary case. It is known that picking any representation, Λ, of SU(N) we can construct
a transfer matrix tΛ(u) (be it a single row or a double row transfer matrix) where the
auxiliary space carries the representation Λ. The representations are indexed by Young
diagrams, and a special role is played by the rectangular diagrams. For a Young diagram
with a rows and m columns let t(a)

m (u) denote the corresponding fused transfer matrix [42].
These transfer matrices satisfy the Hirota equation (T-system)

t(a)
m (u+ i

2)t(a)
m (u− i

2) = t
(a)
m+1(u)t(a)

m−1(u) + t(a−1)
m (u)t(a+1)

m (u),
a = 1, . . . , N − 1, m = 1, 2, . . . .

(3.21)

The Hirota equation has various forms depending on certain “gauge choices.” We refer to
[42] for the discussion of the various conventions. Picking a common eigenvector of the
transfer matrices we define the Y -functions as

Y (a)
m (u) =

t
(a)
m−1(u)t(a)

m+1(u)
t
(a−1)
m (u)t(a+1)

m (u)
. (3.22)

It follows from the Hirota equation that they satisfy the Y -system

Y (a)
m (u+ i

2)Y (a)
m (u− i

2) =
(1 + Y

(a)
m+1(u))(1 + Y

(a)
m−1(u))

(1 + 1/Y (a+1)
m (u))(1 + 1/Y (a−1)

m (u))
, (3.23)

where we note that the Y -functions are gauge independent.
The double row quantum transfer matrices (QTM) defined above can be embedded in

this framework in a straightforward way. In the case of the SU(N)-symmetric chains we
identify

TAB(u) = t
(1)
1 (u), (3.24)

whereas for the SO(6)-symmetric chain we have

TAB(u) = t
(2)
1 (u), (3.25)

due to the fact that the defining representation of SO(6) can be identified with the first
anti-symmetric tensor representation of SU(4), i.e. it is indexed by the Young diagram with
two rows and one column.
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It is our goal to find the Y -functions for the simplest possible case where there are no
transfer matrices in (3.17) inserted between the initial and the final state. This amounts to
the definition

TAB(u) = Tr
(
KA(u)KT

B(−u)
)
. (3.26)

We embed this simple QTM into the fusion hierarchy, which enables us to compute all t(a)
m

and eventually all Y (a)
m . This embedding procedure is straightforward, although somewhat

involved. It can be done in essentially two ways.
One possibility is performing the fusion of the boundary K-matrices explicitly. This

procedure was carried out in [7] for a scalar case in the SU(3)-symmetric model. One
can perform the computations using symbolic manipulation programs. This gives explicit
formulas for the anti-symmetrically fused transfer matrices t(a)

1 . From these functions all
t-functions can be obtained, either by the so-called Bazhanov-Reshetikhin determinant
formula, or in the first few cases by direct application of the T -system. From this we can
also compute the Y -functions analytically. In practice only the first few of these are needed
to fix the overlaps.

The second method involves the explicit diagonalization of the transfer matrices of the
form (3.18). A number of cases have been treated in the literature, from which we can
extract the necessary ingredients. In our concrete computations only the easy case (3.26)
is needed, but for the structure of the TM eigenvalues we need to understand the generic
case. Therefore we introduce the so-called “tableau sum”, which is a general method for
solving the T -system [42, 43]. The idea is to express the transfer matrix eigenvalue as a sum
over all allowed semi-standard Young tableaux of the given shape. Let us take N functions
z(j)(u) where j = 1, . . . , N . The z-functions will serve as fundamental ingredients for the
solution of the T -system. Let τkl denote the element of a tableau τ in row k = 1, . . . , a and
column l = 1, . . . ,m from the top left. Then the formula for the fused eigenvalues is [42, 43]

t(a)
m (u) =

∑
τ

 ∏
k=1,...,a
l=1,...,m

z(τkl)
(
u+ i

a− 2k + 1
2 − im− 2l + 1

2

) . (3.27)

Here the sum runs over all allowed semi-standard tableaux of size (a×m) for the given N .
The rapidity shifts are such that for the geometric center of the diagram we have zero shift,
the shifts are symmetric, and they increase to the right and to the top. For the defining
transfer matrix the eigenvalue is simply:

t
(1)
1 (u) =

N∑
j=1

z(j)(u). (3.28)

The tableau sum is equivalent to the so-called Bazhanov-Reshetikhin determinant formula.
In a generic situation the z(j)(u) functions can be expressed using certain “kinematical

functions” and ratios of certain Q-functions. In our case there is no need to introduce
these Q-functions, because the defining transfer matrix is always given by (3.26), and the
eigenstates of these quantum transfer matrices do not involve any Bethe roots. Nevertheless
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the z-functions can be read off from the diagonalization of the double row transfer matrices
within the Algebraic Bethe Ansatz. We will show explicit examples of this.

3.3 TBA and overlaps

Here we make the connection between the overlaps and Y -functions. Let us consider Bethe
eigenstates given by N1, . . . , Na rapidities for the various possible types, corresponding to
the various nesting levels. We assume that the set of rapidities for each type consists of
pairs with opposite sign. The integrability condition also allows a single rapidity at zero for
non-momentum carrying roots, but in this subsection we discard those cases for simplicity.
The TBA argument presented below is insensitive to the presence or absence of vanishing
rapidities. Let us assume that the overlaps with the initial state can be factorized as follows

|〈Ψ0|u〉|2

〈u|u〉 = C(L)×
N−1∏
a=1

Na/2∏
j=1

v(a)(u(a)
j )× detG+

detG− , (3.29)

where we introduced the one-particle overlap functions v(a)(u). Note that here we only have
a single product in front of the determinants. The pre-factor C(L) does not depend on the
Bethe rapidities, and in the general case it is of the form5

C(L) = C0 α
L, α ∈ R+. (3.30)

In the following we show that the Y -system determines the singularity properties of the
overlap functions through the TBA equations. The main ideas of this approach were laid
out in [41], where the XXZ model was considered. Here we generalize it to the SU(N)-
symmetric models. The main idea is rather simple: We consider large volumes L and the
evaluation of the spectral sum

1 =
∑

u
|〈Ψ0|u〉|2, (3.31)

where it is understood that we sum only over Bethe root configurations with paired rapidities
and a given number of roots of each type. In large volumes the sum on the r.h.s. will be
dominated by Bethe states with a well-defined root distribution. This can be determined
using the Quench Action approach [1], which is basically the Thermodynamic Bethe Ansatz
applied to the spectral sum above, such that the thermal Boltzmann weights are replaced by
the overlaps. The idea is to transform the summation over all Bethe states into a functional
integral over the Bethe root densities, and to derive a generalized free energy functional
which involves both the overlap contribution and the Yang-Yang entropy associated to
the given root distribution. This free energy functional can then be minimized, yielding a
specific Bethe root distribution describing states that dominate the spectral sum. On the
saddle point the value of the free energy functional needs to be zero such that the value
of 1 can be achieved. This argument also explains why we need the Gaudin-like matrices

5In statistical physics one would typically require that in the thermodynamic limit 〈Ψ0|Ψ0〉 = 1 ( but the
norm of the MPS can still have sub-leading pieces which scale to zero exponentially fast in the volume).
However, the holographic one-point functions are given via the overlaps with the non-normalized matrix
product states.
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in the overlaps: they are responsible for the correct O(L0) terms in the generalized free
energy [41].

In large volume the Bethe roots form string solutions. For an m-string of particle type
a the overlap factor is

v(a)
m (u) =

m∏
k=1

v(a)(u+ i(m+ 1− 2k)/2). (3.32)

In the thermodynamical limit, let us denote the root densities for the m-strings of particle
type a as ρ(a)

m (λ). The extensive part of the overlap is then expressed as

log |〈Ψ0|u〉|2 = −
N−1∑
a=1

∞∑
m=1

∫
du g(a)

m (u)ρ(a)
m (u), (3.33)

where
g(a)
m (u) = − log v(a)

m (u). (3.34)

The minus signs above follow merely from some conventions in the earlier literature. Let us
also introduce the hole densities ρ(a)

m,h and the filling fractions

ηam =
ρ

(a)
m,h

ρ
(a)
m + ρ

(a)
m,h

. (3.35)

By standard steps we can derive the TBA equations [1, 4]

log η(a)
m = d(a)

m + s ?
[
log(1 + η

(a)
m−1) + log(1 + η

(a)
m+1)− log(1 + 1/η(a−1)

m )− log(1 + 1/η(a+1)
m )

]
,

(3.36)

where
d(a)
m = −g(a)

m + s ? (g(a)
m−1 + g

(a)
m+1), with g(a)

0 = 0, (3.37)

and
s(u) = π

cosh(πu) . (3.38)

The convolution of two functions is defined as

(f ? g)(u) =
∫
dv

2πf(u− v)g(v). (3.39)

We note that even though the Quench Action TBA (3.36) can be derived using standard
steps, this form valid for the SU(N)-symmetric model with the overlap (3.29) is a new
result of this work. It follows from (3.32) that the source terms can be written alternatively
as

d(a)
m = −g(a)

m + s ? (g(a)+
m + g(a)−

m ), with g(a)
0 = 0. (3.40)

Here we used the notation
f±(u) = f(u± i

2). (3.41)

As explained in [41], the factorized overlap formula implies that the η-functions satisfy the
Y -system (3.23). This is rather non-trivial: the additional source terms in (3.23) could
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in principle modify the algebraic relations between the Y -functions. It is only due to the
special form (3.37)-(3.40) that the Y -system remains intact for the η-functions, and this
follows from the factorizability of the overlap. The η-functions can be identified with the
Y -functions derived from the fusion of the boundary transfer matrices [5, 41]:

η(a)
m ≡ Y (a)

m . (3.42)

This identification is a boundary (or quench) counterpart of the same relation in the
standard thermodynamics, see for example [44]. We use this correspondence to derive the
overlap functions. The basic idea is to take the exact Y -functions derived from the fusion
hierarchy, and to substitute them into the TBA in the integral form (3.36). This will give us
the overlap functions. Instead of directly evaluating the convolutions we choose a different
path. It was argued in [41] that it is enough to focus on the singularity properties of the
Y -functions. Let us define the combination

h(a)
m (u) = Y (a)

m (u)v(a)
m (u). (3.43)

We substitute the r.h.s. of (3.23) into the integral equation (3.36). This leads to the simple
condition

log(h(a)
m ) = s ?

(
log(h(a),+

m ) + log(h(a),−
m )

)
, (3.44)

which is satisfied if the functions log(h(a)
m ) are free of singularities, which again implies that

all h(a)
m are free of zeroes or poles within the physical strip. The latter statement can be

proven using special properties of the convolution kernel s(u). The r.h.s. of (3.44) can be
computed in Fourier space, and from (3.38) we get the Fourier components

s(k) = 1
2 cosh(k/2) . (3.45)

If the functions log(h(a)
m ) are free of singularities, then the Fourier transform of the shifted

functions are equal to the original Fourier components multiplied by e±k/2. This compensates
the multiplication with the Fourier components s(k). However, if there are any singular
points within the physical strip then the Fourier component of the shifted functions includes
additional pieces. Note that singularities precisely at the boundary of the strip =(u) = ±1/2
are allowed. These conditions are rather strong, because the functions h(a)

m eventually
involve all poles or zeroes of the one-particle functions v(a), even when they are originally
far from the physical strip. Therefore, these conditions completely fix the analytic structure
of v(a). Typically the overlap also contains some numerical pre-factors that do not depend
on the Bethe roots. For example for the normalization of the v(a) is not fixed by the
above computations, and there can be the additional factor C(L) in (3.29). In principle
these factors can be computed form the overlap sum rule and by looking at the overlaps
with zero particles [41], however often it is easier to fix them by coordinate Bethe Ansatz
computations. In the present work we choose this second option.

16



4 Application of the TBA

In this section we apply the general results of the previous section to determine the overlaps
for a set of simple “base” states which will be our starting point for the derivation of overlap
formulas for more involved matrix product states encoding information about one-point
functions for the D3-D7 as well as the D3-D5 probe brane set-up. In section 4.1 we consider
the SU(3)-symmetric spin chain and in section 4.2 the SO(6) symmetric one.

4.1 Overlaps with symmetry class (SU(3), SO(3))

The Y -system for the SU(3) spin chain is given in eqns. (3.23) with a = 1, 2. In the
following we will replace these indices with the indices a = 0,+ so that the index 0 is
associated with momentum carrying Bethe roots and the index + with auxiliary Bethe
roots.

The scalar state: Let us define the following “delta-state”

|Ψδ〉 = ⊗L/2j=1(|11〉+ |22〉+ |33〉), (4.1)

This state corresponds to the two-site block

ψab(u) = δab, (4.2)

which is a constant solution to the BYB. Overlaps and quantum quenches for this state
were considered in [6, 7] where it was found that the overlap is of the form (3.29) with
C(L) = 1 and

v(0)(u) = v(+)(u) = u2

u2 + 1/4 . (4.3)

Furthermore, it was derived that the first Y -functions are

Y
(0)

1 (u) = Y
(+)

1 (u) = 3 + 8u2

4u2 . (4.4)

Now we check that the functions h(a)
m (u) defined in (3.43) satisfy our requirements. First of

all, we can see immediately that h(0)
1 and h(+)

1 are indeed free of singularities within the
physical strip. Going further, we can compute the higher Y -functions from the Y -system
(3.23). In the next cases we get:

h
(0)
1 = h

(+)
1 = 5(4u2 + 1)

(
8u2 + 11

)
4(u2 + 1) (8u2 + 3) . (4.5)

Once more we see that the requirement is satisfied. At present we don’t have a proof that
the requirement will be satisfied for all higher Y functions, but direct computation of the
next few cases confirms this. The Y -functions are such that Y (a)

m have zeroes at u = 0 if m
is even and poles if m is odd. This is consistent with the overlap functions above. However,
at present we do not have a proof showing that there are no additional singularities of
log(Y (a)

m ) within the physical strip.
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MPS with bond dimension 2 Let us define |MPS 2〉 as a matrix product state (3.5)
with the ωa being the Pauli matrices, i.e.

ωa = σa, a = 1, 2, 3, (4.6)

with [σa, σb] = iεabcσc. Overlaps with this state were found in [11], and quantum quenches
were studied in [4]. Once again the overlap is of the simple form (3.29) with α = 1

4 , C0 = 4
and

v(0)(u) = v(+)(u) = u2 + 1/4
u2 , (4.7)

More precisely,
〈MPS2|u〉2

〈u|u〉 = 41−L ·
Q0(1

2)Q+(1
2)

Q0(0)Q̄+(0)
· detG+

detG−
. (4.8)

The solution of the BYB corresponding to this state is [8]

ψab(u) = σaσb + 2uδab. (4.9)

In this case the quantum transfer matrix is actually a matrix. We found that in the physical
strip the dominant eigenvalue is produced by the singlet state and we computed the fusion
hierarchy for this eigenstate. The first two Y -functions take the form:

Y
(0)

1 = Y
(+)

1 = u2(17 + 8u2)
(1 + u2)(3 + 4u2) , (4.10)

and one observes that the requirements for h(0)
1 (u) and h(+)

1 (u) are clearly satisfied. Com-
puting higher Y -functions from (3.23) we see a pattern that the Y (a)

m have poles at u = 0 if
m is even and zeroes if m is odd. This is consistent with the overlap functions above, and
this can be considered as an independent derivation of (4.7).

Higher dimensional MPS Further integrable MPS’ with the same symmetry were
studied in [13], i.e.

|MPS 2s+1〉 =
3∑

j1,...,jL=1
trA [SjL . . . Sj2Sj1 ] |jL, . . . , j2, j1〉, (4.11)

where Sa are the Hermitian generators of SU(2) in the spin-s representation with dimension
2s+ 1 which satisfy the commutation relations [Sa, Sb] = iεabcSc. It was found in [13] that
the corresponding overlaps include a sum of pre-factors:

〈u|MPS 2s+1〉2

〈u|u〉 = (T2s(0))2 ·
Q0(0)Q0(1

2)
Q̄+(0)Q̄+(1

2)
· detG+

detG−
, (4.12)

where

T2s(x) =
s∑

a=−s
(x+ ia)L

Q0(−ix+ 2s+1
2 )Q+(−ix+ a)

Q0(−ix+ (a+ 1
2))Q0(−ix+ (a− 1

2))
. (4.13)
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The corresponding solution to the BYB reads [8]:

ψ
(s)
ab (u) = δab + u−1 [Sa, Sb]− u−2SaSb. (4.14)

In this case the TBA method can not be applied to derive the overlap, and we need
the representation theory of the twisted Yangians which we invoke in section 5 to relate
|MPS2s+1〉 to |Ψδ〉 when 2s+ 1 is odd and to |MPS 2〉 when 2s+ 1 is even. This will allow
us to prove the overlap formula of relevance for one-point functions in the SU(3) sector of
the D3-D5 probe brane set-up [13].

4.2 An overlap with symmetry class (SO(6), SO(5))

We now turn to the SO(6)-symmetric model for which the Y -system is given by (3.23) with
a = 1, 2, 3. In the following we will replace these indices with a = 0,+,− such that the
index 0 corresponds to momentum carrying Bethe roots and the indices +,− correspond
to auxiliary Bethe roots. The defining transfer matrix of the SO(6)-symmetric model is
identified with t(2)

1 (u) of the fusion hierarchy. Let us consider the scalar one-site state

|Ψ0〉 = ⊗Lj=1|1〉, (4.15)

which in terms of fields of N = 4 super Yang-Mills theory takes the form

|Ψ0〉 = Tr (Z + Z)⊗L. (4.16)

This corresponds to the MPS with bond dimension 1 given by

ωa =

1 a = 1,
0 1 < a ≤ 6.

(4.17)

Clearly this state enjoys a residual SO(5)-symmetry. It is important that this state is not
an eigenstate of the model, but integrable. The integrability is proved by finding a solution
to the BYB reproducing this state:

ψab(u) = (2u+ 2)ωaωb − uδab. (4.18)

We compute the first Y -functions using the fusion procedure and find

Y
(+)

1 = Y
(−)

1 = 5u2

3u2 + 2 ,

Y
(0)

1 = 5(4u2 + 1)(4u2 + 5)
16u2(4u2 + 9) .

(4.19)

We can calculate these Y -functions in an alternative way since the algebraic Bethe Ansatz
for this boundary condition was already treated in [45]. From Subsection 3.3 of that work
we can identify the z-functions for an open spin chain with arbitrary sites and boundary
condition given by (4.18). The result reads 6

z1(u) = z2(u) = u− i/2
u+ i/2 , z3(u) = z4(u) = 1. (4.20)

6Note, that in the present case the QTM’s do not include any sites, cf. eqn. (3.26). Thus the z-functions
are obtained entirely from the reflection matrices.
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Afterwards we can use the tableau sum to obtain the Y -functions (4.19). Computing higher
Y -functions we see the following general pattern:

Y (+)
m = Y (−)

m = α1,mu
2

α2,m + α3,mu2 ,

Y (0)
m = (α4,m + α5,mu

2)(α6,m + α7,mu
2)

u2(4u2 + (m+ 2)2) ,

(4.21)

where α{1..6},m are integers such that there are no additional poles and zeroes within the
physical strip other than the obvious ones at u = 0. This suggests the following overlap
functions:

v(+)(u) = v(−)(u) = 1
u2(u2 + 1/4) ,

v(0)(u) = u2(u2 + 1/4).
(4.22)

These overlap functions were confirmed by coordinate Bethe Ansatz computations. More
precisely, the exact overlaps read

〈Ψ0|u〉
〈u|u〉

2
=

Q0(0)Q0(1
2)

Q̄+(0)Q̄+(1
2)Q̄−(0)Q̄−(1

2)
detG+
detG−

, (4.23)

In section 5.4 we will show that we can obtain the general SO(5) symmetric MPS of eqn.
(2.11) bye acting on the state (4.15) with certain transfer matrices. This then allows us to
prove the overlap formula (2.16) and (2.18).

4.3 An overlap with symmetry class (SO(6), SO(3) × SO(3))

In the SO(6)-symmetric model we consider the state

|Φso(3)〉 = (ZZ +XX + Y Y + ZZ +XX + Y Y )⊗
L
2 . (4.24)

This is an integrable initial state, which corresponds to a constant solution of the BYB. We
computed the corresponding T -functions and Y -functions. The first Y -functions are

Y
(+)

1 (u) = Y
(−)

1 (u) = 5u2 + 2
3u2 ,

Y
(0)

1 (u) = 20u2 + 9
16u2 .

(4.25)

In the language of SU(4) this state corresponds to the symmetry class (SU(4), SO(4)).
This is analogous to the case of the Delta-state considered in Section 4.1. Moreover, it can
be shown that the Y -functions are the same as they would be for the Delta-state of the
SU(4)-symmetric model. It follows that the overlap functions are identical to that of the
Delta-state, but now the same function describes the overlap factors for 3 different types of
rapidities:

v(0)(u) = v(+)(u) = v(−)(u) = u2

u2 + 1/4 . (4.26)
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Putting everything together we find the overlap

〈Φso(3)|u〉2

〈u|u〉 = Q0(0)Q+(0)Q−(0)
Q0(1

2)Q+(1
2)Q−(1

2)
detG+
detG−

. (4.27)

This overlap formula was then checked and verified on spin chains of length up to 8. We
expect that by means of representation theory of twisted Yangians we would be able to
exploit this result for a proof of the overlap formula giving the one-point functions of the
full scalar SO(6) sector of the D3-D5 probe brane set-up [13]. For simplicity, we consider
only the proof for the SU(3)-sub-sector in this case.

5 The twisted Yangian

In this section we will demonstrate how to refine the factorized overlap formulas from the
TBA approach by using the representation theory of twisted Yangians. Twisted Yangians
are the symmetry algebras that naturally arise when part of the symmetry algebra is broken,
for example by integrable boundary conditions.

5.1 Approach

In this section we give a brief overview of our approach to the computation of overlap
formulas by using twisted Yangians. We will carry out the explicit computations and give
the details in the following sections.

Consider an R-matrix R(u) which satisfies the Yang-Baxter equation

R12(u− v)R13(u)R23(v) = R23(v)R13(v)R12(u− v), (5.1)

Corresponding to this R-matrix, there is a quantum group defined by the so-called RTT
relations

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v), (5.2)

where we defined

T (u) =
∑
i,j

eij ⊗ tij(u). (5.3)

For rational R-matrices, this algebra turns out to be a so-called extended Yangian algebra
Y (g) corresponding to some Lie algebra g.

Now suppose we impose some boundary conditions corresponding to some reflection
matrix K that breaks part of this Yangian symmetry. In particular, suppose that K
preserves some subalgebra h. Such a system is integrable if K satisfies the (twisted)
boundary Yang-Baxter equation cf. (3.10)

K2(v)Rt21(−u− v)K1(u)R12(u− v) = R21(u− v)K1(u)Rt12(−u− v)K2(v), (5.4)

where we assume that R is symmetric and denote Rt = Rt1 = Rt2 as the partial transpose.
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From the K-matrix we can then define a subalgebra Y tw ⊂ Y by introducing the
so-called S-matrix, cf. (3.18)

S(u) ≡ T (u)K(u)T t(−u). (5.5)

From the reflection equation and the Yang-Baxter equation it is then straightforward to
show that

S2(v)Rt21(−u− v)S1(u)R12(u− v) = R21(u− v)S1(u)Rt12(−u− v)S2(v). (5.6)

This can now be interpreted as the defining relations of a new algebra Y tw which is, up
to some identifications due to the symmetry properties of the explicit K-matrix, called a
twisted Yangian. We will denote the integrable system corresponding to this set-up (g, h).

Clearly, any representation of a twisted Yangian will give rise to an integrable initial
state [8]. Similarly, it can be argued that the action of the transfer matrix of the twisted
Yangian on an integrable initial state gives rise to a new integrable initial state. We will
now apply this fact to the two systems that we consider in the paper, (SU(3), SO(3)) and
(SO(6), SO(5)). In particular, we will consider the representation theory of both twisted
Yangians related to our initial states and find explicit expressions for the eigenvalues of the
corresponding transfer matrices. From this, we will be able to derive the complete overlap
formula for both set-ups.

5.2 Definitions and preliminaries

5.2.1 Lie algebras and highest weight representations

We work with Lie algebras glN and soN . Let us denote the generators of glN and soN by
Eij and Fij . For glN , indices run through the set {1, . . . , N}. For so2n and so2n+1, the
indices are {−n, . . . ,−1, 1, . . . , n} and {−n, . . . ,−1, 0, 1, . . . , n}.

Lie algebra glN The Lie algebra glN is defined by the relations

[Eij , Ekl] = δjkEil − δilEkj . (5.7)

Let L(λ1, . . . , λN ) be the highest weight rep of glN with highest weights λ1, . . . , λN , i.e.
there exists a nonzero vector v ∈ L(λ1, . . . , λN ) such that L(λ1, . . . , λN ) is generated by v
and

Eij · v = 0, for all i < j, (5.8)
Eii · v = λiv, i = 1, . . . , N. (5.9)

The L(λ1, . . . , λN ) is finite dimensional iff λi − λi+1 ∈ N for i = 1, . . . , N − 1.

Lie algebra soN The Lie algebra soN is defined by the relations

[Fij , Fkl] = δjkFil − δilFkj + δj,−lFk,−i − δi,−kF−j,l, (5.10)
F−j,−i = −Fi,j . (5.11)
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Let N = 2n and N = 2n+ 1 for even and odd N respectively. For any n-tuble (λ1, . . . , λn)
there exists an irreducible highest weight representation V (λ1, . . . , λN ) of soN which is
generated by a vector w for which

Fij · w = 0, for i < j, (5.12)
Fii · w = λiw, for i = 1, . . . , n. (5.13)

The representation V (λ1, . . . , λN ) is finite dimensional if and only if

λi − λi+1 ∈ N, for i = 1, . . . , n, (5.14)
−λ1 − λ2 ∈ N, if N = 2n, (5.15)
−2λ1 ∈ N, if N = 2n+ 1. (5.16)

5.2.2 Matrix operators

Let the eij ’s be the matrix unities of End(CN ). Using these one can build the permutation
operator

P =
∑
ij

eij ⊗ eji. (5.17)

For the soN models one can build the trace operator

K =
∑
ij

eij ⊗ (eji)t =
∑
ij

eij ⊗ e−i,−j , (5.18)

where we defined the transposition (ei,j)t = e−j,−i.
Using these operators we can define the glN and soN R-matrices

R(u) = I− P
u
, (5.19)

R(u) = I− P
u

+ K
u− κ

, (5.20)

where κ = N/2− 1. The soN R-matrix satisfies the crossing equation

Rt(u) = Rt1(u) = Rt2(u) = R(κ− u). (5.21)

5.2.3 Yangians and highest weight representations

Yangian Y (N) and extended Yangian X(soN ) The Yangian Y (N) [46] and ex-
tended Yangian X(soN ) [47] are associative algebras with generators t(k)

ij where k ∈ Z+
satisfying some quadratic relations. These can be written in a more compact form using
the formal series

tij(u) = δij +
∞∑
k=1

t
(k)
ij u

−k, (5.22)

and define the T-matrix according to (5.3). The defining relation of Y (N) and X(soN ) are
then given by the RTT relations (5.2), where we need to use the glN and soN symmetric R-
matrices (5.19) respectively. These algebras also form Hopf-algebras but only the co-product
is needed

∆ : tij(u)→
∑
a

tia(u)⊗ taj(u). (5.23)
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There is an algebra homomorphism ev : Y (N)→ U(glN ) such that

ev : tij(u)→ δij + u−1Eij , (5.24)

where Eij ’s are the generators of glN . Using the evaluation homomorphism (5.24), the glN
rep L(λ1, . . . , λN ) is also an h.w. representation of Y (N) i.e.

tij(u) · v = 0, for i < j, (5.25)
tii(u) · v = λi(u)v, for i = 1, . . . , N, (5.26)

where λi(u) = 1 + λiu
−1. Let us use the following notation

tij(u) · L(λ1, . . . , λN ) = L(λ1,...,λN )
ij (u)L(λ1, . . . , λN ). (5.27)

The matrix L is the Lax-operator.

Connection between Y (4) and X(so6) Unfortunately, in contrast to the Yangian
Y (N), there is no surjective homomorphism from X(soN ) onto the algebra U(soN ), therefore
we can not use soN modules as X(soN ) modules in generally. Nevertheless if we work only
with X(so6) we can use gl4 representations since there exists a Hopf-algebra homomorphism
between X(so6) and Y (4) such that

T so6(u)→ (1− P )T gl4
1 (u)T gl4

2 (u− 1) = T
gl4
2 (u− 1)T gl4

2 (u) (1− P ) , (5.28)

where (1− P ) is a projection of C4 ⊗ C4 to the anti-symmetric subspace C6. Consider
the vector space C4 with the canonical basis e1, e2, e3, e4 and the vector space C6 with
the canonical basis v−3, v−2, v−1, v1, v2, v3. We can identify the anti-symmetric subspace of
C4 ⊗ C4 with C6 as

v−3 = e1 ⊗ e2 − e2 ⊗ e1, v3 = e3 ⊗ e4 − e4 ⊗ e3, (5.29)
v−2 = e3 ⊗ e1 − e1 ⊗ e3, v2 = e2 ⊗ e4 − e2 ⊗ e4, (5.30)
v−1 = e1 ⊗ e4 − e4 ⊗ e1, v1 = e2 ⊗ e3 − e3 ⊗ e2. (5.31)

Using the evaluation homomorphism (5.24), the gl4 module L(λ1, λ2, λ3, λ4) is an X(so6)
module.

5.2.4 Twisted Yangians

Twisted Yangian Y +(3) Let us now define the twisted Yangian Y +(3) [46]. In this
paragraph we assume that i, j run through the set {−1, 0, 1}. Let us then introduce the
S-matrix (5.5), which now takes the explicit form

S(u) := T (u)T t(−u), (5.32)

or in terms of its matrix elements S(u) = (sij(u))

sij(u) =
∑
a

tia(u)t−j,−a(−u), (5.33)
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where tij(u)’s are the generators of Y (3). The twisted Yangian Y +(3) is generated by sij(u),
therefore Y +(3) is a sub-algebra of Y (3).

Using (5.32), one can derive that the matrix S(u) satisfies the quaternary relation (5.6)
and additionally the symmetry relation

St(−u) = S(u) + 1
2u (S(u)− S(−u)) , (5.34)

From the symmetry relation (5.34) we can then obtain that the elements

s
(k)
11 , s

(k)
10 , s

(k)
01 , s

(2k)
00 , s

(2k)
1,−1, s

(2k)
−1,1, k = 1, 2, . . . , (5.35)

constitute a system of linearly independent generators.
The Y +(3) module V is highest weight if there exists a nonzero vector v ∈ V such that

V is generated by v and

sij(u) · v = 0, for i < j, (5.36)
sii(u) · v = µi(u)v, for i = 0, 1. (5.37)

In [46] it was shown that every finite dimensional irrep of Y +(3) is a highest weight
representation (Theorem 3.3).

The mapping
Fij → s

(1)
ij , (5.38)

defines an inclusion U(so3) → Y +(3). We can choose the following conventions for the
so3 ∼= sl2 generators

Sz = −F11 = F−1,−1, (5.39)
S+ = F01 = −F−1,0, (5.40)
S− = F10 = F0,−1. (5.41)

Using the defining equation (5.32) of Y +(3), the gl3 module L(λ1, λ2, λ3) defines also an
Y +(3) module. Let |a1, a2, a3〉 ∈ L(α, β, γ) such that

Eii · |a1, a2, a3〉 = ai |a1, a2, a3〉 . (5.42)

Using (5.38) and (5.39)-(5.41), we can obtain that

Sz · |a1, a2, a3〉 = (a1 − a3) |a1, a2, a3〉 . (5.43)

We can also see that

• the gl3 generators E1,0 and E0,−1 decrease the sl2 weight by one,

• the gl3 generators E0,1 and E−1,0 increase the sl2 weight by one,

• the gl3 generator E1,−1 decreases the sl2 weight by two,

• the gl3 generators E−1,1 increases the sl2 weight by two.
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In the following we will use the gl3 module L(λ1, λ1, λ2) which is a highest weight rep of
Y +(3) with highest weight

µ1(u) = (1 + λ2u
−1)(1− λ1u

−1), (5.44)
µ0(u) = (1 + λ1u

−1)(1− λ1u
−1). (5.45)

Using Lax-operator we can write

sij(u) · v =
∑
a

L(λ1,λ1,λ2)
i,a (u)L(λ1,λ1,λ2)

i,−a (−u)v, (5.46)

for all v ∈ L(λ1, λ1, λ2).
From the co-product of Y (3) (5.23), one can show that the twisted Yangian Y +(3) is a

co-ideal sub-algebra of Y (3) i.e.

∆ (sij(u)) =
∑
ab

tia(u)t−j,−b(−u)⊗ sab(u) ∈ Y (3)⊗ Y +(3). (5.47)

Using this equation, any tensor product L⊗ V of a Y (3) module L and a Y +(3) module V
is a Y +(3) representation i.e.

y · (v ⊗ w) = ∆ (y) (v ⊗ w) , (5.48)

where y ∈ Y +(3), v ∈ L and w ∈ V .

Extended twisted Yangian X(so6, so5) Let us again introduce the matrix S-matrix
(5.5) by setting

S(u) := T (u)K(u)T t(−u), (5.49)

where T (u) is the generating function of X(so6) and the K-matrix is explicitly given by

K(u) =



u
u+1 0 0 0 0 0
0 u

u+1 0 0 0 0
0 0 − 1

u+1 1 0 0
0 0 1 − 1

u+1 0 0
0 0 0 0 u

u+1 0
0 0 0 0 0 u

u+1


. (5.50)

The algebra generated by sij(u) is the extended twisted Yangian X(so6, so5) [48], therefore
X(so6, so5) is a sub-algebra of X(so6).

The K-matrix satisfies the twisted Yang-Baxter equation (5.4) and the following
symmetry equation

Kt(u) = K(−u)− 2u
(u+ 1) (u− 1)1. (5.51)

Using (5.21) and (5.51) one can then derive that the matrix S(u) satisfies the following
quaternary relation and symmetry relation

R12(u− v)S1(u)R12(u+ v + 2)S2(v) = S2(v)R12(u+ v + 2)S1(u)R12(u− v), (5.52)

St(u) = S(−u) + 1
2u (S(u)− S(−u))− 1

2u− 2tr (S(u)) I. (5.53)
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In [48] it was shown that the reflection algebras generated by (5.52) and (5.53) are isomor-
phic to X(so6, so5) (Theorem 4.2). Unfortunately, the representation theory of X(so6, so5)
has hardly been studied in the literature. In [49, 50] only twisted Yangians with diagonal
K-matrix were studied. Therefore the twisted Yangian X(so6, so5) was ignored (see the
explicit form of the K-matrix (5.50)). To the best of our knowledge the proper definition of
the X(so6, so5) highest weight representations has not yet appeared in the literature. Nev-
ertheless, using the algebra homomorphism (5.28) and investigating the algebra embedding
U(so5) ⊂ X(so6, so5) we can conjecture that the following is the correct definition for the
X(so6, so5) highest weight representations. The X(so6, so5) module V is highest weight if
there exists a nonzero vector v ∈ V such that V is generated by v and

sij(u) · v = 0, for all i < j where (i, j) 6= (−1, 1), (5.54)
sii(u) · v = µi(u)v, (5.55)

s1,−1(u) · v = µ(+)(u)v, (5.56)
s−1,1(u) · v = µ(−)(u)v. (5.57)

From the symmetry relation (5.53) we can obtain that µi(u)s are not independent, every
µi(u) can be expressed with µ1(u), µ2(u) and µ3(u). Using the defining equation (5.49) of
X(so6, so5), the gl4 module L(λ1, λ2, λ3, λ4) also defines an X(so6, so5) module.

5.3 (SU(3),SO(3)) case

Now let us continue with the representation which come from the MPS. We consider the
(SU(3), SO(3)) K-matrix as given by (4.14). From that representation we can derive the
following components in the complex basis, see also [30]

ψ
(s)
1,1(u) = 1− u−1Sz −

1
2u
−2 (s(s+ 1)− Sz(Sz + 1)) , (5.58)

ψ
(s)
0,0(u) = 1− u−2S2

z , (5.59)

ψ
(s)
−1,−1(u) = 1 + u−1Sz −

1
2u
−2 (s(s+ 1) + Sz(Sz + 1)) , (5.60)

ψ
(s)
0,−1(u) = −2iu−1S− − iu−2SzS−, (5.61)

ψ
(s)
1,0(u) = 2iu−1S− − iu−2S−Sz, (5.62)

ψ
(s)
1,−1(u) = u−2S2

−, (5.63)

ψ
(s)
−1,0(u) = 2iu−1S+ + iu−2S+Sz, (5.64)

ψ
(s)
1,0(u) = −2iu−1S+ + iu−2SzS+, (5.65)

ψ
(s)
1,−1(u) = u−2S2

+, (5.66)

where S2
x + S2

y + S2
z = s(s+ 1). This is a k = 2s+ 1 dimensional irreducible representation

of the twisted Yangian Y +(3). Let us denote it V (s). The Y +(3) highest weights of V (s)
are

µ1(u) = (1− su−1), (5.67)
µ0(u) = (1− s2u−2). (5.68)
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From (5.44) and (5.45) we can see that V (s) can be embedded into L(λ1, λ1, λ2) if λ1 = s

and λ2 = 0 but L(s, s, 0) is finite dimensional iff s ∈ N, therefore we only have chance to
find connection between |Ψδ〉 and |MPS k〉 when k is odd.

For even k we have to use tensor product representations (see 5.47 and (5.48)). The
representation L(λ1, λ1, λ2)⊗ V (1/2) has highest weight

µ1(u) = (1 + λ2u
−1)(1− λ1u

−1)
(

1− 1
2u
−1
)
, (5.69)

µ0(u) = (1− λ2
1u
−2)

(
1− 1

4u
−1
)
, (5.70)

we can see that V (s) can be embedded into L(λ1, λ1, λ2)⊗ V (1/2) if λ1 = s and λ2 = 1/2.

5.3.1 Odd k = 2s + 1

We have seen that the even and odd k cases must be treated differently. Let us start with
the odd case. We can show that V (s) is embedded into L(s, s, 0) where s ∈ Z+ for small s.
These calculations can be found in appendix B. Using these explicit results we conjecture
the embedding for general s the twisted Yangian Y +(3) acts on L(s, s, 0) ∼= V (s)⊕L(s, s, 2)
as

sij(u) · v1 = L(s,s,0)
ia (u)L(s,s,0)

−j,−a(−u)v1 =

=
(
ψ

(s)
i,j (u) X

0 L(s,s,2)
ia (u)L(s,s,2)

−j,−b (−u)

)(
w1
w2

)
, (5.71)

for all y ∈ Y +(3) where v ∈ L(s, s, 0), w1 ∈ V (s), w2 ∈ L(s, s, 2) and s ∈ Z>1. In (5.71) we
used the following conjecture.

Conjecture 1. The L(s, s, 2) is an irrep of Y +(3) for all s > 1.

Ratio of the overlaps In the following we will show that these results are consistent
with the overlap formulas (4.12) and (4.13). So far, we used the convention (5.19) for the
R-matrix but now we switch to the slightly different convention

R̃(u) = u I + iP, (5.72)

and hence use rescaled matrices:

s̃i,j(u) = u2si,j(iu), (5.73)
t̃i,j(u) = uti,j(iu). (5.74)

Let ρ be a representation of the the twisted Yangian and let us define the spectral parameter
independent matrix

φij = ρ(sik(0))Ckj = ρ(si,−j(0)), (5.75)

where C is the charge conjugation matrix. Furthermore, let us define the following state

|Ψ〉 =
∑

i1,j1,...iL/2,jL/2

trA
[
φi1j1 . . . φiL/2jL/2

] ∣∣∣i1, j1, . . . , iL/2, jL/2〉 . (5.76)
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For the trivial representation
ρ(s̃ij(u)) = δi,j , (5.77)

and |Ψ〉 = |Ψδ〉 given in eqn. (4.1). For representations L(s, s,m) and V (s) we can obtain
the following states∑

trA
[
L̃(s,s,m)
i1a1

(0)L̃(s,s,m)
j1,−a1

(0) . . . L̃(s,s,m)
iL/2aL/2

(0)L̃(s,s,m)
jL/2,−aL/2

(0)
] ∣∣∣i1, j1, . . . , iL/2, jL/2〉 , (5.78)∑

trA
[
Si1Sj1 . . . SiL/2SjL/2

] ∣∣∣i1, j1, . . . , iL/2, jL/2〉 . (5.79)

Therefore the equation (5.71) connects |MPS 2s+1〉 to the delta-state |Ψδ〉 as

|MPS 2s+1〉 =
(
T̃ (s,s,0)(0)− T̃ (s,s,2)(0)

)
|Ψδ〉 , (5.80)

where

T̃ (s,s,m)(u) = Tr0
[
L(s,s,m)

01 (u) . . .L(s,s,m)
0L (u)

]
, (5.81)

L̃(s,s,m)(u) = L̃(s,s,m)
i,j (u)⊗ ei,j = u I− iE(s,s,m)

i,j ⊗ ei,j = u I + iE
(−m,−s,−s)
i,j ⊗ ej,i, (5.82)

where we used that Ei,j → −Ej,i is a Lie-algebra automorphism and it connects a represen-
tation to its contra-gradient. Let us use another notation:

L̃(s)(u) = u− is− 1
2 + iE

(s,0,0)
i,j ⊗ ej,i, (5.83)

T̃ (s)(u) = Tr0
[
L̃(s)

01 (u) . . . L̃(s)
0L(u)

]
. (5.84)

From (5.82) and (5.83) we can see that

L̃(s,s,0)(u) = L̃(s)
(
u− is+ 1

2

)
, (5.85)

L̃(s,s,2)(u) = L̃(s−2)
(
u− is+ 3

2

)
, (5.86)

therefore
|MPS 2s+1〉 =

(
T̃ (s)

(
−is+ 1

2

)
− T̃ (s−2)

(
−is+ 3

2

))
|Ψδ〉 , (5.87)

and the ratio of the overlaps is equal to the difference of eigenvalues of transfer matrices

〈MPS 2s+1|u〉
〈Ψδ|u〉

= T̃ (s)
(
−is+ 1

2

)
− T̃ (s−2)

(
−is+ 3

2

)
. (5.88)

The eigenvalues of the transfer matrices can be written as [51]

T̃ (s)(u) = Q0

(
−iu− s

2

)
Q+

(
−iu+ s+ 3

2

) s∑
k=0

(
u+ i s+1

2 − ik
)L
Q+

(
−iu+ s+1

2 − k
)

Q0
(
−iu+ s

2 − k
)
Q0
(
−iu+ s+2

2 − k
) ×

k∑
l=0

Q0
(
−iu+ s+2

2 − l
)

Q+
(
−iu+ s+1

2 − l
)
Q+

(
−iu+ s+3

2 − l
) . (5.89)
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Let us assume that L,N0, N+ are even, then

T̃ (s)
(
−is+ 1

2

)
− T̃ (s−2)

(
−is+ 3

2

)
=

= Q0

(
s+ 1

2

)
Q+ (1)

s∑
k=0

(ik)L Q+ (k)
Q0
(
k + 1

2

)
Q0
(
k − 1

2

) k∑
l=0

Q0
(
l − 1

2

)
Q+ (l)Q+ (l − 1)−

−Q0

(
s+ 1

2

)
Q+ (1)

s−2∑
k=0

(ik + i2)L Q+ (k + 2)
Q0
(
k + 5

2

)
Q0
(
k + 3

2

) k∑
l=0

Q0
(
l + 3

2

)
Q+ (l + 2)Q+ (l + 1) =

=
Q0
(

1
2

)
Q+ (0)Q0

(
s+ 1

2

) s∑
k=1

2 (ik)L Q+ (k)
Q0
(
k + 1

2

)
Q0
(
k − 1

2

) , (5.90)

i.e.

T̃ (s)
(
−is+ 1

2

)
− T̃ (s−2)

(
−is+ 3

2

)
=
Q0
(

1
2

)
Q+ (0) T2s(0), (5.91)

which is consistent with

〈Ψδ|u〉 = Q+(0)
Q0
(

1
2

)
√√√√√ Q0(0)Q0

(
1
2

)
Q̄+(0)Q̄+

(
1
2

)√detG+
detG−

, (5.92)

and

〈MPS 2s+1|u〉 = T2s(0)

√√√√√ Q0(0)Q0
(

1
2

)
Q̄+(0)Q̄+

(
1
2

)√detG+
detG−

. (5.93)

5.3.2 Even k = 2s + 1

Let us continue with the representations L(s, s, 1/2)⊗V (1/2) where s = 3
2 ,

5
2 , . . . . For general

s, the twised Yangian Y +(3) acts on L(s, s, 1/2)⊗V (1/2) ∼= V (s)⊕ (L(s, s, 2)⊗ V (1/2)) as

sij(u) · (v1 ⊗ v2) = L(s,s,1/2)
ia (u)L(s,s,1/2)

−j,−b (−u)v1 ⊗ ψ(1/2)
a,b (u)v2 =

=

(1− 1
4u
−2
)
ψ

(s)
i,j (u) X

0 L(s,s,3/2)
ia (u)L(s,s,3/2)

−j,−b (−u)⊗ ψ(1/2)
a,b (u)

( w1
w2 ⊗ w3

)
, (5.94)

for all v1 ∈ L(s, s, 1/2), v2, w3 ∈ V (1/2), w1 ∈ V (s), w2 ∈ L(s, s, 3/2) and s ∈ Z+ + 1/2.
We used the following conjecture.

Conjecture 2. The L(s, s, 3/2)⊗ V (1/2) is an irrep of Y +(3) for all s ∈ Z+ + 1
2 .

See appendix B for the explanation.

Ratio of the overlaps In the following let us check that these results are consistent with
the overlap formulas. The equation (5.94) connects |MPS 2s+1〉 to |MPS 2〉 as

|MPS 2s+1〉 =
(2
i

)L (
T̃ (s,s,1/2)(0)− T̃ (s,s,3/2)(0)

)
|MPS 2〉, (5.95)
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where the factor (2/i)L comes from the prefactor of ψ(s)
i,j (u) in (5.94). From (5.82) and

(5.83) we can see that

L̃(s,s,1/2)(u) = L̃(m)
(
u− im+ 2

2

)
, (5.96)

L̃(s,s,3/2)(u) = L̃(m−1)
(
u− im+ 3

2

)
, (5.97)

where
m = s− 1/2. (5.98)

Therefore

|MPS 2s+1〉 =
(2
i

)L (
T̃ (m)

(
−im+ 2

2

)
− T̃ (m−1)

(
−im+ 3

2

))
|MPS 2〉, (5.99)

and from the ratio of the overlaps we have to obtain that

〈MPS 2s+1|u〉
〈MPS 2|u〉

=
(2
i

)L (
T̃ (m)

(
−im+ 2

2

)
− T̃ (m−1)

(
−im+ 3

2

))
?= T2s(0)

T1(0) . (5.100)

Substituting (5.89):

T̃ (m)
(
−im+ 2

2

)
− T̃ (m−1)

(
−im+ 3

2

)
=

= Q0 (m+ 1)Q+

(1
2

) m∑
k=0

(
ik + i

2

)L Q+
(
k + 1

2

)
Q0 (k + 1)Q0 (k)

k∑
l=0

Q0 (l)
Q+

(
l + 1

2

)
Q+

(
l − 1

2

)−
−Q0 (m+ 1)Q+

(1
2

)m−1∑
k=0

(
ik + 3i

2

)L Q+
(
k + 3

2

)
Q0 (k + 2)Q0 (k + 1)

k∑
l=0

Q0 (l + 1)
Q+

(
l + 3

2

)
Q+

(
l + 1

2

) =

= Q0 (0)
Q+

(
1
2

)Q0

(
s+ 1

2

) s∑
k=1/2

(ik)L Q+ (k)
Q0
(
k + 1

2

)
Q0
(
k − 1

2

) . (5.101)

Using the explicit forms of T2s(0) and T1(0)

T2s(0) = Q0

(
s+ 1

2

) s∑
k=1/2

2 (ik)L Q+ (k)
Q0
(
k + 1

2

)
Q0
(
k − 1

2

) , (5.102)

T1(0) = 2
(
i

2

)L Q+
(

1
2

)
Q0 (0) , (5.103)

we just obtained that(2
i

)L (
T̃ (m)

(
−im+ 2

2

)
− T̃ (m−1)

(
−im+ 3

2

))
= T2s(0)

T1(0) . (5.104)
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5.4 (SO(6),SO(5)) case

The MPS can be built from the K-matrix K̃ = eab ⊗ ψab + e66 ⊗ ψ66, where ψab and ψ66
are given in equation (3.12) and (3.13). In the twisted Yangian language we use different
normalization and basis. After the normalization

S(u) = −1
4u
−3(1− u−1)K̃(u), (5.105)

and basis changing the S-matrix satisfies the reflection equation (5.52) and the symmetry
relation (5.53). This is a highest weight representation and let us denote it by V (n). From
the explicit forms

s3,3(u) = g̃1(u)G̃1G̃−1 + g̃2(u)
[
G̃1, G̃−1

]
+ f̃(u), (5.106)

s2,2(u) = g̃1(u)G̃2G̃−2 + g̃2(u)
[
G̃2, G̃−2

]
+ f̃(u), (5.107)

s1,1(u) = 1
2
(
g̃1(u)G̃2

0 + f̃(u) + h̃(u)
)
, (5.108)

s1,−1(u) = 1
2
(
g̃1(u)G̃2

0 + f̃(u)− h̃(u)
)

= s−1,1(u), (5.109)

we calculate the weights µ3(u), µ2(u), µ1(u) and µ(+)(u) = µ(−)(u). We used the notation

G̃±1 = 1√
2

(G1 ± iG2) , (5.110)

G̃±2 = 1√
2

(G3 ± iG4) , (5.111)

G̃0 = G5, (5.112)

and

g̃1(u) = −1
2u
−2(1− u−2), (5.113)

g̃2(u) = 1
2u
−1(1− u−2), (5.114)

f̃(u) = (1− u−1)(1 + C

4 u
−2), (5.115)

h̃(u) = −(1− u−1)(1 + 2u−1 − C

4 u
−2). (5.116)

We can also calculate the highest weights of

SD(u) = T so6(u)K(u) (T so6)t (−u), (5.117)

for gl4 module L(λ1, λ2, λ3, λ4). From the explicit calculation (see appendix C) we obtain
that V (n) ∼= L(1 + n/2, 1 + n/2, 1 + n/2, 1− n/2), i.e.

S(u) =
(
1− u−2)2

1−
(
n
2 + 1

)2
u−2

T so6(u)K(u) (T so6)t (−u), (5.118)

which implies that (with proper normalization of the states)

|MPSn〉 = lim
u→0

(2i)L t(1)
n (u) |Ψ0〉 , (5.119)
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where t(a)
n (u) is a solution of the Hirota equation (3.21). Let us use the z-functions

z1(u) =
(u+ i

2)L

(u− i
2)L

Q−(−iu− 3
2)

Q−(−iu− 1
2)
, (5.120)

z2(u) =
(u+ i

2)L

(u− i
2)L

Q0(−iu− 1)
Q0(−iu)

Q−(−iu+ 1
2)

Q−(−iu− 1
2)
, (5.121)

z3(u) = Q0(−iu+ 1)
Q0(−iu)

Q+(−iu− 1
2)

Q+(−iu+ 1
2)
, (5.122)

z4(u) =
Q+(−iu+ 3

2)
Q+(−iu+ 1

2)
. (5.123)

Using the tableau sum (3.27) the eigenvalues t(1)
n (u) are then found to be

t(1)
n (u) =

Q−
(
−iu− n

2 − 1
)
Q+

(
−iu+ n

2 + 1
)

(u− in2 )L ×

×
n/2∑

q=−n/2
(u+ iq)L Q−(−iu+ q)Q+(−iu+ q)

Q0
(
−iu+ q − 1

2

)
Q0
(
−iu+ q + 1

2

)×
×

 q∑
p=−n/2

Q0
(
−iu+ p− 1

2

)
Q−(−iu+ p− 1)Q−(u+ p)

×
n/2∑
r=q

Q0
(
−iu+ r + 1

2

)
Q+(−iu+ r)Q+(−iu+ r + 1)

 .
(5.124)

6 Conclusion and outlook

With the present work we have reached a complete understanding of the integrability
properties of a class of spin chain boundary states which among other things can be used for
the calculation of one-point functions in domain wall versions of N = 4 SYM theory. The
boundary states in question take the form of matrix product states generated by matrices
which are related to the generators of some irreducible representation of a Lie group. Matrix
product states were in [5] characterized as integrable if annihilated by the odd charges of
the underlying integrable spin chain. Furthermore, it was argued that this criterion being
fulfilled would imply the existence of a boundary reflection matrix which together with
the bulk R-matrix would fulfill a boundary Yang-Baxter relation which again should in
principle make it possible to compute a number of quantum observables of the system in a
closed form. The integrability criterion could immediately be shown to be fulfilled for two
out of the three known relevant defect versions of N = 4 SYM , namely the one dual to the
D3-D5 probe brane system with flux and the one dual to the SO(5) symmetric D3-D7 probe
brane system with non-vanishing instanton number [13], cf. table 1, and a closed formula
for the one-point functions of the former case could be found by numerical experiments [13].

A gap in the understanding was the apparent lack of a closed formula for one-point
functions of the integrable D3-D7 probe brane set-up as well as the lack of an analytical
method for the derivation of these one-point functions in all but the simplest cases for
the D3-D5 set-up. With the present paper we have filled these gaps. First of all we have
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obtained an understanding of the integrability properties for the D3-D7 probe brane set-up
in a scattering picture by explicitly finding the appropriate boundary reflection matrix for
any irreducible representation of so(5) of the relevant type, cf. eqns. (3.9) and (3.12)-(3.13).
The corresponding boundary reflection matrix for the D3-D5 probe brane set-up was found
in [8], se also [30]. Secondly we have explicitly derived the overlap formula (2.16) and (2.18)
for the D3-D7 probe brane case by starting from a simple integrable one-site state and
making use of the representation theory of twisted Yangians. We have also shown that a
similar approach makes it possible to prove the formula for the D3-D5 case, earlier presented
without proof [13], although for simplicity we completed the proof only for the SU(3) sector.
Interestingly, the derivation seems to be more involved for the supersymmetric D3-D5 case
with SO(3) symmetric vevs than the non-supersymmetric D3-D7 with SO(5) symmetric
vevs.

From the point of view of theoretical high energy physics, it would be extremely
interesting if, using symmetries, one could bootstrap the integrable boundary reflection
matrices to higher loop orders of N = 4 SYM, as has been done for the bulk S-matrix [52],
and derive the appropriate overlap formulas to all loop order. Again one would expect that
a combination of the thermodynamical Bethe ansatz approach and the representation theory
of twisted Yangians should be the correct way forward. A challenge is of course in the first
place to take the present calculations beyond the scalar section of N = 4 SYM which is not
closed at higher loop orders. An argument in favour of integrability of the defect systems
at higher loop orders is that an exact expression for one-loop one-point functions of SU(2)
sub-sector of the D3-D5 probe-brane set-up has been found in [26] where also a possible
asymptotic form of these was presented.

Another interesting extension of the present work is a possible generalization of the
derivations to one-point functions of descendent states as these play an important role as
data in the boundary conformal bootstrap program. One-point functions of descendent
operators and their relevance for boundary conformal bootstrap was discussed for the SU(2)
sub-sector of the D3-D5 probe brane set-up in [53].
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A Limiting formulas for the overlaps

As we have already mentioned the determinant formula (2.18) is strictly speaking valid
only for even values of (n+ 1)N0/2. When (n+ 1)N0/2 is odd, one auxiliary Bethe root at
each level vanishes and a 0/0 ambiguity arises. The indeterminate form is then treated in a
standard way by noting that the terms in the square brackets of (2.18) become singular for
q = 0,±1. In this case we obtain:

Λn = 2L
n
2∑

q=−n
2

[
qL Λ̃−n (q) Λ̃+

n (q) + |q|L
[
1 + q

|q|

] Q0
(

1
2

)
Q−(q)Q−

(
n
2 + 1

)
Q0
(
q − 1

2

)
Q−(1)Q̄−(0)

 d

du
ln
Q0
(

1
2

)
Q−(1)



·Λ̃+
n (q) + (−|q|)L

[
1− q

|q|

] Q0
(

1
2

)
Q+(q)Q+

(
n
2 + 1

)
Q0
(
q + 1

2

)
Q+(1)Q̄+(0)

 d

du
ln
Q0
(

1
2

)
Q+(1)

 Λ̃−n (q)
]
,

(A.1)

where

Λ̃+
n (q) ≡

n/2∑
r=q

r 6=0,−1

Q0
(
r + 1

2

)
Q+(q)Q+

(
n
2 + 1

)
Q0
(
q + 1

2

)
Q+(r + 1)Q+(r)

, (A.2)

Λ̃−n (q) ≡
q∑

r=−n/2
r 6=0,1

Q0
(
r − 1

2

)
Q−(q)Q−

(
n
2 + 1

)
Q0
(
q − 1

2

)
Q−(r)Q−(r − 1)

. (A.3)

Eqn. (A.1) can also be in the following form:

Λn = 2L ·
{ n

2∑
q=0

qL Λ̃+
n (q)

[
Λ̃−n (q) +

Q0
(

1
2

)
Q−(q)Q−

(
n
2 + 1

)
Q0
(
q − 1

2

)
Q−(1)Q̄−(0)

· d
du

ln

Q0
(

1
2

)
Q−(1)

2 ]
+

+
0∑

q=−n
2

qL Λ̃−n (q)
[
Λ̃+
n (q) +

Q0
(

1
2

)
Q+(q)Q+

(
n
2 + 1

)
Q0
(
q + 1

2

)
Q+(1)Q̄+(0)

· d
du

ln

Q0
(

1
2

)
Q+(1)

2 ]}
.

(A.4)

The determinant formula (2.18) has been thoroughly checked to 50 digits of accuracy for
many states of various lengths L, N0 = 2, . . . , 10 and n = 1, . . . , 8, such that (n+ 1)N0/2
remains even. Its u→ 0 limit that is given by (A.1)–(A.4) has also been checked for states
of various lengths L, N0 = 2, 6, 10 and even n such that (n+ 1)N0/2 is odd.

B Calculations with the twisted Yangian Y +(3)

In this section we investigate the embeddings V (s) ⊆ L(s, s, 0) and V (s) ⊆ L(s, s, 1/2)⊗
V (1/2) for the twisted Yangian Y +(3).
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Table 2. The states of L(2, 2, 0).

Sz = 2 |2, 2, 0〉

1 |2, 1, 1〉

0 |2, 0, 2〉 |1, 2, 1〉

−1 |1, 1, 2〉

−2 |0, 2, 2〉

B.1 Odd k = 2s + 1

s=1 For s = 1, the gl3 module L(1, 1, 0) has the same dimension as V (1) and the two
have the same Y +(3) highest weights therefore L(1, 1, 0) ∼= V (1) as Y +(3) representation.

s=2 For s = 2, the states of L(2, 2, 0) are shown in table 2 where

|2, 1, 1〉 = E1,0 |2, 2, 0〉 , (B.1)
|2, 0, 2〉 = E2

1,0 |2, 2, 0〉 , (B.2)
|1, 2, 1〉 = E0,−1E1,0 |2, 2, 0〉 , (B.3)
|1, 1, 2〉 = E0,−1E

2
1,0 |2, 2, 0〉 , (B.4)

|0, 2, 2〉 = E2
0,−1E

2
1,0 |2, 2, 0〉 . (B.5)

We can see that the V (2) sub-space has to be built from the vectors |2, 2, 0〉 , |2, 1, 1〉,|2, 0, 2〉+
a |1, 2, 1〉, |1, 1, 2〉 , |0, 2, 2〉. The a can be calculated from the fact that s1,−1(u) · |2, 2, 0〉 ∈
V (2).

s1,−1(u) · |2, 2, 0〉 =t1,1(u)t1,−1(−u) · |2, 2, 0〉+ t1,0(u)t1,0(−u) · |2, 2, 0〉+
+ t1,−1(u)t1,1(−u) · |2, 2, 0〉 =

=− u−1(1 + u−1)E1,−1 |2, 2, 0〉 − u−2 |2, 0, 2〉+ u−1E1,−1 |2, 2, 0〉 =
=u−2 (|1, 2, 1〉 − |2, 0, 2〉) , (B.6)

therefore a = −1.
Let us define the sub-quotient L(2, 2, 0)\V (2) by W . The W is a one dimensional

highest weight representation of Y +(3). Let us calculate the highest weights.

s11(u) · |2, 0, 2〉 = t1,1(u)t−1,−1(−u) · |2, 0, 2〉 = (1− 4u−2) |2, 2, 0〉 , (B.7)
s00(u) · |1, 2, 1〉 = t0,0(u)t0,0(−u) · |1, 2, 1〉 = (1− 4u−2) |2, 2, 0〉 . (B.8)

Therefore

µ1(u) = (1− 4u−2), (B.9)
µ0(u) = (1− 4u−2), (B.10)
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Table 3. The states of L(3, 3, 0).

Sz = 3 |3, 3, 0〉

2 |3, 2, 1〉

1 |3, 1, 2〉 |2, 3, 1〉

0 |3, 0, 3〉 |2, 2, 2〉

−1 |2, 1, 3〉 |1, 3, 2〉

−2 |1, 2, 3〉

−3 |0, 3, 3〉

which are the highest weights of one dimensional irrep L(2, 2, 2). Hence, for L(2, 2, 0) ∼=
V (2)⊕ L(2, 2, 2) the action of Y +(3) reads as

sij(u) · v = L(2,2,0)
ia (u)L(2,2,0)

−j,−a(−u)v =
(
ψ

(2)
ij (u) X

0 L(2,2,2)
ia (u)L(2,2,2)

−j,−a(−u)

)(
w1
w2

)
, (B.11)

where v ∈ L(2, 2, 0), w1 ∈ V (2) and w2 ∈ L(2, 2, 2).

s=3 Let us continue with s = 3. The table 3 shows the states of L(3, 3, 0). We can see
that the V (3) sub-space has to be built from the vectors |3, 3, 0〉 , |3, 2, 1〉,|3, 1, 2〉+a1 |2, 3, 1〉,
|3, 0, 3〉 + a2 |2, 2, 2〉, |2, 1, 3〉 + a3 |1, 3, 2〉,|1, 2, 3〉 , |0, 3, 3〉. The a1 can be calculated from
the fact that s1,−1(u) · |3, 3, 0〉 ∈ V (3).

s1,−1(u) · |3, 3, 0〉 =t1,1(u)t1,−1(−u) · |3, 3, 0〉+ t1,0(u)t1,0(−u) · |3, 3, 0〉+
+ t1,−1(u)t1,1(−u) · |3, 3, 0〉 =

=− u−1(1 + u−1)E1,−1 |3, 3, 0〉 − u−2 |3, 1, 2〉+ u−1E1,−1 |3, 3, 0〉 =
=u−2 (|2, 3, 1〉 − |3, 1, 2〉) , (B.12)

therefore a1 = −1.
Let us define the sub-quotient L(3, 3, 0)\V (3) by W . The W is a three dimensional

highest weight representation of Y +(3). Let us calculate the highest weights.

s11(u) · |3, 1, 2〉 = t1,1(u)t−1,−1(−u) · |3, 1, 2〉 = (1 + 2u−1)(1− 3u−1) |3, 1, 2〉 , (B.13)
s00(u) · |2, 3, 1〉 = t0,0(u)t0,0(−u) · |2, 3, 1〉 = (1− 9u−2) |2, 3, 1〉 . (B.14)

Therefore

µ1(u) = (1 + 2u−1)(1− 3u−1), (B.15)
µ0(u) = (1− 9u−2). (B.16)

37



Table 4. The states of L(3, 3, 2).

Sz = 1 |3, 3, 2〉

0 |3, 2, 3〉

−1 |2, 3, 3〉

Table 5. The states of L(4, 4, 2).

Sz = 2 |4, 4, 2〉

1 |4, 3, 3〉

0 |4, 2, 4〉 |3, 4, 3〉

−1 |3, 1, 4〉

−2 |2, 4, 4〉

We can see that these are the highest weights of L(3, 3, 2). The L(3, 3, 2) is an Y +(3) irrep
(see table 4) i.e. for L(3, 3, 0) ∼= V (3)⊕ L(3, 3, 2) the action of Y +(3) reads as

sij(u) · v = L(3,3,0)
ia (u)L(3,3,0)

−j,−a(−u)v =
(
ψ

(3)
ij (u) X

0 L(3,3,2)
ia (u)L(3,3,2)

−j,−a(−u)

)(
w1
w2

)
, (B.17)

where v ∈ L(3, 3, 0), w1 ∈ V (3) and w2 ∈ L(3, 3, 2).

s=4 Similarly, for L(4, 4, 0) we can define the sub-quotient W = L(4, 4, 0)\V (4). The
highest weights of it are the following

µ1(u) = (1 + 2u−1)(1− 4u−1), (B.18)
µ0(u) = (1− 16u−2). (B.19)

These are also the highest weights of L(4, 4, 2).We can show that this is an Y +(3) irrep. The
states are shown in table 5. We only have to show that the subspace sij(u) · |4, 4, 2〉 contains
the two dimensional subspace span ({|4, 2, 4〉 , |3, 4, 3〉}). This can be done as follows

s1,0(u) · |4, 3, 3〉 =t1,1(u)t0,−1(−u) · |4, 3, 3〉+ t1,0(u)t0,0(−u) · |4, 3, 3〉+
+ t1,−1(u)t0,1(−u) · |4, 3, 3〉 =

=− u−1(1 + 3u−1) |3, 4, 3〉+ u−1(1− 3u−1) |4, 2, 4〉 − 2u−2Λ1,−1 |4, 4, 2〉 =
=u−1 (|4, 2, 4〉 − |3, 4, 3〉)− u−2 (3 |4, 2, 4〉+ |3, 4, 3〉) . (B.20)

Since L(4, 4, 2) is an irrep with the same highest weights as W therefore W ∼= L(4, 4, 2)
as Y +(3) representations i.e. for the vector space decomposition L(4, 4, 0) ∼= V (4)⊕L(4, 4, 2)
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Table 6. The states of L(3/2, 3/2, 1/2)⊗ V (1/2).

Sz = 3
2

∣∣∣32 , 3
2 ,

1
2

〉 ∣∣∣+1
2

〉
1
2

∣∣∣32 , 1
2 ,

3
2

〉 ∣∣∣+1
2

〉 ∣∣∣32 , 3
2 ,

1
2

〉 ∣∣∣−1
2

〉
−1

2

∣∣∣12 , 3
2 ,

3
2

〉 ∣∣∣+1
2

〉 ∣∣∣32 , 1
2 ,

3
2

〉 ∣∣∣−1
2

〉
−3

2

∣∣∣12 , 3
2 ,

3
2

〉 ∣∣∣−1
2

〉

the action of Y +(3) reads as

sij(u) · v = L(4,4,0)
ia (u)L(4,4,0)

−j,−a(−u)v =
(
ψ

(4)
ij (u) X

0 L(4,4,2)
ia (u)L(4,4,2)

−j,−a(−u)

)(
w1
w2

)
, (B.21)

where v ∈ L(4, 4, 0), w1 ∈ V (4) and w2 ∈ L(4, 4, 2).

General s This can be generalized to L(s, s, 0) ∼= V (s)⊕ L(s, s, 2) with the action

sij(u) · v = L(s,s,0)
ia (u)L(s,s,0)

−j,−a(−u)v =
(
ψ

(s)
ij (u) X

0 L(s,s,2)
ia (u)L(s,s,2)

−j,−a(−u)

)(
w1
w2

)
, (B.22)

where v ∈ L(s, s, 0), w1 ∈ V (s), w2 ∈ L(s, s, 2) and s ∈ Z>1 where we used Conjecture 1.

B.2 Even k = 2s + 1

s=3/2 Let us start with s = 3/2. The states are shown in table 6. Let us define the
sub-quotient L(3/2, 3/2, 1/2)⊗ V (1/2)\V (3/2) by W . The W is a two dimensional highest
weight representation of Y +(3). Let us calculate the highest weights.

s11(u) ·
∣∣∣∣32 , 1

2 ,
3
2

〉 ∣∣∣∣+1
2

〉
= t1,1(u)t−1,−1(−u) ·

∣∣∣∣32 , 1
2 ,

3
2

〉
ψ1,1(u)

∣∣∣∣+1
2

〉
=

=
(

1− 9
4u
−2
)(

1− 1
2u
−1
) ∣∣∣∣32 , 1

2 ,
3
2

〉 ∣∣∣∣+1
2

〉
, (B.23)

s00(u) ·
∣∣∣∣32 , 3

2 ,
1
2

〉 ∣∣∣∣−1
2

〉
= t0,0(u)t0,0(−u) ·

∣∣∣∣32 , 3
2 ,

1
2

〉
ψ0,0(u)

∣∣∣∣−1
2

〉
=

=
(

1− 9
4u
−2
)(

1− 1
4u
−2
) ∣∣∣∣32 , 3

2 ,
1
2

〉 ∣∣∣∣−1
2

〉
. (B.24)

Therefore the highest weights are

µ1(u) =
(

1− 9
4u
−2
)(

1− 1
2u
−1
)
, (B.25)

µ0(u) =
(

1− 9
4u
−2
)(

1− 1
4u
−2
)
, (B.26)
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Table 7. The states of L(5/2, 5/2, 1/2)⊗ V (1/2).

Sz = 5
2

∣∣∣52 , 5
2 ,

1
2

〉 ∣∣∣+1
2

〉
3
2

∣∣∣52 , 3
2 ,

3
2

〉 ∣∣∣+1
2

〉 ∣∣∣52 , 5
2 ,

1
2

〉 ∣∣∣−1
2

〉
1
2

∣∣∣52 , 1
2 ,

5
2

〉 ∣∣∣+1
2

〉 ∣∣∣52 , 3
2 ,

3
2

〉 ∣∣∣−1
2

〉 ∣∣∣32 , 5
2 ,

3
2

〉 ∣∣∣+1
2

〉
−1

2

∣∣∣32 , 3
2 ,

5
2

〉 ∣∣∣+1
2

〉 ∣∣∣52 , 1
2 ,

5
2

〉 ∣∣∣−1
2

〉 ∣∣∣32 , 5
2 ,

3
2

〉 ∣∣∣−1
2

〉
−3

2

∣∣∣12 , 5
2 ,

5
2

〉 ∣∣∣+1
2

〉 ∣∣∣32 , 3
2 ,

5
2

〉 ∣∣∣−1
2

〉
−5

2

∣∣∣12 , 5
2 ,

5
2

〉 ∣∣∣−1
2

〉

i.e. for (L(3/2, 3/2, 1/2)⊗ V (1/2)) ∼= V (3/2) ⊕ (L(3/2, 3/2, 3/2)⊗ V (1/2)) the Y +(3)
action is

sij(u) · (v1 ⊗ v2) = L(3/2,3/2,1/2)
ia (u)L(3/2,3/2,1/2)

−j,−b (−u)v1 ⊗ ψ(1/2)
a,b (u)v2 =

=

(1− 1
4u
−2
)
ψ

(3/2)
i,j (u) X

0 L(3/2,3/2,3/2)
ia (u)L(3/2,3/2,3/2)

−j,−b (−u)⊗ ψ(1/2)
a,b (u)

( w1
w2 ⊗ w3

)
,

(B.27)

for all v1 ∈ L(3/2, 3/2, 1/2), v2, w3 ∈ V (1/2), w1 ∈ V (3/2) and w2 ∈ L(3/2, 3/2, 3/2).

s=5/2 Let us continue with s = 5/2. The table 7 shows the states of L(5/2, 5/2, 1/2)⊗
V (1/2). Let us define the sub-quotient L(5/2, 5/2, 1/2)⊗ V (1/2)/V (5/2) by W . The W is
a six dimensional highest weight representation of Y +(3). We calculate the highest weights:

s11(u) ·
∣∣∣∣52 , 3

2 ,
3
2

〉 ∣∣∣∣+1
2

〉
= t1,1(u)t−1,−1(−u) ·

∣∣∣∣52 , 3
2 ,

3
2

〉
ψ1,1(u)

∣∣∣∣+1
2

〉
=

=
(

1 + 3
2u
−1
)(

1− 5
2u
−1
)(

1− 1
2u
−1
) ∣∣∣∣52 , 3

2 ,
3
2

〉 ∣∣∣∣+1
2

〉
, (B.28)

s00(u) ·
∣∣∣∣52 , 5

2 ,
1
2

〉 ∣∣∣∣−1
2

〉
= t0,0(u)t0,0(−u) ·

∣∣∣∣52 , 5
2 ,

1
2

〉
ψ0,0(u)

∣∣∣∣−1
2

〉
=

=
(

1− 25
4 u
−2
)(

1− 1
4u
−2
) ∣∣∣∣32 , 3

2 ,
1
2

〉 ∣∣∣∣−1
2

〉
. (B.29)

Therefore the highest weights are

µ1(u) =
(

1 + 3
2u
−1
)(

1− 5
2u
−1
)(

1− 1
2u
−1
)
, (B.30)

µ0(u) =
(

1− 25
4 u
−2
)(

1− 1
4u
−2
)
. (B.31)
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Table 8. The states of L(5/2, 5/2, 3/2)⊗ V (1/2).

Sz = 3
2

∣∣∣52 , 5
2 ,

3
2

〉 ∣∣∣+1
2

〉
1
2

∣∣∣52 , 3
2 ,

5
2

〉 ∣∣∣+1
2

〉 ∣∣∣52 , 5
2 ,

3
2

〉 ∣∣∣−1
2

〉
−1

2

∣∣∣32 , 5
2 ,

5
2

〉 ∣∣∣+1
2

〉 ∣∣∣52 , 3
2 ,

5
2

〉 ∣∣∣−1
2

〉
−3

2

∣∣∣32 , 5
2 ,

5
2

〉 ∣∣∣−1
2

〉

We can see that these are the highest weights of L(5/2, 5/2, 3/2)⊗ V (1/2). We can show
that this is an Y +(3) irrep. The states are shown in table 8.

From

s1,0(u) ·
∣∣∣∣52 , 5

2 ,
3
2

〉 ∣∣∣∣+1
2

〉
=t1,0(u)t0,0(−u) ·

∣∣∣∣52 , 5
2 ,

3
2

〉
ψ0,0(u)

∣∣∣∣+1
2

〉
+

+ t1,1(u)t0,0(−u) ·
∣∣∣∣52 , 5

2 ,
3
2

〉
ψ1,0(u)

∣∣∣∣+1
2

〉
=

=u−1
(

1− 5
2u
−1
)(

1− 1
4u
−2
) ∣∣∣∣52 , 3

2 ,
5
2

〉 ∣∣∣∣+1
2

〉
+

+ 2i√
2
u−1

(
1 + 3

2u
−1
)(

1− 5
2u
−1
)(

1− 1
4u
−1
) ∣∣∣∣52 , 3

2 ,
5
2

〉 ∣∣∣∣+1
2

〉
,

(B.32)

we can see that L(5/2, 5/2, 3/2)⊗V (1/2) is irreducible, i.e. for (L(5/2, 5/2, 1/2)⊗ V (1/2)) ∼=
V (5/2)⊕ (L(5/2, 5/2, 3/2)⊗ V (1/2)) the action can be written as

sij(u) · (v1 ⊗ v2) = L(5/2,5/2,1/2)
ia (u)L(5/2,5/2,1/2)

−j,−b (−u)v1 ⊗ ψ(1/2)
a,b (u)v2 =

=

(1− 1
4u
−2
)
ψ

(5/2)
i,j (u) X

0 L(5/2,5/2,3/2)
ia (u)L(5/2,5/2,3/2)

−j,−b (−u)⊗ ψ(1/2)
a,b (u)

( w1
w2 ⊗ w3

)
,

(B.33)

for all v1 ∈ L(5/2, 5/2, 1/2), v2, w3 ∈ V (1/2), w1 ∈ V (5/2) and w2 ∈ L(5/2, 5/2, 3/2).

General s This can be generalized to (L(s, s, 1/2)⊗ V (1/2)) ∼= V (s)⊕(L(s, s, 3/2)⊗ V (1/2))
with the action

sij(u) · (v1 ⊗ v2) = L(s,s,1/2)
ia (u)L(s,s,1/2)

−j,−b (−u)v1 ⊗ ψ(1/2)
a,b (u)v2 =

=

(1− 1
4u
−2
)
ψ

(s)
i,j (u) X

0 L(s,s,3/2)
ia (u)L(s,s,3/2)

−j,−b (−u)⊗ ψ(1/2)
a,b (u)

( w1
w2 ⊗ w3

)
, (B.34)

for all v1 ∈ L(s/2, s/2, 1/2), v2, w3 ∈ V (1/2), w1 ∈ V (s/2), w2 ∈ L(s/2, s/2, 3/2) and
s ∈ Z+ + 1

2 where we used Conjecture 2.
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C Calculations with the twisted Yangian X(so6, so5)

From the explicit forms

s3,3(u) = g̃1(u)G̃1G̃−1 + g̃2(u)
[
G̃1, G̃−1

]
+ f̃(u), (C.1)

s2,2(u) = g̃1(u)G̃2G̃−2 + g̃2(u)
[
G̃2, G̃−2

]
+ f̃(u), (C.2)

s1,1(u) = 1
2
(
g̃1(u)G̃2

0 + f̃(u) + h̃(u)
)
, (C.3)

s1,−1(u) = 1
2
(
g̃1(u)G̃2

0 + f̃(u)− h̃(u)
)

= s−1,1(u), (C.4)

we can calculate the weights µ3(u), µ2(u), µ1(u) and µ(+)(u) = µ(−)(u).
Let us define the so5 generators

Fij = 1
4 [Gi, G−j ] , (C.5)

for which [
Fij , G̃k

]
= δjkG̃i − δ−i,kG̃−j . (C.6)

The Fijs form a h.w. representation of so5 i.e. there exist a vector v for which (λ1, λ2) =
(−n

2 ,−
n
2 ). From (C.6) we can see that G̃1 and G̃2 increase the weights and G̃−1 and G̃−2

decrease the weights, therefore

G−1 · v = G−2 · v = 0. (C.7)

Using this we can calculate µ3 and µ2 as

s3,3(u) · v =
(
f̃(u) + 4g̃2(u)F1,1

)
· v =

(
f̃(u)− 2ng̃2(u)

)
v, (C.8)

s2,2(u) · v =
(
f̃(u) + 4g̃2(u)F2,2

)
· v =

(
f̃(u)− 2ng̃2(u)

)
v. (C.9)

For µ1 and µ(+) we have to calculate how G̃2
0 act on v. This can be done using (3.14)

G̃2
0 · v = Cv −

(
G̃1G̃−1 + G̃−1G̃1 + G̃2G̃−2 + G̃−2G̃2

)
· v =

= Cv + 4 (F11 + F22) · v = (C − 4n)v = n2v. (C.10)

Using this we obtain that

s1,1(u) · v = 1
2
(
n2g̃1(u) + f̃(u) + h̃(u)

)
· v, (C.11)

s2,2(u) · v = 1
2
(
n2g̃1(u) + f̃(u)− h̃(u)

)
· v. (C.12)

Therefore

µ3(u) = µ2(u) =
(
1− u−1

)(
1− n

2u
−1
)2
, (C.13)

µ1(u) = −u−1
(
1− u−1

)(
1− n

2u
−1
)2
, (C.14)

µ(+)(u) = µ(−)(u) =
(
1− u−2

)(
1− n2

4 u
−2
)
. (C.15)
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Now let us try to obtain this S-matrix in the form

SD(u) = T so6(u)K(u) (T so6)t (−u), (C.16)

using some gl4 module L(λ1, λ2, λ3, λ4). The so5 is embedded in gl4 and X(so6, so5). Our S-
matrix and L(λ1, λ2, λ3, λ4) have highest weights (−n

2 ,−
n
2 ) and

(
−λ1+λ2−λ3−λ4

2 ,−λ1−λ2+λ3−λ4
2

)
as so5 modules. Therefore the gl4 highest weights have to be (n+ c, a, a, c). Matching the
dimensions of the representation, only two options remained.

1. (n+ c, n+ c, n+ c, c) or

2. (n+ c, c, c, c).

Let us calculate the X(so6, so5) highest weights of the first one.

sD3,3(u) · v = u

u+ 1 t
so6
3,3(u)tso6

−3,−3(u) · v = (C.17)

= u

u+ 1 t
gl4
33 (u)tgl444 (u− 1)tgl411 (−u)tgl422 (−u− 1) · v = (C.18)

= (u+ n+ c)(u+ c− 1)(u− n− c)(u− n− c+ 1)
u (u+ 1)2 (u− 1)

· v, (C.19)

where we used that tso6
i,j (u) · v = t

gl4
i,j (u) · v = 0 for i < j. In an analogous way we can

calculate the other highest weights and the result is

µD3 (u) = µD2 (u) =

(
u2 − (n+ c)2

)
(u+ c− 1)(u− n− c+ 1)

u (u+ 1)2 (u− 1)
, (C.20)

µD1 (u) = −

(
u2 − (n+ c)2

)
(u+ c− 1)(u− n− c+ 1)

u2 (u+ 1)2 (u− 1)
, (C.21)

µD(+)(u) =

(
u2 − (n+ c)2

) (
u2 − (n+ c− 1)2

)
u2 (u2 − 1) , (C.22)

µD(−)(u) =

(
u2 − (n+ c)2

) (
u2 − (c− 1)2

)
u2 (u2 − 1) . (C.23)

The equation (C.15) implies that µD(+)(u) has to equal to µD(−)(u) therefore

c = 1− n

2 . (C.24)

After substitution

µD3 (u) = µD2 (u) =

(
1−

(
n
2 + 1

)2
u−2

) (
1− n

2u
−1)2

(1 + u−1)2 (1− u−1)
=

(
1−

(
n
2 + 1

)2
u−2

)
(1− u−2)2 µ3(u),

(C.25)

µD1 (u) = −u−1

(
1−

(
n
2 + 1

)2
u−2

) (
1− n

2u
−1)2

(1 + u−1)2 (1− u−1)
=

(
1−

(
n
2 + 1

)2
u−2

)
(1− u−2)2 µ1(u), (C.26)

µD(+)(u) = µD(−)(u) =

(
1−

(
n
2 + 1

)2
u−2

) (
1− n2

4 u
−2
)

(1− u−2) =

(
1−

(
n
2 + 1

)2
u−2

)
(1− u−2)2 µ(+)(u).

(C.27)
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Therefore we obtain that

S(u) =
(
1− u−2)2(

1−
(
n
2 + 1

)2
u−2

)T so6(u)K(u) (T so6)t (−u). (C.28)
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