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Abstract

We consider the finite volume mean values of current operators in integrable spin chains
with local interactions, and provide an alternative derivation of the exact result found recently
by the author and two collaborators. We use a certain type of long range deformation of the
local spin chains, which was discovered and explored earlier in the context of the AdS/CFT
correspondence. This method is immediately applicable also to higher rank models: as a
concrete example we derive the current mean values in the SU(3)-symmetric fundamental
model, solvable by the nested Bethe Ansatz. The exact results take the same form as in the
Heisenberg spin chains: they involve the one-particle eigenvalues of the conserved charges
and the inverse of the Gaudin matrix.

1 Introduction
Recently there has been some interest in the computation of current mean values in

one dimensional integrable models. The motivation mainly came from the recent theory of
Generalized Hydrodynamics [1, 2], which aims to describe the non-equilibrium dynamics
of integrable models on the Euler scale. One of the central elements of the theory is the
set of continuity relations for the conserved charges of the models, because they lead to
the generalized Euler-equations describing the ballistic flow of the quasi-particles. For this
purpose it is essential to know the exact mean values of the currents associated to the
conserved charges, assuming local equilibration on some intermediate length and time scales.

Regarding the thermodynamic limit an exact formula was postulated in [1, 2], which
was proven for relativistic QFT’s in [1] (see also [3]). Regarding the spin current in the
XXZ model the same formula was proven in [4]. The currents were also investigated in
the classical Toda chain in [5]. Finally, in [6] the author and two collaborators derived an
exact finite volume result for the current mean values, valid in a large class of Bethe Ansatz
solvable quantum models. This derivation only uses a specific form factor expansion for the
finite volume mean values, and the continuity equations that define the current operators.
Therefore the proof applies to a number of models where that specific form factor expansion
is established, including for example the Heisenberg spin chains, the Lieb-Liniger model, and
the integrable QFT’s with diagonal scattering. On the other hand, the extension to multi-
component models solvable by the nested Bethe Ansatz is far from evident, due to the more
complicated structure of the wave functions.

In this note we point out an interesting connection between the results of [6] and cer-
tain long-range deformations of the spin chains, that were discovered in the context of the
AdS/CFT correspondence [7, 8, 9]. The common property of these long range spin chains is
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that they have a deformation parameter λ (originating in the ’t Hooft coupling of the CFT)
and a commuting set of conserved charges, obtained as a power series in λ. The perturbations
are local operators for each order in λ, albeit with growing range, and integrability (mutual
commutativity) can be observed at each order in λ. And even though there are long range
models with similar structures that can be defined in arbitrary finite volume (for example
the Haldane-Sashtry model [10, 11] and the Inozemtsev chain [12]), the deformations studied
in [7, 8, 9] are strictly speaking only defined in infinite volume. For an introduction into
these long range spin chains and their connection with the AdS/CFT we also recommend
the review [13] and the paper [14].

The connection between the deformed chains and the current mean values is quite simple,
and surprisingly it has not been noticed before: For each current operator there is a long-range
deformation such that the given current operator itself is the leading perturbing operator.
This provides a direct link towards the current mean values, which we explore in the present
paper.

The paper is organized as follows. In Section 2 we fix our notations and discuss the
concept of local and quasi-local operators. The local Heisenberg spin chain, its charge and
current operators, and the main result of the previous work [6] are introduced in Section 3.
In Section 4 we introduce the long-range deformations of the infinite XXX chain. The finite
volume spectra of these deformed chains is studied in Section 5 which also includes our new
derivation of the current mean values. Section 6 treats the SU(3)-symmetric fundamental
model, for which we also derive the current mean values. Finally, we discuss our results and
possible future directions in Section 7.

2 Local and quasi-local operators
In this work we will deal with spin chains with finite and infinite length. In the finite case

the Hilbert space is
H = ⊗Lj=1CD. (2.1)

In the concrete examples we will have D = 2 and D = 3. Furthermore we will always assume
periodic boundary conditions in every finite volume situation.

We call an operator O(x) local if it acts only on a finite number of sites. Here it is
understood that O(x) is the translation of O(0). We will denote by |O(x)| the range of the
operator, i.e. the maximal number of neighboring sites on which it acts.

Extensive local operators can then be constructed as

O =
∑
x

O(x), (2.2)

where the summation runs over all sites of the chain.
The concept of quasi-local operators is very important. Following [15, 16] we call an

extensive operator
A =

∑
x

a(x) (2.3)

quasi-local, if it satisfies the following two requirements:

1. The Hilbert-Schmidt norm of the operator grows at most linearly with the volume:

||A||2 ∼ L, (2.4)

where

||A||2 ≡
Tr
(
A†A

)
Tr (1)

. (2.5)

2. For every local operator O(x) the overlap with A defined as

〈A|O(x)〉 ≡
Tr
(
A†O(x)

)
Tr (1)

(2.6)

has a finite L→∞ limit.
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These conditions allow for arbitrary long range contributions to the densities a(x), but their
amplitudes have to decrease in some well defined way. Typically the amplitudes decay expo-
nentially with the range.

The quasi-local operators play an essential role in the description of the Generalized
Gibbs Ensemble of Heisenberg spin chain and related models [17, 18, 19, 20, 21, 22]. There
a commuting set of quasi-local charges is derived from the fused transfer matrices. These
quasi-local charges form a complete set, which means that in the thermodynamic limit they
determine the Bethe root densities of the equilibrium ensembles.

Below we will see that the quasi-local operators are central also to the present work: the
long-range deformations naturally lead to quasi-local (but not local) charges.

3 Local charges and currents in the XXX chain
In this Section we concentrate on the Heisenberg spin chain given by the Hamiltonian

H0
XXX =

L∑
j=1

(σxj σ
x
j+1 + σyj σ

y
j+1 + σzjσ

z
j+1 − 1). (3.1)

In later Sections we will deal with deformed chains, therefore here and in the following the
superscript 0 denotes that the corresponding operators and eigenvalues refer to the original,
short range Hamiltonian.

It is known that the model possesses a set of local conserved charges in involution with
each other:

[Q0
α, Q

0
β ] = 0, (3.2)

such that each charge has a local operator density

Q0
α =

L∑
x=1

q0α(x). (3.3)

The index α can be chosen such that q0α(x) spans α sites. For α = 1 it is customary to use
the global spin-z operator. Furthermore, Q2 ∼ H with a proportionality factor that depends
on the conventions used. Here we define

q02(x) = Px,x+1 − 1, (3.4)

where P is the permutation operator acting on C2⊗C2. This form has the advantage that it
can be used also in the generic SU(N)-symmetric case. With this choice we have H0

XXX =
2Q0

2.
There are two standard methods to obtain the local conserved charges. One possibility is

to derive them from the transfer matrix of the model, see for example [6]. The other possibility
is with the use of the boost operator [23, 24, 25, 26]. We now review this construction.

For any extensive local operator L =
∑∞
x=−∞ l(x) let us define the boosted operator as

the formal sum

B[L] =

∞∑
x=−∞

xl(x). (3.5)

The boosted operators are not homogeneous, and do not have a finite norm. Nevertheless
they are very useful, because they can be used to generate new local and extensive quantities
through formal commutation relations. For example, it is known that the higher conserved
charges can be obtained as

Q0
α+1 = i[B[Q0

2], Q0
α] + constant. (3.6)

The constant part depends on the conventions used, and one way to fix it is by requiring
that the eigenvalues on the reference state are all zero. For the equivalence of (3.6) with the
transfer matrix construction we refer to [23, 24, 25, 26].
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For the range of the charges we have the following simple result:

|q0α(x)| = α, (3.7)

which follows from the recursion above and |q02(x)| = 2.
Also, it follows from the recursion that the charge densities can always be written as sums

of exchange operators, that permute some subsets of the sites of the chain. Some explicit
formulas can be found in [9]. An alternative description using the spin generators was given
in [27], including explicit representations for each charge density.

The main objects of this paper are the current operators, describing the flow of the
conserved charges under unitary time evolution. For the time dependence of the charge
contained in a finite interval the following continuity relation holds:

d

dt

x2∑
x=x1

q0α(x) = i

[
H,

x2∑
x=x1

q0α(x)

]
= J0

α(x1)− J0
α(x2 + 1). (3.8)

Here the J0
α(x) are the current operators associated to the charges Q0

α. Locality of the
charges and the global commutation relations imply that (3.8) always has a solution with a
local J0

α(x) with range |J0
α(x)| = α+ 1. The defining relation in the most local form reads

i
[
H0, q0α(x)

]
= J0

α(x)− J0
α(x+ 1). (3.9)

Let us now consider the charge contained in a half-infinite part of the chain. Then we get
the formal definition

J0
α(x) = i

[
H0,

∞∑
y=x

q0α(y)

]
. (3.10)

The physical meaning is that the operator J0
α(x) measures the current flowing into the right

half-infinite part of the chain.
A formal summation of the above equation results in

∞∑
x=−∞

J0
α(x) = i

[
H0,

∞∑
y=−∞

xq0α(x)

]
= i
[
H0,B[Q0

α]
]
. (3.11)

The connection between (3.10) and (3.11) is only formal, because the complete summation of
J0
α(x) would result in infinite coefficients for the charge density. Nevertheless the subtraction

of the global Q0
α operator with formally infinite coefficient just removes this divergence, such

that the remaining finite pieces have well defined values. This divergence problem is related
to the question of where to set the zero coordinate for the boosted charge. Choosing an other
point results in a finite difference of the global charge, which commutes with the Hamilto-
nian, thus not affecting the current operators. Alternatively, (3.11) can also be obtained by
summing over (3.9) after multiplication by x.

It is also useful to define generalized current operators describing the flow of Q0
α under

time evolution dictated by Q0
β . To this order we define

i
[
Q0
β , q

0
α(x)

]
= J0

α,β(x)− J0
α,β(x+ 1). (3.12)

Locality of the charge densities and the global commutativity implies that the operator
equation (3.12) can always be solved with some short-range J0

α,β(x)1. For the range we
obtain the simple relation

|J0
α,β(x)| = |q0α(x)|+ |q0β(x)| − 1 = α+ β − 1. (3.13)

1Our notation for the generalized currents slightly deviates from the one used in [6]: the operators J0
α,β(x)

defined here were denoted as Jβα(x) there.
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In analogy with (3.11) we find the following relation for the generalized currents:
∞∑

x=−∞
J0
α,β(x) = i[Q0

β ,B[Q0
α]]. (3.14)

It is important that the charge densities and the corresponding currents are not well defined
a priori. For each charge there is a “gauge freedom” for its density

q0α(x) → q0α(x) +D(x+ 1)−D(x). (3.15)

Such a transformation does not alter the integrated charges, but it changes the definition of
the current operators as

J0
β,α(x) → J0

β,α(x)− i[Q0
β , D(x)]. (3.16)

The mean values of the current operators in the eigenstates are not affected by this trans-
formation, but the off-diagonal matrix elements do change. This has some consequences for
the intermediate computations for the diffusive corrections in Generalized Hydrodynamics,
which is discussed in detail in [28].

The general form of the charge densities and the relation (3.14) imply that the current
operators also enjoy the SU(2)-invariance and they can also be expressed using exchange
operators. However, as far as we know explicit results are not available for all J0

α,β(x).
All of the above definitions involving the boost operators are defined in the infinite volume

case. Nevertheless the charge densities and the generalized currents are perfectly well defined
operators even in finite volume, as long as their range does not exceed the length of the chain.

It is our main goal to determine the exact finite volume mean values

〈ψ|J0
α,β(x)|ψ〉 (3.17)

in all excited states of the finite volume systems. These mean values were computed in [6]
using a form factor expansion. In the following we review these results.

3.1 Bethe Ansatz and the currents
The finite volume eigenstates of the Heisenberg spin chain can be found by the Bethe

Ansatz [29]. The states are characterized by an ordered set of rapidities λN = {λ1, . . . , λN}
that describe the lattice momenta of the interacting spin waves. The un-normalized N -
particle wave function can be written as

|λN 〉 =
∑

x1<x2<···<xN

∑
σ∈SN

∏
j>k

f(λσj − λσk)

N∏
j=1

eipσjxj |x1, . . . , xN 〉 (3.18)

where |x1, . . . , xN 〉 are basis states with N down spins at positions xj , and it is understood
that pj = p0(λj) and p0(λ) is the one-particle propagation factor given explicitly by

eip
0(λ) =

λ− i/2
λ+ i/2

. (3.19)

The summation σ ∈ SN runs over all permutations of the rapidities. The function f(λ) =
1 + i/λ is responsible for the interaction between the spin waves, such that the scattering
factor becomes

S(λ) = eiδ(λ) =
f(λ)

f(−λ)
=
λ+ i

λ− i
. (3.20)

In this normalization the Bethe states are symmetric with respect to an exchange of rapidities.
These states are eigenvectors of the set of commuting charges with eigenvalues given by

(3.25). For the quasi-momentum we have

P 0 =

N∑
j=1

p0(λj). (3.21)
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The energy eigenvalues are

E0 =

N∑
j=1

e0(λj), e0(λ) = − 2

λ2 + 1
4

, (3.22)

and for all higher charges

Q0
α|λN 〉 =

 N∑
j=1

h0α(λj)

 |λN 〉, (3.23)

where h0α(λ) are the one-particle eigenvalues. They satisfy the recursion

h0α(λ) = −∂λh0α−1(λ) (3.24)

and are given explicitly by

h0α(λ) = i(α− 2)!

[
1

(λ+ i/2)α−1
− 1

(λ− i/2)α−1

]
. (3.25)

In finite volume the rapidities are subject to the Bethe equations, which guarantee peri-
odicity of the wave function (3.18):

eip(λj)L
∏
k 6=j

S(λj − λk) = 1, j = 1 . . . N. (3.26)

For the Bethe states with on-shell rapidities the norm is [30]

〈λN |λN 〉 =

∏
j<k

f(λjk)f(λkj)

× detG. (3.27)

Here detG is the Gaudin determinant, defined as follows. Let us write the Bethe equations
in the logarithmic form:

p0(λj)L+
∑
k 6=j

δ(λj − λk) = 2πIj , j = 1 . . . N. (3.28)

Here Ij ∈ Z are the momentum quantum numbers, which can be used to parametrize the
states. The Gaudin matrix is then defined as the Jacobian

Gjk =
∂

∂λk
(2πIj), j, k = 1 . . . N, (3.29)

where now the Ij are regarded as functions of the rapidities. The explicit form is

Gjk = δjk

[
p′(λj)L+

N∑
l=1

ϕ(λj − λl)

]
− ϕ(λj − λk), (3.30)

where
ϕ(λ) =

∂δ(λ)

∂λ
. (3.31)

For the normalized current mean values the following exact result was derived in [6]:

〈λN |J0
α(x)|λN 〉

〈λN |λN 〉
= e′ ·G−1 · hα. (3.32)

The quantities e′ and hα are N -dimensional vectors given by

(e′)j =
∂e0(λj)

∂λj
, (hα)j = h0α(λj), (3.33)
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and G−1 is the inverse of the Gaudin matrix.
Similarly, for the generalized current operators the following was obtained in [6]:

〈λN |J0
α,β(x)|λN 〉
〈λN |λN 〉

= h′β ·G−1 · hα. (3.34)

As special cases we have

〈λN |J0
2,β(x)|λN 〉
〈λN |λN 〉

= − 1

L

〈λN |Q0
β+1|λN 〉

〈λN |λN 〉
, (3.35)

which is in accordance with the boost relation (3.6).
The current mean values display the symmetry

〈λN |J0
α,β(x)|λN 〉
〈λN |λN 〉

=
〈λN |J0

β+1,α−1(x)|λN 〉
〈λN |λN 〉

(3.36)

which follows from the symmetry of the Gaudin-matrix and the recursion (3.24).

There are two possible interpretations of the result (3.34), both using the derivative of
the Bethe equations with respect to certain parameters.

The first interpretation was already given in [6]: The mean values can be written as

〈λN |J0
α,β(x)|λN 〉
〈λN |λN 〉

=
1

L

N∑
j=1

q0α(λj)v
β
eff(λj), (3.37)

where the quantities

vβeff(λj) = L(G−1h′β)j =
L

2π

∂Q0
β

∂Ij
(3.38)

are interpreted as effective velocities, describing particle propagation under time evolution
by Q0

β . In [6] the effective velocities were only treated in the case when time evolution is
generated by the physical Hamiltonian, but the extension to the flow generated by Q0

β is
straightforward.

There is a simple semi-classical picture explaining the above formula for veff, laid out in
[6]. Here we summarize the main points. In a free model the Gaudin matrix is diagonal and
we would get the standard expression for the group velocities of wave packets:

vβeff(λ) =
∂h0β(λ)/∂λ

∂p(λ)/∂λ
=
dh0β
dp

. (3.39)

In the presence of interactions this simple one-particle result is modified, such that the
effective velocity also takes into account the displacement of the wave packets suffered during
the scattering processes. The inverse of the Gaudin matrix then emerges from a self-consistent
computation for the average velocities [6].

The second interpretation of (3.34) is new and it serves as the motivation for the present
paper. It is explained below.

3.2 Strategy towards the deformed spin chains
Let us consider an artificial set of Bethe equations with a deformation parameter κ:

(p0(λj) + κh0α(λj))L+
∑
k 6=j

δ(λj − λk) = 2πIj j = 1 . . . N. (3.40)

Here the κ-dependent term can be interpreted as a momentum-dependent twist. We will be
looking for a spatially homogeneous deformation of the spin chain that leads to the above
Bethe equations.
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If we fix the momentum quantum numbers for a given solution, then the Bethe roots
will become functions of κ. Let us compute the change of the mean value of a given charge,
caused by the change in the rapidities. Using the formula (3.23) we get the relation

dQ0
β

dκ
=

N∑
j=1

∂h0β(λj)

∂λj

dλj
dκ

= L
(
h′β ·G−1 · hα

)
. (3.41)

The coincidence between (3.41) and (3.34) suggests that we should look for a perturbation
of the charge Q0

β as

Qκβ = Q0
β + κ

L∑
x=1

J0
α,β(x), (3.42)

and investigate the κ-dependence of its mean value. The result (3.34) could then follow from
the Hellmann-Feynman theorem, if
• integrability holds after the perturbation
• the only effect of the deformation is the appearance of the κ-dependent terms in the

Bethe equations (3.40)
• the charge eigenvalues can be computed using the same formula (3.23), but with the

deformed Bethe roots.
Luckily, there are deformations that almost guarantee the above requirements, and they

have already been explored in the context of the AdS/CFT correspondence [9]. Here we
describe the main ideas behind the construction, and the details will be presented in the
next section.

In infinite volume it is possible to deform the set of conserved charges in many ways so
that each charge becomes a power series in κ and the set remains commutative:

Qκα = Q0
α +

∞∑
j=1

κj

j!
Q(j)
α . (3.43)

Furthermore, it is possible to choose the deformations such that at linear order in κ we have
indeed (3.42). In this process the commutation relations

[Qκα, Q
κ
β ] = 0 (3.44)

can be ensured at every order in κ recursively. The range of the deforming operators grows
linearly with the order in κ. It follows that the summation of the perturbation series will not
be local: instead we can assume to get quasi-local operators.

However, there is an important complication: the deformation is only defined in infinite
volume. As we will see below, these deformations are not generated from a local transfer
matrix construction, therefore they can not be uniquely defined in finite volume. In fact, in
finite volume the perturbation series for the charges is valid only as long as the correction
terms fit into the given volume. If the range of the perturbing operators exceeds the length
of the chain at a given order, then we are faced with the wrapping problem: it is generally
not known how to put the higher order terms into the finite volume. Thus we can not ensure
integrability at the higher orders in κ. In this case the perturbation series (3.43) has to be
truncated at some order, and the truncation level will depend on L and the index α.

The key idea is that even though integrability is ensured only up to the lower orders
in κ, even the finite volume system can be solved with integrability techniques, up to the
given order in κ. The goal is to express all physical quantities (such as energy and charge
eigenvalues) in a perturbation series in κ, and build the Bethe Ansatz using the infinite
volume quantities, including corrections up to given order in κ, or possibly using an all orders
result. This method is called the asymptotic Bethe Ansatz, because it becomes asymptotically
exact if we fix the particle number and then take the L → ∞ limit. In a finite volume the
asymptotic results should be trusted up to a certain order in κ, for which the commutativity
of some subset of the charges still holds in that given volume.

In Section 5 we will argue that this asymptotic procedure does in fact yield the exact
mean values of the current operators.
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4 Long range deformations
In this Section we consider the infinite volume situation. Following [9] we introduce certain

long range deformations of the original Heisenberg model, such that integrability remains
preserved. Denoting the deformation parameter by κ it is our goal to find a set of operators
{Qκα}α=1,2,... such that

[Qκα, Q
κ
β ] = 0, (4.1)

and
Qκ=0
α = Q0

α. (4.2)

We require that the resulting operators should be extensive and quasi-local:

Qκα =

∞∑
x=−∞

qκα(x). (4.3)

Quasi-locality implies that the operator density qκα(x) has to have a finite norm.
One way to obtain such long range deformations is by postulating a generating equation

for the charges, that describes “evolution in κ”. This takes the Lax form

d

dκ
Qκα = i[X(κ), Qκα]. (4.4)

Here X(κ) is a formal operator that will be specified below. It is important that in general
X depends on κ.

This deformation leaves the commutation relations between the charges unmodified,
which follows from the Jacobi identity

d

dκ
[Qκα, Q

κ
β ] = i[X(κ), [Qκα, Q

κ
β ]]. (4.5)

Commuting charges will be mapped to commuting charges, furthermore the group theoret-
ical properties (commutation relations between some Lie algebra generators) will also be
preserved.

We note that our κ parameter is not identical to the λ deformation parameter used in [9].
We choose our deformations such that the desired current operators always appear in linear
order in κ. In contrast, in the formalism of [9] they would only appear in higher orders in λ.

The generating equation suggests a transformation rule also for the eigenstates of the
model. Let

∣∣Ψ0
〉
be any eigenstate of the set of un-deformed charges of the infinite volume

model. Then we define the deformation of the state as

d

dκ
|Ψκ〉 = −iX(κ)|Ψκ〉 (4.6)

with the initial condition |Ψ(κ = 0)〉 =
∣∣Ψ0
〉
. Then the deformation relations imply that

eigenstates are mapped to eigenstates and the charge eigenvalues Λ0
α are not deformed:

Qκα|Ψκ〉 = Λ0
α|Ψκ〉. (4.7)

We stress however that these relations are only formal, and the question whether they are
well defined and physically acceptable depends strongly on the structure of X. The main
goal is to find some formal expressions for X that generate quasi-local deformations.

In [9] three families for X were identified (with an additional possibility for the deforma-
tion, see below):

1: Local and quasi-local operators.

The choice

X =

∞∑
x=∞

O(x) (4.8)
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with O being a short range operator describes a “physical” similarity transformation. In this
case X does not depend on κ and it could be regarded as the Hamiltonian of some other
model, which simply generates a change of basis for our model:

Qκα = eiκXQ0
αe
−iκX . (4.9)

The generating equation and the transformation can be defined also in finite volume L, as
long as |O(x)| ≤ L. The deformation leaves the spectrum of all charges unmodified, in every
finite volume.

The same construction can be extended to the case when X is a quasi-local operator. In
that case the transformation is strictly defined only in infinite volume, nevertheless it can be
understood as a similarity transformation.

2: Boost operators.

The choice
X(κ) = −B[Qκα] (4.10)

for some α also generates quasi-local charges. Now the κ-derivative of the charges is given
by

d

dκ
Qκβ = Jκα,β , (4.11)

where we defined the κ-deformed generalized current operators as

Jκα,β = −i[B[Qα(κ)], Qβ(κ)]. (4.12)

The global commutativity of the charges imply that Jκα,β is an extensive operator, this can
be shown recursively for every order in κ. The full operator is expected to be quasi-local.
The minus sign in (4.10) is chosen only for later convenience.

Let us define the deformed current densities as

i
[
Qκβ , q

κ
α(x)

]
= Jκα,β(x)− Jκα,β(x+ 1). (4.13)

Similar arguments as above show that

Jκα,β =

∞∑
x=−∞

Jκα,β(x). (4.14)

It is important that the simple choice X(κ) = −B[Q0
α] would not guarantee quasi-locality

for higher order corrections in κ, and it is important to involve the solution Qκα in the
generator itself.

The generating equation is not a well-defined differential equation for the charges, be-
cause the boost operators depend strongly on how the charge densities are chosen. A “gauge
transformation” of the form (3.15) results in

B[Qκα] → B[Qκα] +
∑
x

D(x). (4.15)

The two boost operators thus differ in a local operator, whose additional effect during the
deformation has to be compensated by a similarity transformation. Nevertheless these ad-
ditional pieces leave both the finite and infinite volume spectra of the charges invariant,
therefore they are irrelevant for our purposes.

We note that the convergence of the deformation series and the quasi-locality of the
resulting sum has not yet been proven rigorously. We expect that the deformed charges will
be quasi-local in some finite neighborhood of κ = 0.

3: Bi-local operators.
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Let A and B be two quasi-local operators given by the operator densities A(x) and B(x).
We then define the bi-local operator

[A|B] ≡
∑
x<y

{A(x), B(y)}+
1

2

∑
x

{A(x), B(x)}. (4.16)

Note that the definition immediately yields the relation

[A|B] + [B|A] = {A,B}. (4.17)

The bi-local operator is thus “one-half” of the anti-commutator, corresponding to a specific
spatial ordering of the operator densities.

The long-range deformations can be generated by the operators

X(κ) = [Qκα|Qκβ ]. (4.18)

Once more the global commutativity of the charges imply that the resulting deformation will
be quasi-local [9]. Our definition (4.16) differs slightly from the one in [9], where the relative
positions of the charge densities are shifted as compared to our formula. Nevertheless the
difference between the two choices is just an extensive local operator. Similarly, the gauge
transformations (3.15) can also lead to additional extensive local operators.

4: Basis change for the charges.

There is a further possibility for the deformation of the charges, namely a linear mixing of
the set {Qκα}, with a mixing matrix that can depend on κ. Such transformations are essential
for the spin chains relevant to AdS/CFT [7, 8, 9], but we will not use this possibility.

In the following we will focus on the case when the generator X(κ) is chosen to be one
of the boost operators.

4.1 Deformation of eigenstates
It is useful to study the deformation of the states, which is generated by the relation

(4.6). Using (4.10) we have:

d

dκ
|Ψ(κ)〉 = iB[Qα(κ)]|Ψ(κ)〉. (4.19)

We first analyze the effect of the deformation on the global momentum of the states. Let
U = eiP be the one-site translation operator, which satisfies

UO(x) = O(x+ 1)U (4.20)

for any local operator.
Let us denote the eigenvalue of U on some un-deformed eigenstate

∣∣Ψ0
〉
of the infinite

volume system as eiP0 . Our deformations produce extensive and homogeneous charges, thus
we can assume that the deformed eigenstates |Ψ(κ)〉 will remain eigenstates of U for all κ
(this also follows from the explicit form of the generating equation). We are thus looking for
the deformed eigenvalues

U |Ψ(κ)〉 = eiP (κ)|Ψ(κ)〉. (4.21)

Taking a formal derivative in κ we get

U
d

dκ
|Ψ(κ)〉 = iP ′(κ)eiP (κ)|Ψ(κ)〉+ eiP (κ) d

dκ
|Ψ(κ)〉, (4.22)

which can equivalently be written as

UX|Ψ(κ)〉+
dP (κ)

dκ
eiP (κ)|Ψ(κ)〉 = eiP (κ)X|Ψ(κ)〉. (4.23)
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Let us now act with X = −B[Qα(κ)] on the two sides of (4.21), resulting in

− B[Qα(κ)]U |Ψ(κ)〉 = (−UB[Qα(κ)] + UQα(κ))|Ψ(κ)〉 = −eiP (κ)B[Qα(κ)]|Ψ(κ)〉. (4.24)

Comparing these equations we can read off

d

dκ
P (κ) = Λα. (4.25)

As it was discussed above, the eigenvalues of the charges do not change under the deformation,
thus we get the simple solution

P (κ) = P 0 + Λακ. (4.26)

This is the generalization of the standard boost operation known in Lorentzian of Galilean
invariant models. It holds for all eigenstates of the infinite volume system.

On one-particle states the deformation results in the modified momentum-rapidity rela-
tion

p0(λ) → p0(λ) + κh0α(λ). (4.27)

The quasi-locality of the deformation implies that the multi-particle momentum of Bethe
states has to be of the form

Pκ =

N∑
j=1

pκ(λj), pκ(λj) = p0(λ) + κh0α(λj). (4.28)

The deformation equation (4.6) also implies that the for well separated particles the
deformed eigenstates will also take the form of a Bethe state, with the modified dispersion:

|Ψκ(λN )〉 ≈
∑

x1<x2<···<xN

∑
σ∈SN

eip
κ(λσj)xj

∏
j<k

f(λσj − λσk). (4.29)

Here it is understood that the wave function obtains corrections in various orders in κ
depending on the distances |xj−xk|, but this form becomes exact in the limit |xj−xk| → ∞.
The additional pieces are called contact terms and arise from the long-range terms in (4.6).

The boost operator is a one-particle irreducible operator, and it does not change the
relative phases dictated by f(λ). These can be deformed if we choose X(κ) to be a bi-local
operator, because the bi-local generators include a specific spatial ordering for the generating
charges, thus distinguishing the terms in the Bethe wave functions with different particle
orderings [9]. We give a few comments about this case in Section 7.

5 Asymptotic Bethe Ansatz and the current mean values
Here we investigate the finite volume spectrum of the deformed charges, in the case of

the boost deformations. Our motivation is that if the exact charge eigenvalues are known as
a function of κ, then the Hellmann-Feynman theorem together with (4.11) implies

〈
Ψ0
∣∣J0
α,β(x)

∣∣Ψ0
〉

=
1

L

dQκβ
dκ

∣∣∣∣
κ=0

. (5.1)

As we explained above, this problem is strictly speaking not well defined: generally it is not
known how to define the charges to all orders in κ in a finite volume, due to the wrapping
problem. Nevertheless, low order results in κ can be obtained even in finite volume, and we
are only interested in the linear terms. This justifies our procedure.

In the previous Section we explained that in infinite volume the eigenvalues of the charges
are not modified during the deformation. However, this is not true anymore in finite volume.
The main reason for this is that in finite volume the rapidities undergo a deformation, and
this can be understood using the asymptotic Bethe Ansatz. The main idea is to use the
approximate wave function (4.29) and to derive the Bethe equations using the deformed
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one-particle momenta. This procedure becomes exact in the L → ∞ limit, with fixed N .
Furthermore, we will argue that it leads to the correct results for the current mean values
even when L is comparable to N .

For a given state with momentum quantum numbers {Ij} the asymptotic Bethe equations
for our deformation read

pκ(λj)L+
∑
k 6=j

δ(λj − λk) = 2πIj , (5.2)

with the deformed momentum given by (4.28).
The first order correction to the rapidities is easily computed by taking derivatives of the

above equations, leading to
∂λj
∂κ

= LG−1hα, (5.3)

where hα is a vector with elements hα(λj). Computing finally (5.1) gives

〈
Ψ0
∣∣J0
α,β(x)

∣∣Ψ0
〉

=

N∑
j=1

h′β(λj)
∂λj
∂κ

= h′βG
−1hα. (5.4)

This result is valid as long as there are no wrapping corrections involved, which means that
the range of current J0

β,α must not exceed the length of the spin chain.
With this we have re-derived the main result of [6].
The alerted reader might have the following objection to our derivation: In those cases

when the perturbing operator barely fits into the volume (for example α + β − 1 = L), or
when N is comparable to L, our arguments for the asymptotic Bethe Ansatz break down,
thus the above result is not justified. Nevertheless we can argue that it is still valid. The
reason lies in the structure of the mean values, when viewed as a function of L and the
rapidities, for a fixed particle number.

When the mean value of any local operator is computed using the exact original Bethe
Ansatz wave function, the result can always be expressed as a rational function of L and
λN . Focusing on the L-dependence, the rational function can be expanded into a convergent
power series in 1/L. We claim that for the current mean values the coefficients of this series
can be determined from large enough volumes, using our computation with the asymptotic
Bethe Ansatz. This is possible because the error terms to the asymptotic results decay
exponentially with the volume, as they are always proportional to κc with c ∼ L. Therefore
our perturbative computation can indeed fix all polynomial terms in 1/L, which completely
fixes the rational function in question. The results are thus correct, as long as the real space
computation of the mean value is well defined, i.e. as long as the current operators fit into
the given volume.

5.1 Inhomogeneous spin chains
It is known that the boost deformations treated here can be approximated to a certain

order in κ by introducing an inhomogeneous spin chain, and adjusting the inhomogeneities
in a special way [9]. This is possible because the one-particle propagation on the spin chain
depends on the inhomogeneities, and the deformed dispersion relations can be approximated
with a given precision, depending on the length of the chain. Furthermore, the inhomo-
geneities can also be used to generate the conserved operators and the eigenstates of the
deformed spin chains relevant to AdS/CFT [31, 32, 33, 34].

We do not investigate the inhomogeneous chains here, because for our purposes it is
sufficient to know the deformations of the Bethe equations, from which the mean values
immediately follow. We just remark that the inhomogeneities could be used to get explicit
real space formulas for the current operators. This is left to further work.
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6 SU(3)-symmetric model
The results of the previous sections admit simple generalizations to models with higher

rank symmetries, solvable by the nested Bethe Ansatz. Here we will focus on the SU(3)-
symmetric fundamental model given by the Hamiltonian

H0 =

L∑
x=1

(Px,x+1 − 1), (6.1)

where now P is the permutation operator acting on C3 ⊗ C3.
Just like in the previous case, higher charges of the model can be constructed using the

boost operator. We now choose Q0
2 = H0, thus q02(x) is the same as in the SU(2)-case, see

(3.4). With this choice all local charges of the model will take the same form as in the SU(2)
case, when expressed using the permutation operators. A number of explicit cases are given
in [9].

We define the generalized current operators J0
α,β with the same continuity equations as

before, and they can be expressed using the boost operators as in (3.14). When expressed
using permutation operators, they will take the exact same form as in the XXX model.
Thus the only formal difference compared to the SU(2)-case lies in the construction of the
eigenstates.

In the SU(3)-case let |0〉, |1〉 and |2〉 be a basis of C3 and let us choose the reference state
as

|∅〉 = ⊗Lj=1|0〉, (6.2)
which is an eigenstate of the Hamiltonian. Excitations can then be created over this reference
state, and the one-particle states have an inner degree of freedom corresponding to the
available directions |1〉 and |2〉. Similarly, the N -particle states can be characterized by an
orientation vector which is an element of ⊗Nj=1C2. The exact finite volume eigenstates of the
model can be constructed using the nested Bethe Ansatz. The resulting N -particle states are
characterized by the set λN describing the lattice momenta of the particles, and a further
set of auxiliary rapidities µM describing the orientation in the internal space. We will use
the notation |λN ,µM 〉; for their construction see [35]. The GL(3) quantum numbers of the
state |λN ,µM 〉 are given by (L−N,N −M,M).

The full set of rapidities is subject to the nested Bethe equations

eip
0(λj)L

N∏
k=1,k 6=j

S(λj − λk)

M∏
k=1

S̃(λj − µk) = 1 j = 1, . . . , N

M∏
k=1

S̃(µj − λk)

N∏
k=1,k 6=j

S(µj − µk) = 1, j = 1, . . . ,M,

(6.3)

where p0(λ) and S(λ) are given by (3.19) and (3.20), respectively, and

S̃(λ) = eiδ̃(λ) =
λ− i

2

λ+ i
2

. (6.4)

The lattice momentum, the energy, and the higher charge eigenvalues are given by the
sum of one particle eigenvalues of the first type of rapidities:

P 0 =

N∑
j=1

p0(λj), E =

N∑
j=1

h02(λj), Q0
α =

N∑
j=1

h0α(λj). (6.5)

Let us write the nested Bethe equations in the logarithmic form as

p0(λj)L+

N∑
k=1,k 6=j

δ(λj − λk) +

M∑
k=1

δ̃(λj − µk) = 2πIj , j = 1 . . . N,

N∑
k=1

δ̃(µj − λk) +

M∑
k=1,k 6=j

δ(µj − µk) = 2πIN+j , j = 1 . . .M.

(6.6)
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Analogously to the SU(2)-case we define the Gaudin matrix of size (N +M)× (N +M) as
the Jacobian of the mapping from the rapidities to the integer quantum numbers:

Gjk =
∂(2πIj)

∂uk
, (6.7)

where it is understood that

{uN+M} = {λ1, . . . , λN , µ1, . . . , µM}. (6.8)

6.1 Boost deformation and current mean values
Similar to the previous case we perform the deformation procedure with the boost oper-

ators given by (4.10).
It can be argued [9] that even in this case the only change in the infinite volume states

(for large enough separation of the particles) is the replacement

p0(λ) → p0(λ) + κh0α(λ). (6.9)

The spin structure of the infinite volume states is not affected by the boost transformation.
In finite volume the deformation of the nested Bethe equations derived from the asymp-

totic Bethe Ansatz are

(p0(λj) + κh0α(λj))L+

N∑
k=1,k 6=j

δ(λj − λk) +

M∑
k=1

δ̃(λj − µk) = 2πIj , j = 1 . . . N,

N∑
k=1

δ̃(µj − λk) +

M∑
k=1,k 6=j

δ(µj − µk) = 2πIN+j , j = 1 . . .M.

(6.10)

Note that the only change is the modified physical dispersion relation for the physical ra-
pidities, and the equations for the auxiliary µM are not changed. Nevertheless, the actual
solutions for µM in a given volume L are deformed, due to the coupling with λN .

We now apply the Hellmann-Feynman theorem to find the mean values of the generalized
charges. A straightforward computation, completely analogous to the SU(2)-case now yields

〈λN ,µM |J0
α,β(x)|λN ,µM 〉

〈λN ,µM |λN ,µM 〉
= h̃′β ·G−1 · h̃α, (6.11)

where G−1 is the inverse of the Gaudin matrix of size (N + M) × (N + M), and h̃α is a
vector of length N +M with components

(h̃α)j =

{
h0α(λj) j = 1 . . . N

0 j = (N + 1) . . . (N +M),
(6.12)

and h̃′β is defined analogously.
This result can also be formulated using a “direct” Gaudin matrix of size N × N . Let

us regard the Bethe equations as a mapping between the variables {2πIj}j=1,...N+M and
{uN+M} = {λN ,µM}. We assume that this mapping is bijective in some neighborhood of
the Bethe state, and for the inverse of the Gaudin matrix we have

(G−1)jk =
∂uj

∂(2πIk)
. (6.13)

According to (6.11) only the upper left N ×N block of this matrix is needed for the current
mean values. This block describes the change of the first set of rapidities with respect to
their momentum quantum numbers, while keeping the quantum numbers for the µ-variables
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fixed. This means that as we change the Ij , j = 1, . . . , N , it is implicitly assumed that the µ
variables are also changed, and this is substituted back into the Bethe equations of the first
set. Thus we obtain

〈λN ,µM |J0
α,β(x)|λN ,µM 〉

〈λN ,µM |λN ,µM 〉
= h′β ·G−1direct · hα, (6.14)

where now hα and h′β are vectors of length N , given by the one-particle charge eigenvalues,
and G−1direct is a matrix of size N ×N defined as

(
G−1direct

)
jk

=
∂λj

∂(2πIk)

∣∣∣∣
IN+1,...,IN+M fixed

. (6.15)

A somewhat more explicit formula can be given if we write the original Gaudin matrix in
the block form

G =

(
A B
BT C

)
, (6.16)

where A, B and C are matrices of size N ×N , N ×M and M ×M , and BT is the transpose
of B. Then the direct Gaudin matrix is

Gdirect = A−BC−1BT . (6.17)

Interestingly, such “direct” Jacobians appeared in early work dealing with the norm of the
Bethe states, see for example eq. (24) in [36].

Equations (6.11) and (6.14) are the main result for the current operators in the SU(3)-
symmetric chain. Similar to the SU(2)-case they allow a semi-classical interpretation. We
can write the mean values as

〈λN ,µM |J0
α,β(x)|λN ,µM 〉

〈λN ,µM |λN ,µM 〉
=

1

L

N∑
j=1

vβeff(λj)h
0
α(λj), (6.18)

where now the effective velocities are given by the first N components of the vector LG−1h̃′β ,
or by the components of the vector LG−1directh

′
β . Alternatively they can be expressed as

vβeff(λj) = L
∂Q0

β

∂(2πIj)

∣∣∣∣∣
IN+1,...,IN+M fixed

. (6.19)

In the semi-classical picture they describe the particle propagation in the presence of the other
particles, for the given orientation of the internal degrees of freedom. Identifying 2πIj/L as
a “dressed momentum” pdrj we also have the suggestive relation

vβeff(λj) =
∂Q0

β

∂pdrj

∣∣∣∣∣
IN+1,...,IN+M fixed

. (6.20)

It is important that the effective velocities always depend on the second set of rapidities µM
as well, even though this is implicit in the above formulas.

7 Discussion
In this work we derived the mean values of the current and generalized current operators

in the SU(2) and SU(3)-symmetric fundamental models, with periodic boundary conditions.
The key observation was that these operators appear as the first order perturbation terms
in certain long range deformations of the spin chains.

We treated the models where the sites were carrying the defining representations of the
groups SU(2) and SU(3). The extension to other Lie groups and other representations seems
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rather straightforward, as long as their is an original local Hamiltonian and a local boost
operator. Similarly, models with quantum group symmetries are also easily accommodated.
For example the long range deformations of the XXZ chain were treated in detail in [37],
and there are no essential complications as compared to the XXX case. Thus, quite generally
we expect that the currents are always of the form (3.34), with the Gaudin matrix and the
one-particle eigenvalues reflecting the given (possibly nested) Bethe Ansatz solution.

However, we do not claim that our derivation constitutes a rigorous proof. Some proper-
ties of the long range deformations, such as the convergence of the perturbation series, the
quasi-locality of the resulting charges, and the effects of the truncation on the finite volume
spectrum are not rigorously proven. Regarding the dilatation operator in AdS5/CFT4 the
exact spectrum is well understood and completely under control (see [38, 39] and references
therein). On the other hand, there are fewer exact results for the general construction pre-
sented in [9], and as far as we know it is not known how to obtain a finite volume integrable
model (including all corrections in κ) for an arbitrary long-range deformation. Nevertheless,
our computations should be trusted as long as the perturbing operators are not longer than
the length of the spin chain, and we gave a few additional arguments for this below (5.4).

Having obtained such simple results for the current mean values, the following questions
naturally emerge: What else can we compute with similar simple tricks? And why do these
results exist? The first question is easier, and here we list a few ideas for further research:

• Connection to the general theory of short range correlators in the fundamen-
tal SU(N)-symmetric models. It is known that in the XXZ and XXX Heisenberg
spin chains the mean values of all local operators factorize: they can be expressed as
combinations of only a few functions, which originate in the two-site density matrix of
an inhomogeneous chain [40, 41, 42, 43]. Our previous work [44, 6] showed that for the
SU(2)-invariant operators of the homogeneous XXX chain these building blocks are
identical to the mean values of the currents J0

α,β . One of the most interesting questions
is how much of this can be generalized to the higher rank cases.
The existing results in the literature imply, that in the SU(3) chain there is no factor-
ization procedure that would express the mean values of all short range operators using
a finite set of functions [45, 46]. Nevertheless, this does not exclude the existence of
factorized formulas for some special sets of local operators. Here we derived the mean
values for the infinite family of current operators in the SU(3) chain, and this points
to the possibility of finding also further factorized correlators.

• Models without U(1) symmetry. The XYZ model lacks U(1) symmetry, and there
is no particle-like interpretation of the eigenstates in finite volume. On the other hand,
the exact finite volume spectrum is in principle known [47], and the additional local
charges and currents can be found in the same way with the boost operator [26]. If some
generalization of the asymptotic Bethe Ansatz is found, then computing the current
mean values could ultimately lead to the Generalized Hydrodynamics formulated for
this model, in spite of not having a particle-like interpretation on the fundamental level.

• Boundary spin chains. The long-range deformations of open chains were already
treated in the works [48, 37], where the asymptotic Bethe Ansatz was already derived.
The application of our simple arguments could lead to closed form and compact results
for the mean values of certain operators localized at the boundary. This would be
interesting, because even though in principle all boundary correlators of the XXZ model
are known in the form of multiple integrals [49, 50], factorization of these integrals has
not yet been observed in the boundary case.

• Continuum models. In principle the continuum integrable models could also be de-
formed, yielding the current mean values and possibly some other observables. In gen-
eral we expect that the deformed Hamiltonian and charges would include an infinite
series of higher derivatives, which could be perhaps summed up to some non-local, but
well defined operators. Such models already appeared in the literature, although in
disguise: for example the work [51] treated a generalization of the Lieb-Liniger model,
where the scattering factor was modified in a non-trivial way. However, it was also
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found in [51] that in a proper parametrization the scattering factor has the same form
as in the Lieb-Liniger model, and only the momentum is deformed, see eqs. (38) and
(47) there. Clearly, this case also belongs to the class of the boost deformed models.

Let us now return to the question: why do such results exist? Regarding the current
mean values it was already explained in [6], that the ultimate reason for the simple result
and the exact quantum-classical correspondence is the two-particle reducibility of the Bethe
wave function. On the other hand, the observed connection between correlation functions and
long-range deformations still seems surprising. We believe that the present understanding of
the long-range deformed integrable models is not satisfying, and deserves further research.

In closing we also note that exact results similar to ours for mean values in certain nested
spin chains were derived recently using completely different methods in [52].
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