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Abstract: This paper presents a subsystem decoupling method for Linear Time Invariant
Discrete-time systems. This allows that a selected subsystem can be controlled in a way which
does not affect the remaining modes. Decoupling is achieved by suitable input and output blend
vectors, such that they maximize the sensitivity of the selected mode, while at the same time they
minimize the transfer through the undesired dynamics. The proposed algorithm is based on an
optimization problem involving Linear Matrix Inequalities, where theH− index of the controlled
subsystem is maximized, while the transfer through the undesired dynamics is minimized by a
sparsity like criteria. The present approach has the advantage that it is directly applicable to
stable and unstable subsystems also. Numerical examples demonstrate the effectiveness of the
method. The paper extends earlier continuous time results to discrete time systems over a finite
frequency interval.
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1. INTRODUCTION

It is often desirable to reduce the complexity of the
control problem, and many approaches are existing to
achieve it. These methods can be categorized into three
main groups (Bakule, 2008). Decentralization aims for
separate control design for processes and their independent
implementation. Decomposition divides the system into
certain subsystems, and so reduces the complexity of the
control problem. Model reduction lowers the complexity
of mathematical models, with the aid of approximate
dynamical descriptions.

The present paper focuses on the decoupling (decompo-
sition) of dynamical systems, where we wish to control a
given subsystem, without interacting with the remaining
dynamics (Gilbert, 1969). This aim points in the same di-
rection as recent trends of systems- and control engineering
aiming for the design of structured controllers for complex
systems (Apkarian et al., 2015).

A newly developing trend in control design puts an em-
phasis on the decoupled control of selected modes of a
dynamical system. These new approaches are applying
input and output blending vectors to decouple modes and
convert the design problem into a Single Input Single
Output (SISO) one. Pusch (2018) designs the blend vec-
tors based on an H2 norm criteria, which guarantees the
controllability, observability and non-interacting control
of selected modes. Pusch and Ossmann (2019) connects
the before mentioned method to direct velocity feedback
control. Danowsky et al. (2013) isolates the targeted mode
by an optimal blend of the measurements, and computes
an optimal blend for the inputs to damp the selected mode

via a negative optimal feedback, and reduce interactions
with other modes.

The paper discusses a novel blending approach for LTI
discrete time systems, which make possible the decou-
pled control of targeted subsystems with simple SISO
controllers. The method relies on the H− index and a
sparsity like criteria. This H− index (Liu et al., 2005)
is borrowed from the Fault Detection Filtering literature,
and it is a minimum sensitivity measure corresponding to
the smallest singular value of a dynamical system. If it
is maximized, than the system’s sensitivity is increased
to the highest achievable level. Sparsity criteria can be
rendered to optimization problems in order to assure that
the result will contain as many zero entries as possible.
As an example Polyak et al. (2013) designs a sparse state
feedback gain matrix in order to assure as many as possible
zero entries in the u = Kx input vector, which leads to the
minimization of the necessary actuators for stabilization.
In the present paper we apply sparsity criteria in order
to assure that the blended inputs and outputs of the
subsystem to be decoupled will contain as many as possible
small elements. This leads to an approximate decoupling,
and a SISO controller will only interact with the targeted
subsystem, while not affecting the rest of the dynamics.
Our intention is to design the suitable environment (based
on input and output transformations) for this controller,
but we are not designing any control law.

The present paper extends previous results (Baár and
Luspay, 2019) for continuous time, stable LTI systems to
discrete time stable and unstable systems. In the previous
version of the paper the H∞ norm of the subsystems to



be left unaffected by the control law was minimized. This
is replaced by the sparsity like criteria which is directly
applicable to stable and unstable subsystems also. Fur-
thermore in the previous version certain frequency filters
were added to the subsystems in order to make possible
the H− index calculation of strictly proper systems. The
application of frequency filters can be avoided by the use of
the Generalized Kalman-Yakubovich-Popov lemma, which
guarantees the calculation of the H− index over a selected
frequency range for proper and strictly proper systems
also.

The paper is structured as follows. The blending problem is
formalized in Section 2, and Section 3 presents the applied
mathematical tools. The main contributions are in Section
4, and numerical examples are given in Section 5. The
paper is concluded in Section 6.

2. PROBLEM STATEMENT

Take a block diagonalizable discrete-time LTI system in
its state space form

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1)

with the standard notations: x(t) ∈ Rnx is the state vector,
u(t) ∈ Rnu is the input vector and y(t) ∈ Rny is the output
vector of the system. We assume that the system is given
in the following subsystem form, with

A =

[
Ac 0
0 Ad

]
, B =

[
Bc
Bd

]
, C = [Cc Cd] . (2)

The subsystems to be controlled and to be decoupled
are denoted by indexes {·}c and {·}d respectively. We
assume that by a corresponding similarity transformation
(Kailath, 1980) this form is achievable. Then this state
space representation is called as modal form. The ma-
trix A has a block diagonal structure, where each block
corresponds to a dynamical mode of the system with
real or complex (with real (R) and imaginary (I) part)
eigenvalues (λ). They determine the structure of A as

Ai =


λi if I (λi) = 0[
R (λi) I (λi)
−I (λi) R (λi)

]
if I(λi) 6= 0.

(3)

Note that the given representation is not decoupled, as (2)
shows couplings between the various subsystems through
the B, C and D matrices.

The system has a corresponding transfer function repre-
sentation given as

G(ejθ) =
∑

i∈{c,d}

(
Ci(e

jθI −Ai)−1Bi
)

+D

= Gc(ejθ) + Gd(ejθ), ∀θ ∈ R,
(4)

where Gc(ejθ) and Gd(ejθ) are the transfer functions of the
subsystems to be controlled and decoupled respectively,
and I is the identity matrix.

In the paper we wish to control the Gc(z) subsystem
(z = ejθ), while having least effect on the Gd(z) one. This
is achieved by a suitable input and output transformation.
This makes necessary the introduction of ku ∈ Rnu×1 and

G(z)

ku

Gc(z)

Gd(z)

kTy

−Cc(z)

u +

+

y

ȳū

Fig. 1. Closed loop control scheme with input and output
blending

ky ∈ Rny×1: the normalized input and output blending
vectors, respectively. These transform the u(t) and y(t)
signal vectors onto single scalars, and so turn the originally
MIMO system into a SISO one. In the modified plant the
transfer from the blended input to the blended output
through Gc(z) is maximized, while through the other sub-
system it is minimized. Figure 1 summarizes the proposed
approach, where G(z) contains both subsystems and Cc(z)
is a SISO controller, designed for Gc(z). The input of Cc(z)
is ȳ = kTy y ∈ R i.e. the blended output of G(z). Similarly
the output of the controller is the blended input ū ∈ R,
with u = kuū. The corresponding optimization problem is
as follows.

Problem 1. Find normalized ku and ky vectors such that

||kTy Gc(z)ku||
[
¯
ϑ,ϑ̄]
− > β (5)

is maximized, while

Bdku → sparse! and kTy Cd → sparse! (6)

are satisfied.

Here
¯
ϑ and ϑ̄ are two scalars denoting the lower and

upper boundaries of a selected frequency range. Their
values can be calculated based on the conformal mapping
z = esT = e(σ+jω)T = eσT ejωT = rejωT between the S-
plane and the Z-plane. The z = esT mapping maps the
[
¯
ω, ω̄] frequency range on the imaginary axis to the [

¯
ϑ, ϑ̄]

angles on the unit circle in the Z-plane. Furthermore β
is a positive constant referring to the minimal sensitivity.
If the desired vectors are sparse, that means that they
will contain as many as possible small elements, which
on the other hand minimizes the transfer through the
corresponding subsystem.

3. COMPUTATION OF THE H− INDEX

We borrowed the idea of H− index from Fault Detec-
tion Filtering, where it characterizes the sensitivity of the
transfer from faulty inputs to the residual signals (see i.e
Wang et al. (2007)). We use the LMI formulation of theH−
index to describe the minimum sensitivity of the subsys-
tem to be controlled. The following subsection summarizes
its main properties and computation for proper discrete-
time systems on the [0, ∞) frequency range, based on Li
and Liu (2013). A latter subsection extends this computa-
tion method to discrete-time over a finite [

¯
ω, ω̄] frequency

range.



3.1 Infinite frequency range

The H− index over the [0,∞) frequency range can be
calculated based on Lemma 1 for the system (1).

Lemma 1. Let β > 0 be a positive constant scalar. Then

||Gc(z)||[0,∞)
− > β, if and only if there exists a P such that

P = PT and[
ATc PAc − P + CTc Cc ATc PBc + CTc Dc

BTc PAc +DT
c Cc DT

c Dc +BTc PBc − β2I

]
� 0. (7)

The proof can be found in Li and Liu (2013), and is
omitted here. The lemma for strictly proper systems over
the complete frequency range yields 0. The H− index can
be calculated for unstable systems also. In this case the
minimum sensitivity yields the lowest value of the singular
values of the unstable system. This can be easily seen
based on (Rantzer, 2015).

3.2 Finite frequency range

In order to compute the minimal sensitivity for strictly
proper discrete-time systems over a limited frequency
range, Iwasaki and Hara (2005) introduce an LMI based
formulation of the H− index based on the Generalized
Kalman - Yakubovich - Popov (GKYP) lemma (Iwasaki
and Hara, 2005). This is summarized in Lemma 2.

Lemma 2. Consider the system given in (1) with transfer

function matrix (4). Let Π =

[
−I 0
0 β2I

]
∈ R(nx+ny)×(nx+ny)

and
¯
ϑ, ϑ̄ be given scalars which reflect the investigated

frequency range. Then ||Gc(ejθ)||− > β for ∀θ ∈ [
¯
ϑ, ϑ̄], if

and only if there exists hermitian P and Q, with Q � 0
satisfying[

Ac Bc
I 0

]∗
Ξ

[
Ac Bc
I 0

]
+

[
Cc D
0 I

]∗
Π

[
Cc D
0 I

]
≺ 0, (8)

where Ξ =

 −P ej((¯
ϑ−ϑ̄)/2)Q

e−j((¯ϑ+ϑ̄)/2)Q P −
(

2cos¯
ϑ− ϑ̄

2

) and {·}∗

denotes the complex conjugate transpose.

The proof is available in (?) and omitted here.

4. THE INPUT AND OUTPUT BLEND
CALCULATION

The blending algorithm is presented in this Section. A
systematic input and output blend calculation is presented
in the sequel. We start from the input blend calculation,
and then find the output blend.

4.1 Input blend

First we are designing ku, which maximizes the state
excitation of the targeted subsystem, and at the same
time minimizes the effect on the remaining dynamics. The
approach is summarized in Figure 2. The ū variable is
the scalar control input generated by the controller (see
Figure 1), and ku is a unit length vector which maps the
single input to the available inputs of the plant. The goal
to be achieved in this subsection is given as follows: the

Ĝc(z)
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Fig. 2. Problem layout for input blend calculation

minimum sensitivity denoted by the H− index from the
blended input to the yc performance output of the selected
subsystem should be maximized, while the transfer from ū
to yd should be minimized. The latter one is achieved by
setting Bdku as sparse as possible.

Before going into the details, we mention that the input
blend calculation uses the dual representation (Kwaker-
naak and Sivan, 1972), defined by state space matrices

Ã = AT , B̃ = CT , C̃ = BT , D̃ = DT . (9)

This is a necessary step to keep the optimization problem
linear in the variables, as explained later. At the same
time, note that the H− index can only be calculated for
tall or square systems (Li and Liu, 2010). However, in case
the inputs are blended into a scalar ū signal, then the dual
representation would be a wide system. The problem is
converted to a square system, by defining the performance
output as the sum of the states as it is shown in Figure 2.

Accordingly, if one writes the LMI (8) for the dual system
and then expresses the formula in terms of the original
representation, one gets the following

[
ATc CTc
I 0

]∗
Ξ

[
ATc Cc
I 0

]
+

[
BTc DT

0 I

]∗
Π

[
BTc DT

0 I

]
≺ 0,

(10)

where Π =

[
−Ku 0

0 β2I

]
and Ξ is defined as in Lemma 2.

The blend matrix is defined as the dyadic product of the
blend vectors, with Ku = ku · kTu ∈ Rnu×nu .

The introduction of the blend matrix is only possible
because of the dual form, otherwise the approach would
yield a bilinear (furthermore quadratic) problem. Note
that because Ku is a dyadic product, it is a 1 rank matrix.
This rank constraint has to be satisfied during the solution
process. This is possible by a simple heuristic method
proposed by Fazel et al. (2001): the rank minimization
of a symmetric positive definite matrix, yields to the
minimization of its trace.

As it was stated before the transfer through the subsystem
to be decoupled is suppressed by converting the blended
input as sparse as possible. This is carried out by the
minimization of trace(BdKuB

T
d ). We term it as a sparsity

like criteria because it has a quadratic form, instead of
being a linear one. To understand why this criteria work,
recall the following property of the Frobenius norm
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Fig. 3. Problem layout for output blend calculation

||Y ||F =

√√√√ m∑
i=1

n∑
j=1

|yij |2 =
√

trace(Y TY ) =

=

√√√√min{m,n}∑
i=1

σ2
i (Y ),

(11)

where σ is the singular value of the Y ∈ Rm×n matrix. By
substituting Y = Bdku into (11) it is obvious that Y TY
has one non-zero singular value, and it can be minimized
by minimizing trace(Y TY ). This also means that the effect
of the input to the states is also reduced. Note that this
approach is directly applicable to stable and unstable
modes also.

As a consequence, to find ku one has to maximize β subject
to (10), minimize trace(BdKuB

T
d ) for the suppression of

the undesired dynamics and minimize trace(Ku) to satisfy
the rank constraint. The optimization variables are P , Q,
Ku and β, where Ku = KT

u . The problem is stated as

minimize − β2 + trace(Ku) + trace(BdKuB
T
d )W

subject to (10), and 0 � Ku � I, Q � 0,
(12)

with I being the identity matrix with appropriate dimen-
sions. W is a tuneable weighting factor to emphasize the
sparsity criteria.

The before mentioned trace heuristic assures that after
the solution of (12), the Ku blend matrix has only one
non-zero singular value. We calculate ku as the singular
vector corresponding to this non-zero singular value. The
SVD decomposition ensures to find normalized blending
vectors.

When ku is calculated, the inputs are blended yielding
Āi = Ai, B̄i = Biku, C̄i = Ci, D̄ = Dku for the ith mode.
These new matrices are used next.

4.2 Output blend

In this subsection we turn our attention to find a linear
combination of the available outputs such that the single
scalar measurement will contain as much as possible in-
formation about the targeted mode, while the effects of
the other mode are suppressed. This means that the use
of kTy should maximize the sensitivity on the performance
output corresponding to the mode to be controlled, while
it should yield a minimal transfer on the other one. The
method is highly similar to the calculation of ku, and the
solution process is depicted in Figure 3.

The corresponding LMI constraint for the minimum sensi-
tivity maximization of the Gc(z) subsystem is the following

G(z)

ku

Gc(z)

Gd(z)

kTy

−Cc(z)

kTy Dku

u +

+

y +
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-

Fig. 4. The proposed control scheme[
Āc B̄c
I 0

]∗
Ξ

[
Āc B̄c
I 0

]
+

[
C̄c D̄
0 I

]∗
Π

[
C̄c D̄
0 I

]
≺ 0, (13)

with Π =

[
−Ky 0

0 β2I

]
and Ξ is defined as in Lemma 2.

The output blend matrix is defined as Ky = ky · kTy .

The blend matrix is the solution of the underlying opti-
mization problem. Find P = PT , Q = QT , Ky = KT

y
to

minimize − β2 + trace(Ky) + trace(CTd KyCd)W

subject to 13, 0 � Ky � I, Q � 0.
(14)

The Singular Value Decomposition of Ku provides the ky
blend vector.

When the ky and ku blends are applied to the subsystems,
they will have the form

xc,d(t+ 1) = Ac,dxc,d(t) +Bc,dkuū(t),

ȳc,d(t) = kTy Cc,dxc,d(t) + kTy Dkuū(t).
(15)

Note that the direct feedthrough term is not involved
into the optimization process. In Figure 4 we propose the
control scheme based on input and output blending, where
a feedforward term is introduced to compensate the effect
of the blended direct feedthrough matrix.

5. NUMERICAL EXAMPLES

The presented examples are involving a flexible wing air-
craft to evaluate the decoupling method. The aircraft has
been developed in the Flexop project (Consortium et al.,
2015) which investigates active control techniques for flut-
ter suppression. Flutter is a dynamic instability, what
arises from the coupling of structural and aerodynamic
forces. The model has two flutter modes, which describe
the symmetric and asymmetric motions of the wing. Flut-
ter speed defines the airspeed over which these modes are
becoming unstable. Interested readers can find further de-
tails about the flexible modeling in (Luspay et al., 2018b).
For the evaluation of the proposed decoupling method
the high-fidelity nonlinear model was linearized at certain
airspeeds what resulted in a set of linear models. These
were then transformed into a parameter varying modal
form and a parameter varying model order reduction was
performed on them with the method developed by Luspay
et al. (2018a). The obtained low order model is given in
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Fig. 5. The pole-zero map of the FLEXOP aircraft (dis-
crete time model)

its modal form and used as the basis for the upcoming
examples. The models were discretized by a Td = 0.01s
time constant. The pole-zero map of the discrete-time
aircraft model is given in Figure 5.

The aircraft has two ruddervators on each side and eight
ailerons (four - four on each wings). These are used as the
available inputs to be blended. The acceleration (az) and
the angular rate (ωx, ωy) sensors are placed at the 90%
spanwise location on the trailing edges.

The first example is taken at the 64 m
s airspeed, where

the flutter modes are unstable. We wish to control the
symmetric mode, while minimizing the control impact
on the asymmetric one. The frequency interval where
the decoupling should be achieved was selected to be
between 0 and the natural frequency of the targeted
mode( ωn

rad
s ). This means in (8)

¯
ϑ = 0 and ϑ̄ =

ωnTd. The W weighting coefficient was selected to be
W = 100 for the input and output blend calculations
also. The ku and ky vectors are the solutions of (12) and
(14) respectively. The convex optimization problems were
formalized in MATLAB environment based on YALMIP
(Löfberg, 2004), and the SeDuMi (Sturm, 1999) solver was
used for solution. Figure 6 summarizes the results. The
upper subfigure shows the maximum singular value plots
for the flutter modes before the blend calculation. Almost
in the whole frequency range, the asymmetric flutter mode
has higher amplification. However by applying suitable
input and output blends, it is possible to decouple the
two subsystems, as the lower subfigure shows.

The second example investigates the decoupling of the
asymmetric flutter mode from all other modes (rigid body
modes + symmetric flutter mode) in the dynamic model
at 47ms airspeed. This time the subsystems are stable. The

¯
ϑ = 0, ϑ̄ = ωnTd and W parameters were selected similarly
as in the previous example. Figure 7 presents the results.
The above subfigure presents the maximum singular values
of the subsystems, which shows significant amplification
of the undesired dynamics. The lower subfigure presents
singular value plots of the blended subsystems.
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6. CONCLUSION

The paper presented an approach to decouple stable and
unstable discrete time subsystems. The method creates
an environment for a SISO controller which is able to
control a selected subsystem with reduced interaction
with the other subsystems. This environment is designed
in two steps. In the first input decoupling is carried
out by finding a suitable ku input blend vector. In the
second step a corresponding output blend (ky) is found.
These blend vectors are found by optimization problems
consisting of LMIs. During the optimization process the
transfer through the subsystem which should be controlled



is maximized, while through the other one it is minimized.
It has been shown by numerical examples that the method
is able to find suitable input and output transformations
to successfully decouple the subsystems.
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