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Abstract

Gyárfás conjectured that in every r-edge-coloring of the complete graph Kn there is a
monochromatic component on at least n/(r− 1) vertices which has diameter at most three.
We show that for r = 3, 4, 5 and 6 ‘diameter three’ is best possible in this conjecture
constructing colorings where every monochromatic diameter two subgraph has strictly less
than n/(r − 1) vertices.

1 Monochromatic components and diameter

How many people do we need to ensure that there are three who each know each other or
three who don’t know each other? This question was answered long ago [7], and it kicked
off the field of Ramsey theory. If we consider the people as vertices of a graph, and their
relationship to each other to be an edge, we have a 2-edge-coloring of Kn, the complete
graph on n vertices, where the colors represent the relationships ‘know each other’ and
‘don’t know each other’.

Ramsey theory aims to find large monochromatic structures in edge colorings of a graph.
The fundamental Ramsey’s Theorem [7] states that the Ramsey number R(G1, G2, . . . , Gr),
i.e., is the smallest n such that in every r-edge-coloring of Kn there is a monochromatic Gi

in some color 1 ≤ i ≤ r always exists.
The introduced problem is solved by R(K3,K3) = 6, i.e., 6 is the minimum number such

that in every 2-edge-coloring of K6 there is a monochromatic K3. In other words, in every
set of pairwise relationships among six people, there must either be a group of three that
know each other or a group of three who are strangers to each other.

A simple remark by Erdős and Rado [4] states that any 2-coloring of the edges of Kn

has a monochromatic spanning component, i.e., which contains all n vertices. For general r
Gyárfás proved that the largest monochromatic component in an r-edge-coloring of Kn has
size ≥ n/(r − 1).

Theorem 1 (Gyárfás [3]). The size of the largest monochromatic component in an r-edge-
coloring of Kn is at least n/(r − 1) and equality holds if (r − 1)2|n and there is an affine
plane of order r − 1.

An affine plane of order r − 1 is a collection of r even partitions of (r − 1)2 points into
r−1 parts (lines) such that every pair of points is contained on a unique line. Each partition
is called a parallel class of lines. The optimum is obtained by coloring the pairs in all r − 1
disjoint lines of a parallel class the same, using for all r parallel classes different colors. Then
each vertex in the plane is replaced by n

(r−1)2 vertices, edges between different ‘clusters’

inherit the color of the associated edge and edges within clusters are colored arbitrarily.
That is, each monochromatic component has the same (r − 1) n

(r−1)2 = n/(r − 1) size.

If there is no affine plane of order r − 1 then the following holds.

Theorem 2 (Füredi [2]). If an affine plane of order r − 1 does not exist, then the size of

the largest monochromatic component in an r-edge-coloring of Kn is ≥ n

r − 1− (r − 1)−1
.
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Notice that this lower bound is significantly larger than the tight bound in case affine
planes exist. It is well known that affine planes of prime power orders exist, but it still
remains an important open problem – maybe the most important and difficult one in alge-
braic combinatorics – whether they only exist for prime powers. That is, to find the size of
the largest monochromatic component in general is extremely difficult.

Can we say something more about these ‘giant’ (having at least n/(r − 1) vertices)
monochromatic components?

A double star is a graph obtained by connecting the centers of two vertex disjoint stars.
A triple star is similar, just that a third vertex disjoint star is connected to a double star.

The following possible strengthening of Theroem 1 has been posed by Gyárfás.

Problem 1 (Problem 4.2 in [4]). For r ≥ 3, is there a monochromatic double star of size
asymptotic to n/(r − 1) in every r-coloring of Kn?

This problem is still unsolved. The diameter of a graph G is the maximum distance
between any two vertices, where the distance is the length of the shortest path between the
two vertices. Clearly, the diameter of a double (triple) star is ≤ 3 (≤ 4, resp.) and in the
same paper Gyárfás posed the following weaker version Problem 1.

Problem 2 (Problem 4.3 in [4]). Given positive numbers n, r, is there a constant d (perhaps
d = 3) such that in every r-coloring of Kn there is a monochromatic subgraph of diameter
at most d with at least n/(r − 1) vertices?

This was proved in affirmative for three colors by Mubayi [6].

Theorem 3 (Mubayi [6]). Every 3-edge-coloring of Kn contains a monochromatic compo-
nent of diameter ≤ 4 on at least dn/2e (n/2 + 1 if n ≡ 2 (mod 4)) vertices.

Problem 2 in general with r colors has been solved by Ruszinkó with d = 5.

Theorem 4 (Ruszinkó [8]). In every r-edge-coloring of Kn there is a monochromatic con-
nected subgraph of diameter at most 5 on at least n/(r − 1) vertices.

The proof relies on a theorem of Mubayi, which states that a complete bipartite graph
on n vertices colored with r colors has a monochromatic double star of size n/r.

Theorem 4 has been improved by Letzter to diameter 4.

Theorem 5 (Letzter [5]). In every r-edge-coloring of Kn there is a monochromatic triple
star on at least n/(r − 1) vertices.

Summarizing, it is not yet known if a diameter at most three monochromatic subgraph
on at least n/(r − 1) vertices does exist.

The purpose of this paper is to explore, in Problem 2, the statement “perhaps d = 3.”
Is d = 3 the strongest possible conjecture? That is, can we find colorings with no ‘giant’

diameter 2 components? A theorem of Erdős and Fowler answers this question in affirmative
for two colors.

Theorem 6 (Erdős, Fowler [1]). Every 2-edge-coloring of Kn contains a monochromatic
component of diameter ≤ 2 on at least 3n/4 vertices.

They give the following example to show that the bound given in Theorem 6 is sharp.
Partition the set of vertices evenly into parts A1, A2, A3, A4 of size ≤ dn/4e. For j > i color
all edges red between Ai and Aj if j − i = 1, else color them blue. Color the edges inside
each Ai arbitrarily, see Figure 1.

A1

A2 A3

A4

Figure 1: A coloring of K4

with small diameter 2 compo-
nents

This example is sharp because the largest monochro-
matic diameter 2 component of this graph must be a subset
of some Ai ∪ Aj ∪ Ak with i 6= j 6= k, which means it has
size ≤ 3n/4. That is, a spanning monochromatic subgraph
of diameter two does not necessarily exist in any 2-coloring
of Kn.

We extend this result of Erdős and Fowler for r = 3, 4, 5
and 6 colors showing in Theorems 7, 8, 9 and 10, re-
spectively, that a monochromatic subgraph of diameter
two on at least n/(r − 1) vertices does not necessarily ex-
ist.
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2 Colorings With No Large Diameter Two Components

The 2-coloring in Figure 1 is essentially a partitioning of K4 into two Hamiltonian paths,
that is, paths that span the vertex set, and then “blowing up” the coloring for general n.
We shall use a similar approach to prove Theorems 7, 8, 9 and 10. A k-factorization of a
graph G is a partition on the edges of G into disjoint k-factors, i.e., spanning subgraphs
with each vertex having degree k.

In order to r-color complete graphs with no large monochromatic diameter 2 components
first choose suitably ‘small’ complete graphs Knr where the number of vertices nr depends
on the number of colors r. Then partition the edges of Knr into r k-factors that avoid large
(≥ n/(r − 1)) diameter two components. Coloring each factor a different color, there will
be obviously no monochromatic connected diameter 2 subgraph in Knr

. Then (blow up
step) distribute n vertices into nr clusters as evenly as possible. All the edges between two
clusters inherit the color of the associated edge in Knr . The edges inside the clusters are
colored arbitrarily. This way we obtain an r-coloring of Kn where every monochromatic
connected diameter 2 subgraph is of size < n/(r − 1). First we present this method in the
case of three colors.

Theorem 7. There exists a 3-edge-coloring of Kn with the largest monochromatic diameter
≤ 2 subgraph of size ≤ 3dn/7e.

Proof. Partition the vertices of Kn into A1, A2, . . . , A7, bn/7c ≤ |Ai| ≤ dn/7e and
∑7

i=1 |Ai| =
n. Color the edges between Ai and Aj c = min{|i− j|, 7− |i− j|} and within Ai arbitrar-
ily for i = 1 . . . 7, see Figure 2. The largest monochromatic diameter 2 subgraph in this
3-coloring may clearly contain vertices from at most three clusters, i.e., its size is ≤ 3dn/7e.
This is strictly less than n/(r − 1) = n/2 for r = 3, the size of the largest monochromatic
component of diameter at most 4 existing by Theorem 5.

A1

A2

A3

A4 A5

A6

A7

Figure 2: A 3-edge-coloring of K7 used to color Kn

Here we performed a 2-factorization of K7, more specifically a decomposition into three
Hamiltonian cycles. It is well known that for any odd `, K` can be decomposed into
Hamiltonian cycles. In order to obtain suitable colorings for larger r, first we choose a
suitable nr, decompose the edges of Knr into Hamiltonian cycles and define the factors to
be the unions of particular Hamiltonian cycles. All edges in a given factor will be colored
the same. Also, we will be choosing nr to be prime, which allows us to define our cycles as
in the proof of Theorem 7, i.e., Ci = {(j, k) : i = min{|k − j|, nr − |k − j|}}.

Theorem 8. There exists a 4-edge-coloring of Kn with the largest monochromatic diameter
≤ 2 subgraph of size ≤ 5dn/17e.

Proof. Let n4 = 17, and decompose K17 into 8 Hamiltonian cycles as above, i.e., Ci =
{(j, k) : i = min{|k − j|, 17 − |k − j|}}. The unions of pairs of Hamiltonian cycles G1 =
(C1 ∪ C2), G2(C3 ∪ C6), G3(C4 ∪ C8), G4(C5 ∪ C7), form a 4 factorization of K17. Notice
that Gi-s are isomorphic where the isomorphism is simply renumbering the vertex v as v ·i−1

mod 17. Color all the edges i in Gi and blow-up K17 to Kn as we did before (see Figure 3).
All that’s left to show is that G1 has no diameter 2 subgraphs with at least 6 vertices.
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Figure 3: C1 ∪ C2 is Isomorphic to C3 ∪ C6

In contrary, assume there is a collection of 6 vertices in G1 that don’t satisfy this. Call
one of the vertices v. Clearly, there are four vertices in each direction reachable in two steps
in G1 from v, for a total of 8 possibilities; the remaining 5 vertices must be in these spots.
Name the vertex farthest to the left vL and the one farthest to the right vR. As there are
only 4 spots on each side, both sides must have at least one vertex, meaning v is between
vL and vR. So there are 4 vertices between vL and vR, i.e., their distance is at least 3.

This implies that no six vertices in a color class can each be at distance two from each
other, so the largest monochromatic diameter 2 subgraph has 5 vertices of K17 to be “blown
up”, having size ≤ 5dn/17e. This is strictly less than n/(r − 1) = n/3 for r = 4, the size of
the largest monochromatic component of diameter at most 4 existing by Theorem 5.

Theorem 9. There exists a 5-edge-coloring of Kn with the largest monochromatic diameter
≤ 2 subgraph of size ≤ 7dn/31e.

Proof. Decompose K31 into 15 Hamiltonian cycles Ci = {(j, k) : i = min{|k − j|, 31− |k −
j|}}, i = 1 . . . , 15 and then color as follows (see Figure 4):

• Color C1 ∪ C2 ∪ C3 red.
• Color C4 ∪ C5 ∪ C6 blue.
• Color C7 ∪ C8 ∪ C9 green.
• Color C10 ∪ C11 ∪ C13 purple.
• Color C12 ∪ C14 ∪ C15 orange.

Notice that these color classes are not isomorphic, but there are only two different
isomorphism classes. Therefore, one can relatively easily check, that no 8 vertices in any of
the color classes induce a diameter 2 subgraph. Theorem 9 follows by our standard ‘blow
up’ technique. 7dn/31e is strictly less than n/(r− 1) = n/4 for r = 5, the size of the largest
monochromatic component of diameter at most 4 existing by Theorem 5.

Theorem 10. There exists a 6-edge-coloring of Kn with the largest monochromatic diameter
≤ 2 subgraph of size ≤ 9dn/47e.

Proof. Decompose K47 into 23 Hamiltonian cycles Ci = {(j, k) : i = min{|k − j|, 31− |k −
j|}}, i = 1, 2, . . . , 23 and then color as follows (see Figure 5):

• Color C1 ∪ C2 ∪ C3 ∪ C4 red.
• Color C5 ∪ C10 ∪ C15 ∪ C20 blue.
• Color C6 ∪ C12 ∪ C18 ∪ C23 green.
• Color C7 ∪ C14 ∪ C21 ∪ C19 purple.
• Color C9 ∪ C11 ∪ C13 ∪ C17 orange.
• Color C8 ∪ C16 ∪ C12 yellow.
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Figure 4: The 5-edge coloring for Kn made by blowing up K31

That no 10 vertices in any of the color classes induce a diameter 2 subgraph is verified
computationally. Theorem 10 follows by our standard ‘blow up’ technique. 9dn/47e is less
than n/(r−1) = n/5 for r = 6, the size of the largest monochromatic component of diameter
at most 4 existing by Theorem 5.

3 Final Remarks

By Erdős and Fowler (Theorem 6) and Letzter (Theorem 5) in case of two colors, the size of
the largest monochromatic diameter two subgraph existing in every 2 coloring is significantly
(i.e., by a linear in number of vertices term) less then the size of the largest monochromatic
diameter four subgraph. We showed that the same phenomena holds if the number of colors
is 3, 4, 5 or 6.

Based on this we conjecture the following.

Conjecture 1. For arbitrary number of colors r, the size of the largest monochromatic
diameter two subgraph existing in every r coloring of Kn is significatly less than the size of
the largest monochromatic diameter four subgraph existing in every r coloring of Kn.

So Gyárfás’s suggestion of probably d = 3 in Problem 2 seems to be accurate.
We think that our method could be used to prove Conjecture 1 for an arbitrary number

of colors. We can show that a prime nr for every r ≥ 3 that meets our needs, i.e. it can be
factored into appropriately sized classes with small stars does exist. One possible approach
is to ensure that each color class is isomorphic to one that is easily proven not to have large
diameter 2 components, as we did in Theorem 8. However we have yet to find a way to
partition the cycles into color classes in a way that ensures the graph will have no large
monochromatic diameter two components.
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C1 ∪ C2 ∪ C3 ∪ C4 C5 ∪ C10 ∪ C15 ∪ C20

C6 ∪ C12 ∪ C18 ∪ C23 C7 ∪ C14 ∪ C21 ∪ C19

C9 ∪ C11 ∪ C13 ∪ C17 C8 ∪ C16 ∪ C12

Figure 5: The 6-edge coloring for Kn made by blowing up K47
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