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1. Introduction

The theoretical analysis of numerical methods and product formulae for partial differential equations plays an increasinglyimportant role and finds its application in functional analysis. In this paper we are interested in non-autonomous evolutionequations of type 
ddt u(t) = A(t)u(t), t ≥ s ∈ R,

u(s) = x ∈ X,
(NCPs,x )

where X is a Banach space, (A(t), D(A(t))) is a family of (usually unbounded) linear operators on X . Such kind ofproblems arise in many applications in quantum physics, Hamiltonian dynamics, transport problems, etc. Among thenumerical methods for the approximation of the solution, the Magnus integrators play an important role, see Isereles etal. [6], Faragó et al. [3] or Magnus [8]. The basic idea of this method is to express the solution u(t) in the form
u(t) = expΩ(t) · x
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with s = 0. Here Ω(t) is an infinite sum yielded by the formal Picard iteration
Ω(t) = ∫ t

0 A(τ) dτ − 12
∫ t

0
[∫ τ

0 A(σ ) dσ, A(τ)] dτ
+ 14

∫ t

0
[∫ τ

0
[∫ σ

0 A(µ) dµ, A(σ )] dσ, A(τ)] dτ + 112
∫ t

0
[∫ τ

0 A(σ ) dσ, [∫ τ

0 A(µ) dµ, A(τ)]] dτ + . . . ,
(1)

where [U,V ] = UV−VU denotes the commutator of the operators U and V . Numerical methods based on this expansionare presented in [7] by Iserles et al. or in Hochbruck and Ostermann [5]. They considered
yn+1 = expΩn · yn, (2)

to give an approximation of y(tn+1) at tn+1 = tn +h. Here Ωn is a suitable approximation of Ω(h) given by (1) when A(τ)is replaced by A(tn + τ).In this paper, we study the convergence of the Magnus method (2) for
Ωn = hA

(
tn + h2

) ;
here the midpoint rule is used. In Section 2, we give a short overview on the theory of non-autonomous evolutionequations. In Section 3, the norm convergence of the above Magnus method is proven, with an application to theSchrödinger equation. Finally, in Section 4, we explore a slight generalization with application to hyperbolic equations.
2. Non-autonomous evolution equations

In this section we summarize the main results and definitions on non-autonomous evolution equations and evolutionsemigroups needed for our further exposition. For a detailed account and bibliographic references see, e.g., the surveyby Schnaubelt in [2, Section VI.9]. Consider the non-autonomous Cauchy problem
ddt u(t) = A(t)u(t), t ≥ s ∈ R,

u(s) = x ∈ X,
(NCPs,x )

where X is a Banach space, (A(t), D(A(t))) is a family of (usually unbounded) linear operators on X .
Definition 2.1.A continuous function u : [s,∞) → X is called a (classical) solution of (NCPs,x ) if u ∈ C1([s,∞);X ), u(t) ∈ D(A(t)) forall t ≥ s, u(s) = x, and ddtu(t) = A(t)u(t) for t ≥ s.
We use the following standard definition for the well-posedness of the non-autonomous Cauchy problem associated toa given family of linear operators.
Definition 2.2.For a family (A(t), D(A(t)))t∈R of linear operators on a Banach space X , the non-autonomous Cauchy problem is well-
posed (with regularity subspaces (Ys)s∈R and exponentially bounded solutions) if(i) (Existence) For all s ∈ R the subspace

Ys = {y ∈ X : there exists a classical solution for (NCPs,y)} ⊂ D(A(s))
is dense in X .
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(ii) (Uniqueness) For every y ∈ Ys the solution us(·, y) is unique.
(iii) (Continuous dependence) The solution depends continuously on s and y, i.e., if sn → s ∈ R, yn → y ∈ Ys with

yn ∈ Ysn but in the topology of X , then we have∥∥ûsn (t, yn)− ûs(t, y)∥∥→ 0
uniformly for t in compact subsets of R, where

ûr(t, y) = {ur(t, y) if r ≤ t,
y if r > t.

(iv) (Exponential boundedness) There exist constants M ≥ 1 and ω ∈ R such that
‖us(t, y)‖ ≤ Meω(t−s)‖y‖

for all y ∈ Ys and t ≥ s.
As in the autonomous case, the operator family solving a non-autonomous Cauchy problem enjoys certain algebraicproperties.
Definition 2.3.A family U = (U(t, s))t≥s of linear, bounded operators on a Banach space X is called an (exponentially bounded)
evolution family if(i) U(t, r)U(r, s) = U(t, s), U(t, t) = I hold for all t ≥ r ≥ s ∈ R,
(ii) the mapping (t, s) 7→ U(t, s) is strongly continuous,
(iii) ‖U(t, s)‖ ≤ Meω(t−s) for some M ≥ 1, ω ∈ R and all t ≥ s ∈ R.
In general, however, and in contrast to the behavior of C0-semigroups (i.e., the autonomous case), the algebraic propertiesof an evolution family do not imply any differentiability on a dense subspace. So we have to add some differentiabilityassumptions in order to solve a non-autonomous Cauchy problem (abbreviated later on as NCP) by an evolution family.
Definition 2.4.An evolution family U = (U(t, s))t≥s is called evolution family solving NCP if for every s ∈ R the regularity subspace

Ys = {y ∈ X : [s,∞) 3 t 7→ U(t, s)y solves (NCPs,y)}
is dense in X .
In this case, the unique classical solution of (NCPs,x ) is given by u(t) = U(t, s)x. The well-posedness of NCP can nowbe characterized by the existence of a solving evolution family, see [2, Proposition VI.9.3].
Proposition 2.5.
Let X be a Banach space, and let (A(t), D(A(t)))t∈R be a family of linear operators on X . The following assertions are
equivalent.(i) The associated non-autonomous Cauchy problem is well-posed.

(ii) There exists a unique evolution family (U(t, s))t≥s solving NCP.
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We say in this case that the evolution family is generated by the operators (A(t), D(A(t)))t∈R.Unfortunately, the well-posedness of non-autonomous evolution equations is a complicated issue and there is no generaltheory describing it. Conditions implying well-posedness are generally divided into assumptions of “parabolic” and of“hyperbolic” type. Roughly speaking, the main difference between these two types is that in the parabolic case weassume all A(t) being generators of analytic semigroups, while in the hyperbolic case we assume the stability for certainproducts instead. In both cases one has to add some continuity assumption on the mapping t 7→ A(t). We mention onlya typical and quite simple version for each type.
Assumptions 2.6 (Parabolic case).(P1) The domain D = D(A(t)) is dense in X and is independent of t ∈ R.
(P2) For each t ∈ R the operator A(t) is the generator of an analytic semigroup e·A(t). For all t ∈ R, the resolvent

R(λ, A(t)) exists for all λ ∈ C with <λ ≥ 0 and there is a constant M ≥ 1 such that
‖R(λ, A(t))‖ ≤ M

|λ|+ 1
for <λ ≥ 0, t ∈ R. The semigroups e·A(t) satisfy ∥∥esA(t)∥∥ ≤ Meωs for absolute constants ω < 0 and M ≥ 1.

(P3) There exist constants L ≥ 0 and 0 < α ≤ 1 such that∥∥(A(t)− A(s))A(0)−1∥∥ ≤ L|t − s|α for all t, s ∈ R.

Assumptions 2.7 (Hyperbolic case).(H1) The family (A(t))t∈R is stable, i.e., all operators A(t) are generators of C0-semigroups and there exist constants
M ≥ 1 and ω ∈ R such that (ω,∞) ⊂ ρ(A(t)) for all t ∈ Rand ∥∥∥∥∥ k∏

j=1 R (λ, A(tj ))∥∥∥∥∥ ≤ M(λ− ω)−k for all λ > ω

and every finite sequence −∞ < t1 ≤ t2 ≤ . . . ≤ tk <∞, k ∈ N.
(H2) There exists a densely embedded subspace Y ↪→ X , which is a core for every A(t) such that the family of the parts(A|Y (t))t∈R in Y is a stable family on the space Y .
(H3) The mapping R 3 t 7→ A(t) ∈ L(Y , X ) is uniformly continuous.
Let us close this summary by recalling an important basic perturbation result, see Engel and Nagel [2, Theorem VI.9.19].
Theorem 2.8.
Let (U(t, s))t≥s be an evolution family in a Banach space X . Let B(t), t ∈ R, be closed operators such that U(t, s)X ⊂
D(B(t)), t 7→ B(t)U(t, s) is strongly continuous and ‖B(t)U(t, s)‖ ≤ k(t − s) for t > s and some locally integrable
function k . Then there is a unique evolution family (UB(t, s))t≥s such that

UB(t, s)x = U(t, s)x + ∫ t

s
UB(t, r)B(r)U(r, s)x dr (3)

for all x ∈ X and t > s.

Note that this result only states the existence of an evolution family satisfying a variations of constants formula, but notthe well-posedness of non-autononous Cauchy problem associated to the operators (A(t) + B(t))t∈R.
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3. Norm convergence of the Magnus method

We would like to investigate the convergence of the following, simplest possible Magnus method introduced in theintroduction, where we take the first term of the Magnus series expansion and evaluate the integral using the midpointrule. Let us take a time step h > 0 and consider the following iteration:
yn+1 = eΩnyn, Ωn = hA

(
tn + h2

)
, (4)

starting with t0 = s, y0 = x and then tn+1 = tn + h. Here and later on we will use the exponential notation to denotestrongly continuous semigroups. This iteration is widely used in the literature, see for example Bátkai et al. [1] orNickel [9].
Assumptions 3.1.Assume that(a) there exist K ≥ 1, ω ∈ R such that ‖etA(r)‖ ≤ Keωt for all r, t ∈ R. Further, A(t) = A + V (t), where A is thegenerator of a strongly continuous semigroup and V (t) ∈ L(X ) for all t ∈ R,
(b) (Well-posedness) the non-autonomous Cauchy problem is well-posed, i.e., there is an evolution family U(t, s) whichsolves (NCPs,x ) and satisfies ‖U(t, s)‖ ≤ Keω(t−s).
(c) (Stability) the Magnus method (4) is stable, i.e., there are constants M ≥ 1, ω ∈ R such that for all n ∈ N,∥∥∥∥∥ k∏

j=0 exp{ t − sn A
(
s+ (2j + 1)(t − s)2n

)}∥∥∥∥∥ ≤ M exp (k + 1)ω(t − s)
n

for all k = 0, 1 . . . , n− 1, and
(d) (Local Hölder continuity) there exists α ∈ (0, 1] and for all K > 0 there is L = L(K ) > 0 such that

‖A(t)− A(s)‖ ≤ L|t − s|α
for all t, s ∈ (−K,K ).

Here and later on, for bounded linear operators Lk ∈ L(X ),
n−1∏
k=0 Lk = Ln−1Ln−2 · · · L0

denotes the “time-ordered product”. If the product is empty, we define it as the identity operator I on X .Note that the last condition (d) is always satisfied with α = 1 if we assume continuous differentiability of the map
t 7→ V (t). Note also that the boundedness condition in (a) is always satisfied if the map t 7→ V (t) is bounded.
Theorem 3.2.
Assume that the conditions in Assumptions 3.1 are satisfied. Then the Magnus method defined by (4) converges in the
operator norm and has a uniform convergence order α ∈ (0, 1], i.e., for all t, s ∈ R, t > s, there is C ≥ 1 such that∥∥∥∥∥U(t, s)− n−1∏

k=0 exp{ t − sn A
(
s+ (2k + 1) t − s2n

)}∥∥∥∥∥ ≤ C
nα

for all n ∈ N.

154



A. Bátkai, E. Sikolya

Proof. First note that A(t) = A(s + h/2) + B(t) with B(t) = V (t) − V (s + h/2) ∈ L(X ). Hence, we can apply thevariation of constants formula (3) and obtain that
U(s+ h, s)x − ehA(s+h/2)x = ∫ s+h

s
U(s+ h, r)B(r)e(r−s)A(s+h/2) x dr.

Here the left-hand side is the difference of the exact solution and the solution obtained by the Magnus method afterone time step (the so-called local error).Clearly, by the assumptions on V , we have
‖B(r)‖ = ∥∥∥∥V (r)− V (s+ h2

)∥∥∥∥ ≤ L ∣∣∣∣r − s− h2
∣∣∣∣α ≤ Lhα

for r ∈ (s, s+ h). Hence,
∥∥U(s+ h, s)x − ehA(s+h/2)x∥∥ ≤ ∫ s+h

s
Keω(s+h−r)LhαKeω(r−s)‖x‖ dr = K 2Leωhhα+1‖x‖, (5)

proving the so-called consistency estimate we need for the following step.The convergence order of the method can be established now using the standard telescopic argument. Let h = (t− s)/n.Then
U(t, s) = n−1∏

k=0U
(
s+ (k + 1)h, s+ kh

)
and the Magnus approximation is

W (t, s) = n−1∏
k=0 ehA(s+(2k+1)h/2).

Hence, for any x ∈ X ,
U(t, s)x −W (t, s)x = n−1∑

j=0
n−1∏
k=j+1U

(
s+ (k + 1)h, s+ kh

) [
U(s+ (j + 1)h, s+ jh)− ehA(s+(2j+1)h/2)] j−1∏

l=0 ehA(s+(2l+1)h/2)x.

From (5) we have ∥∥U(s+ (j + 1)h, s+ jh)x − ehA(s+(2j+1)h/2)x∥∥ ≤ K 2Leωhhα+1‖x‖,
hence, for n sufficiently large, we obtain that

‖U(t, s)−W (t, s)‖ ≤ n−1∑
j=0 Ke(n−j−1)ωh · K 2Leωhhα+1 ·Mejωh = K 3LMhα+1nenωh = K 3LM(t − s)α+1eω(t−s) · 1

nα ,

since n = (t − s)/h.
Example 3.3.Motivated by Hochbruck and Lubich [4, Section 8], we consider the d-dimensional Schrödinger equationi

∂ψ
∂t = −12 ∆ψ + b(x, t)ψ, x ∈ Rd, t > 0,

ψ(x, 0) = ψ0(x),
where the potential b and the initial function ψ0 are assumed to be 2π-periodic in every spatial coordinate.
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Assume further that• the function b is real-valued,
• b(·, t) ∈ L∞(Rd) for all t > 0, and

• the function t 7→ b(·, t) ∈ L∞(Rd) is α-Hölder continuous for some α ∈ (0, 1].
Then the operator family A(t) = i∆/2 − ib satisfies the conditions of Assumptions 2.7, hence the Schrödinger equationis well-posed. Clearly, Assumptions 3.1 are also satisfied, hence the Magnus method (4) has operator norm convergenceof order α .Note that Hochbruck and Lubich showed that under additional smoothness conditions on b, one can recover the classicalsecond order convergence for smooth initial values. This convergence will be, however, in general only strong, the uniformrate remains first order.
We can use the above result to prove a regularity result on the propagators. Note that the compactness of propagatorsis important, for example, in case you want to establish a Peano type existence result on semilinear equations.
Corollary 3.4.
Assume that the conditions in Assumptions 3.1 are satisfied and that there is r0 ∈ R such that A(r0) generates an
immediately compact semigroup. Then all the propagators U(t, s) are compact.

Proof. We know by the bounded perturbation theorem that all the semigroups etA(r) are immediately compact for r ∈ R.Since the Magnus method (4) converges in the operator norm, it follows that the operators U(t, s) are compact.
4. Generalization to strong convergence

If we weaken the assumptions, the previous result can be generalized in a straightforward way. We weaken theassumptions so that we only assume A(t) = A+V (t), where V (t) ∈ L(D(A), X ) is allowed to be an unbounded operator.
Assumptions 4.1.Assume that(a) the non-autonomous Cauchy problem is well-posed and solved by the evolution family U(t, s), the operator A(r) isthe generator of a strongly continuous semigroup for all r ∈ R, D = D(A(r)), all the graph norms are equivalentwith the same constants, and there is K ≥ 1, ω ∈ R, such that

‖U(t, s)‖ ≤ Keω(t−s), ‖etA(r)‖ ≤ Keωt
for all t, r ∈ R,

(b) (Stability) the Magnus method (4) is stable, i.e., there are constants M ≥ 1, ω ∈ R such that for all n ∈ N,∥∥∥∥∥ k∏
j=0 exp{ t − sn A

(
s+ (2j + 1)(t − s)2n

)}∥∥∥∥∥ ≤ M exp (k + 1)ω(t − s)
n

for all k = 0, 1 . . . , n− 1, and
(c) (Local Hölder continuity) there exists α ∈ (0, 1] and for all K > 0 there is L = L(K ) > 0 such that

‖A(t)− A(s)‖D ≤ L|t − s|α
for all t, s ∈ (−K,K ), where ‖ · ‖D denotes (one of) the graph norm(s) on D.
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Proposition 4.2.
Assume that the conditions in Assumptions 4.1 are satisfied. Then the Magnus method defined by (4) converges for all
x ∈ X and has for smooth initial values x ∈ D convergence order α ∈ (0, 1].
The proof goes on the same line as that of Theorem 3.2 and is therefore omitted.
Example 4.3.Consider the Schrödinger equation

i ∂ψ∂t = −A(t)ψ, x ∈ Rd, t > 0,
ψ(x, 0) = ψ0(x),

where, formally,
A(t) = d∑

j,k=1 ∂jaj,k (·, t)∂kis the differential operator corresponding to the real-valued coefficients aj,k . See Engel and Nagel [2, Section VI.5.c] forfurther details on such operators. We assume here that the coefficients aj,k satisfy
aj,k (·, t) = ak,j (·, t) ∈ W 1,∞(Rd),

and
d∑

j,k=1aj,k (x, t)yjyk ≥ c |y|2
for a uniform constant c > 0 and for all x, y ∈ Rd. Then D(A(r)) = H2(Rd) with graph norms equivalent to the Sobolevnorms. Differential operators of this type usually appear as the linearization of non-autonomous Schrödinger equations.Assume further that there is α ∈ (0, 1] such that the maps t 7→ aj,k (·, t) are α-Hölder continuous. Since all the operators
A(r) are selfadjoint, iA(r) generates a unitary group, hence the hyperbolicity Assumptions 2.7 are satisfied.Hence, for all ψ0 ∈ H2(Rd) the Magnus method (4) converges and its order is at least α .
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