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Abstract
TheWiener index of a connected graph is the sum of the distances between all pairs of
vertices in the graph. It was conjectured that the Wiener index of an n-vertex maximal
planar graph is at most � 1

18 (n
3 + 3n2)�. We prove this conjecture and determine the

unique n-vertex maximal planar graph attaining this maximum, for every n ≥ 10.

Keywords Wiener index · Planar graphs · Triangulation · Distance · Mini–Max

1 Introduction

TheWiener index is a graph invariant based on distances in the graph. For a connected
graph G, the Wiener index is the sum of distances between all unordered pairs of
vertices in the graph and is denoted by W (G). That means,

W (G) =
∑

{u,v}⊆V (G)

dG(u, v).
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where dG(u, v) denotes the distance from u to v i.e. the minimum length of a path
from u to v in the graph G.

It was first introduced byWiener (1947) while studying its correlations with boiling
points of paraffin considering its molecular structure. Since then, it has been one of
the most frequently used topological indices in chemistry, as molecular structures
are usually modelled as undirected graphs. Many results on the Wiener index and
closely related parameters such as the gross status (Harary 1959), the distance of
graphs (Entringer et al. 1976), and the transmission (Šoltés 1991) have been studied.
A great deal of knowledge on theWiener index is accumulated in several survey papers
(Dobrynin et al. 2001, 2002; Dobrynin Mel’nikov 2012; Knor and Škrekovski 2014;
Xu et al. 2014). Finding a sharp bound on the Wiener index for graphs under some
constraints has been one of the research topics attracting many researchers.

The most basic upper bound ofW (G) states that, if G is a connected graph of order
n, then

W (G) ≤ (n − 1)n(n + 1)

6
, (1)

which is attained only by a path (Dankelmann et al. 2008a; Plesník 1984; Lovász
1979). Many sharp or asymptotically sharp bounds on W (G) in terms of other graph
parameters are known, for instance, minimum degree (Beezer et al. 2001; Dankel-
mann and Entringer 2000; Kouider and Winkler 1997), connectivity (Dankelmann
et al. 2009; Favaron et al. 1989), edge-connectivity (Dankelmann et al. 2008b, a) and
maximum degree (Fischermann et al. 2002). For finding more details in mathemat-
ical aspect of Wiener index, see also results (Das and Nadjafi-Arani 2017; Gutman
et al. 2014; Klavžar and Nadjafi-Arani 2014; Knor et al. 2014, 2016; Li et al. 2018;
Mukwembi and Vetrík 2014; Wagner et al. 2009; Wagner 2006; Wang and Yu 2006).

One can study the Wiener index of the family of connected planar graphs. Since
the bound given in Eq. 1 is attained by a path, it is natural to ask the same question for
some particular family of planar graphs. For instance, the Wiener index of a maximal
planar graph with n vertices, n ≥ 3 has a sharp lower bound (n − 2)2 + 2. This bound
is attained by any maximal planar graph such that the distance between any pair of
vertices is at most 2 (for instance a planar graph containing the n-vertex star). Che and
Collins (2018), and independently Ćzabarka et al. (2019), gave a sharp upper bound
of a particular class of maximal planar graphs known as Apollonian networks. An
Apollonian network may be formed, starting from a single triangle embedded on the
plane, by repeatedly selecting a triangular face of the embedding, adding a new vertex
inside the face, and connecting the new vertex to each of the three vertices of the face.
They showed that

Theorem 1.1 (Che and Collins 2018; Ćzabarka et al. 2019) Let G be an Apollonian
network of order n ≥ 3. Then W (G) has a sharp upper bound

W (G) ≤
⌊
1

18
(n3 + 3n2)

⌋
=

⎧
⎪⎨

⎪⎩

1
18 (n

3 + 3n2), if n ≡ 0(mod 3);
1
18 (n

3 + 3n2 − 4), if n ≡ 1(mod 3);
1
18 (n

3 + 3n2 − 2), if n ≡ 2(mod 3).
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It has been shown explicitly in Che and Collins (2018) that the bound is attained
for the maximal planar graphs Tn , we will give the construction of Tn in the next
section, see Definition 2.1. The authors in Che and Collins (2018) also conjectured
that this bound also holds for every maximal planar graph. It has been shown that
the conjectured bound holds asymptotically (Ćzabarka et al. 2019). In particular, they
showed the following result.

Theorem 1.2 (Ćzabarka et al. (2019)) For k = 3, 4, 5, there exists a constant Ck such
that

W (G) ≤ 1

6k
n3 + Ckn

5/2

for every k-connected maximal planar graph of order n.

In this paper, we confirm the conjecture.

Theorem 1.3 Let G be an n ≥ 6 vertex maximal planar graph. Then

W (G) ≤
⌊
1

18
(n3 + 3n2)

⌋
=

⎧
⎪⎨

⎪⎩

1
18 (n

3 + 3n2), if n ≡ 0(mod 3);
1
18 (n

3 + 3n2 − 4), if n ≡ 1(mod 3);
1
18 (n

3 + 3n2 − 2), if n ≡ 2(mod 3).

Equality holds if and only if G is isomorphic to Tn for all n ≥ 9.

2 Notations and preliminaries

Let G be a graph. We denote vertex set and edge set of G by V (G) and E(G) respec-
tively. A path in a graph is an alternating sequence of distinct vertices and edges,
starting from a vertex and ending at a vertex. Such that every edge is incident to neigh-
bouring vertices in the sequence. The length of the path is the number of edges in the
given path. With a slight abuse of notion, a cycle in a graphG is a non-zero length path
from a vertex v to itself v. We use standard function dG(v, u) to denote the length of
shortest path from the vertex v to the vertex u. Even more, we may define a function
that denotes the distance from a vertex to the set of vertices. Let v be a vertex of G
and S ⊆ V (G) then dG(S, v) := minu∈S{dG(u, v)}.

For a vertex set S ⊂ V (G), the status of S is defined as the sum of all distances
from the vertices of the graph to the set S. It is denoted by σG(S), thus

σG(S) :=
∑

u∈V (G)

dG(S, u).

For simplicity, we may omit subscript G in the given functions if the underlined graph
is obvious. With a slight abuse of notation, we use σG(v) := σG({v}).

We have,

W (G) = 1

2

∑

v∈V (G)

σG(v).
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| n | (n − 1)(a) 3 (b) 3 (c) 3 | (n − 2)

Fig. 1 Apollonian networks maximizing Wiener index of maximal planar graphs, Che and Collins (2018)

Here we use definition from Che and Collins (2018), for an Apollonian network
Tn on n vertices. We will prove later that it is the unique maximal planar graph that
maximizes the Wiener index of the maximal planar graphs.

Definition 2.1 (Che and Collins (2018)) The Apollonian network Tn is the maximal
planar graph on n ≥ 3 vertices, with the following structure, see Fig. 1.

If n is amultiple of 3, then the vertex set of Tn can be partitioned in three sets of same
size, A = {a1, a2, · · · , ak}, B = {b1, b2, . . . , bk} andC = {c1, c2, · · · , ck}. The edge
set of Tn is the union of following three sets E1 = ⋃k

i=1{(ai , bi ), (bi , ci ), (ci , ai )}
forming concentric triangles, E2 = ⋃k−1

i=1 {(ai , bi+1), (ai , ci+1), (bi , ci+1)} forming
‘diagonal’ edges, and E3 = ⋃k−1

1 {(ai , ai+1), (bi , bi+1), (ci , ci+1)} forming paths in
each vertex class, see Fig. 1a.

If 3|(n − 1), then Tn is the Apollonian network which may be obtained from Tn−1
by adding a degree three vertex in the face a1, b1, c1 or a n−1

3
, bn−1

3
, c n−1

3
, see Fig. 1b.

Note that both graphs are isomorphic.
If 3|(n − 2), then Tn is the Apollonian network which may be obtained from Tn−2

by adding a degree three vertex in each of the faces a1, b1, c1 and a n−1
3

, bn−1
3

, c n−1
3
,

see Fig. 1c.

The following lemmas will be used in the proof of Theorem 1.3. At first, we would
like to recall some standard definitions. A connected graph G is said to be svertex
connected or simply s-connected if it has more than s vertices and remains connected
whenever fewer than s vertices are removed. An induced subgraph of a graph G is
another graph, formed from a subset of the vertices ofG and all of the edges connecting
pairs of vertices in that subset. Formally letG be a graph and S be a subset of vertices of
G, S ⊆ V (G). Then induced subgraphG[S] ofG is a graph on the vertex set S and and
E(G[S]) = {e ∈ E(G) : e ⊆ S}. A connected graph G is called Hamiltonian graph,
if there is a cycle that includes every vertex of G, and the cycle is called Hamiltonian
cycle.

Lemma 2.2 Let G be an s-connected, maximal planar graph and S be a cut set of size
s of G. Then G[S] is Hamiltonian.
Proof Let us denote vertices of S, S = {v1, v2, . . . , vs}. Let u and w be two distinct
vertices, {u, w} ∈ V (G)\S such that any path from u to w contains at least one vertex
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Fig. 2 s pairwise disjoint paths
from u to w

u w

vi1

vi2

vis−1

vis

from S. Since G is s-connected, by Menger’s Theorem, there are s pairwise internally
vertex disjoint paths from u to w. Each of the paths intersects S in disjoint nonempty
sets, therefore each of the paths contains exactly one vertex from S. We may assume,
that in a particular planar embedding of G, those paths are ordered in such a way that
one of the two regions determined by the cycle obtained from two paths from u to
w containing vix and vix+1 has no vertex from S (where indices are taken modulo s),
see Fig. 2. From the maximality of the planar graph, there is a path from the vertex u
to the vertex w that does not contain a vertex from S, a contradiction. Thus we must
have the edges {vix , vix+1}. Therefore we have a cycle of length s on the vertex set S,
vi1 , vi2 , · · · , vis , vi1 in the given order. hence G[S] is Hamiltonian.

The following definition is particularly helpful for the proof of Theorem 1.3. Given
a set S ⊆ V , we define the Breadth First Search partition of V with root S, PG

S or
simply PS when the underline graph is clear, by PS = {S0, S1, . . . }, where S0 = S,
and for i ≥ 1, Si is the set of vertices at distance exactly i from S, formally Si = {v ∈
V (G) : dG(S, v) = i}. We refer to those sets as levels of Ps . In particular S1 is the
first level. For the largest integer integer k, for which Sk 
= ∅, we refer to Sk as the last
level. We refer to S0 and the last level as terminal level. Note that by definition every
level besides the terminal level is a cut set of G. We denote by Pv the Breadth First
Search partition from {v}, that is the partition P{v}.

The following three lemmas play a critical role to prove Theorem 1.3.

Lemma 2.3 Let G be an n + s vertex graph and S, S ⊂ V (G), be a set of vertices of
size s. Such that each non-terminal level of PS has size at least 3. Then we have

σ(S) ≤ σ3(n) :=
{

1
6 (n

2 + 3n), if n ≡ 0 (mod 3);
1
6 (n

2 + 3n + 2), if n ≡ 1, 2 (mod 3).
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Proof. If PS = {S0, S1, . . . }, by definition, we have that σ(S) =
∑

i

i |S| . Therefore

σ(S) = |S1| + 2 |S2| + 3 |S3| + · · ·
≤ 3

(
1 + 2 + · · · +

⌊n
3

⌋ )
+

( ⌊n
3

⌋
+ 1

)(
n − 3

⌊n
3

⌋)
= σ3(n).

Lemma 2.4 Let G be an n + s vertex graph and S, S ⊂ V (G), be a set of vertices of
size s. Such that each non-terminal level of PS has size at least 4. Then we have

σ(S) ≤ σ4(n) :=

⎧
⎪⎨

⎪⎩

1
8 (n

2 + 4n), if n ≡ 0 (mod 4);
1
8 (n

2 + 4n + 3), if n ≡ 1, 3 (mod 4);
1
8 (n

2 + 4n + 4), if n ≡ 2 (mod 4).

Proof. We have

σ(S) ≤ 4

(
1 + 2 + · · · +

⌊
n − 1

4

⌋ )
+

( ⌊
n − 1

4

⌋
+ 1

)(
n − 1 − 4

⌊
n − 1

4

⌋ )

= σ4(n)

Lemma 2.5 Let G be an n + s vertex graph and S, S ⊂ V (G), be a set of vertices of
size s. Such that each non-terminal level of PS has size at least 5. Then we have

σ(S) ≤ σ5(n) :=

⎧
⎪⎨

⎪⎩

1
10 (n

2 + 5n), if n ≡ 0 (mod 5);
1
10 (n

2 + 5n + 4), if n ≡ 1, 4 (mod 5);
1
10 (n

2 + 5n + 6), if n ≡ 2, 3 (mod 5).

Proof. We have

σ(S) ≤ 5

(
1 + 2 + · · · +

⌊
n − 1

5

⌋ )
+

( ⌊
n − 1

5

⌋
+ 1

)(
n − 1 − 5

⌊
n − 1

5

⌋ )

= σ5(n)

3 Proof of Theorem 1.3

Proof From Che and Collins (2018), we know that the desired lower bound is attained
for Tn . For the upper bound, we are going to prove Theorem 1.3 by induction on
the number of vertices. In Che and Collins (2018), they prove it for n ≤ 10 without
computer aid, but in Ćzabarka et al. (2019), it is shown that the upper bound ofTheorem
1.3 holds, for 6 ≤ n ≤ 18 with using computer program. It is also shown by means
of computer program that the upper bound is sharp for 6 ≤ n ≤ 18 and the extremal
graph is unique Tn for 9 ≤ n ≤ 18. For our proof, we use the computer-aided result of
Ćzabarka et al. (2019) only for Case 2.1 and for the uniqueness of the extremal graph.
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For the rest, the result in Che and Collins (2018) is enough. Unfortunately, we do not
know any proof of the cases n ≤ 18 without the use of computers. So, we assume
n ≥ 19 from now on.

LetG be a maximal planar graph of n ≥ 19 vertices. The proof contains three cases
depending on the connectivity of the graph G. Since G is a maximal planar graph, it
is either 3, 4 or 5-connected. Notice that the result in Ćzabarka et al. (2019) is much
stronger asymptotically than ours if G is 4 or 5-connected, but we are to prove the
upper bound for every n ≥ 19. In Case 2, it makes the proof somewhat technical.
Case 1 Let G be a 5-connected graph. For every fixed vertex v ∈ V (G), consider Pv .
Since G is 5-connected, and each of the non-terminal levels ofPv is a cut set, we have
that each non-terminal level has size at least 5. Therefore from Lemma 2.5, we have,

W (G) = 1

2

∑

v∈V (G)

σ (v) ≤ n

2
σ5(n − 1) ≤ n

20
(n2 + 3n + 2) <

⌊
1

18
(n3 + 3n2)

⌋
,

for all n ≥ 4. Therefore we are done if G is 5-connected.
Case 2 Let G be 4-connected and not 5-connected. Then G contains a cut set of size 4,
which induces a cycle of length four, by Lemma 2.2. Let us denote the vertices of this
cut set as v1, v2, v3 and v4, forming the cycle in this given order. The cut-set divides
the plane into two regions. We call them the inner and the outer region respectively.
Let us denote the number of vertices in the inner region by x and assume, without loss
of generality, that x is minimal possible, but greater than one. Obviously x ≤ n−4

2 or
x = n− 5. From here on, we deal with several sub-cases depending on the value of x .

Case 2.1 If x ≥ 4 and x 
= n − 5.
Let us consider the sub-graph of G, say G ′, obtained by deleting all vertices from

the outer region of the cycle v1, v2, v3, v4 in G. The graph G ′ is not maximal since
the outer face is a 4-cycle. The graph G is 4-connected, therefore it does not contain
neither {v1, v3} nor {v2, v4}, consequently we may add any of them to G ′, to obtain
a maximal planar graph. Adding an edge decreases the Wiener index of G ′. In the
following paragraph, we prove that one of the edges decreases the Wiener index of G ′
by at most x2

16 .
Let Ai = {v ∈ V (G ′)|d(v, vi ) < d(v, v j ),∀ j ∈ {1, 2, 3, 4}\{i}} for i ∈

{1, 2, 3, 4}. Let A be the subset of vertices of G ′ not contained in any of the Ai ’s.
So A, A1, A2, A3, A4 is a partition of vertices of G ′. It is simple to observe that, if
adding an edge {vi , vi+2}, for i ∈ {1, 2}, decreases the distance between a pair of
vertices, then these vertices are from Ai and Ai+2. If there is a vertex u which has at
least three neighbours from the cut set, without loss of generality say v1, v2, v3, then
A2 = ∅, since G is 4-connected. Therefore we are done if there exists such vertex.
Otherwise, for each pair {v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}, there is a distinct vertex
which is adjacent to both vertices of the pair. Hence the size of A is at least 4. The
size of the vertex set ∪4

i=1Ai , is at most x . By the AM-GM inequality, we have that

one of |A1| · |A3| or |A2| · |A4| is at most x2
16 . Therefore we can choose one of the

edges {v1, v3} or {v2, v4}, such that after adding that edge to the graph G ′, the Wiener
index of the graph decreases by at most x2

16 . Let us denote the maximal planar graph
obtained by adding this edge to G ′ by Gx+4.
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Similarly, we denote the maximal planar graph obtained from G, by deleting all
vertices in the inner region and adding the diagonal by Gn−x . This decreases the

Wiener index by at most (n−x−4)2

16 .
Consider the graph Gn−x and a sub-set of it’s vertices S = {v1, v2, v3, v4}. Since

the graph G is 4-connected, each non-terminal level of PGn−x
S has at least 4 vertices.

Therefore we get that σGn−x (S) ≤ σ4(n − x − 4) = (n−x−2)2

8 , from Lemma 2.4.
Recall that G ′ is the graph obtained from G by deleting the vertices from the outer

region. For each i ∈ {1, 2, 3, 4}, consider the BFS partition PG ′
vi
. Note that, x ≥ 4,

G is 4-connected, and by minimality of x , we have that every non-terminal level of
PG ′

vi
has at least 5 vertices, except two cases. The first level may contain only four

vertices and the penultimate level may also contain four vertices with the last level
having exactly one vertex. Status of the vi is maximised, if the number of vertices in
the first and the penultimate level is four, with the last level containing only one vertex
and every other level contains exactly five vertices.

To simplify calculations of the status of the vertex vi , wemay hang a new temporary
vertex on the root, and we may bring a vertex from the last level to the previous level.
These modifications do not change the status of the vertex, but it increases the number
of vertices.NowwemayapplyLemma2.5 for thisBFSpartition, considering that num-

ber of vertices in all levels is exactly 5. Therefore we have σG ′(vi ) ≤ (x+4)2+5(x+4)
10 .

Observe that this status contains distances, from vi to other vertices from the cut set,
which equals to four. Note that this is a uniform upper bound for the status of each of
the vertices from the cut set.

Finally we may upper bound the Wiener index of G in the following way,

W (G) ≤ W (Gn−x ) + (n − x − 4)2

16
+ W (Gx+4) + x2

16
− 8

+ x · σGn−x ({v1, v2, v3, v4}) + (n − x − 4) · (σG ′(v1) − 4).

In the first line, we upper bound all distances between pairs of vertices on the cut
set and outer region, and between pairs of vertices on the cut set and inner region. We
subtract 8 since distances between the pairs from the cut set were double-counted. In
the second line, we upper bound all distances from the outer region to the inner region.
These distances are split in two, distances from the outer region to the cut set and from
a fixed vertex of the cycle, without loss of generality say v1, to the inner region.

We are going to prove that W (G) ≤ 1
18 (n

3 + 3n2) − 1, therefore we will be done
in this sub-case. We need to prove the following inequality

1

18
(n3 + 3n2) − 1 ≥ 1

18
((n − x)3 + 3(n − x)2) + (n − x − 4)2

16

+ 1

18
((x + 4)3 + 3(x + 4)2) + x2

16
− 8

+ x · (n − x − 2)2

8
+ (n − x − 4) · (

(x + 4)2 + 5(x + 4)

10
− 4).
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After we simplify, we get

82

45
− 9n

10
+ n2

16
+ x

5
+ 41nx

120
− n2x

24
− 3x2

40
+ nx2

60
+ x3

40
≤ 0. (2)

We know that 4 ≤ x ≤ n−4
2 and if we set x = 4, we get 2176 + 528n − 75n2 ≤ 0

which holds for all ≥ 10. Therefore, if the derivative of the right hand side of the
inequality is negative for all {x | 4 ≤ x ≤ n−4

2 }, then the inequality holds for all these
values of x . Differentiating the LHS of the Inequality (2), with respect to x , we get

δ

δx

(
82

45
− 9n

10
+ n2

16
+ x

5
+ 41nx

120
− n2x

24
− 3x2

40
+ nx2

60
+ x3

40

)

= 1

5
+ 41n

120
− n2

24
− 3x

20
+ nx

30
+ 3x2

40
.

(3)

If we set x = 4 in Eq. 3, we get 1
120 (96 + 57n − 5n2), which is negative for all

≥ 13. If we set x = n−4
2 in Eq. 3, we get 1

160 (−n2 + 8n + 128), which is negative
for all ≥ 17. Therefore Eq. 3 is negative in the whole interval. Since n ≥ 19, we have
W (G) ≤ 1

18 (n
3 + 3n2) − 1, and this sub-case is settled.

Case 2.2 If 2 ≤ x ≤ 3.
From the minimality of x and maximality of G, we have x = 2. Let us consider

the maximal planar graph, denoted by Gn−2, obtained from G by deleting these two
vertices from the inner region and adding an edge which decreases the Wiener index

by at most (n−6)2

16 , such edge exists as in the previous case.
Since G is 4-connected, for each vertex v, v ∈ V (G), each level of PG

v contains
at least 4 vertices, but possibly the last one. Therefore status of both vertices inside
can be bounded by σ5(n) = 1

8 ((n − 1)2 + 4(n − 1) + 4). This bound comes from
Lemma 2.4. Finally, we have

W (G) ≤ W (Gn−2) + (n − 6)2

16
+ 2

8
((n − 1)2 + 4(n − 1) + 4) − 1

≤ 1

18
((n − 2)3 + 3(n − 2)2) + (n − 6)2

16
+ 2

8
((n − 1)2 + 4(n − 1) + 4) − 1

= 1

18
n3 + 7

48
n2 − 1

4
n + 49

18
− 1 ≤ 1

18
(n3 + 3n2) − 1.

(4)
The last inequality holds for all n ≥ 9, so this sub-case is done too.

Case 2.3 If x = n − 5.
Therefore we have one vertex outside of the cut set. Let us consider the maximal

planar graph, denoted by Gn−1, obtained from G by deleting the vertex from the outer

region and adding an edge which decreases the Wiener index by at most (n−5)2

16 .
By the choice of x , we have that for the vertex outside the cut set v. Each level

of PG
v contains at least 5 vertices, except the first one which contains only 4 and the

penultimate level may contain 4 vertices too followed by one vertex in the last level.
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The status of the vertex v is maximized if the last level contains exactly one vertex, the
penultimate and the first level contain four vertices while every other level contains
five vertices. Therefore status of v can be bounded by 1

10 (n
2 +5n). This bound comes

from Lemma 2.5. Finally, we have

W (G) ≤ W (Gn−1) + (n − 5)2

16
+ 1

10
(n2 + 5n)

≤ 1

18
((n − 1)3 + 3(n − 1)2) + (n − 5)2

16
+ 1

10
(n2 + 5n)

= 1

18
n3 + 13

80
n2 + 7

24
n − 241

144
≤ 1

18
(n3 + 3n2) − 1.

(5)

The last inequality holds for all n ≥ 9, so this sub-case is done too.
Case 3. Let G be 3-connected and not 4-connected. Since G is not 4-connected and
it is a maximal planar graph, it must have a cut set of size 3, say {v1, v2, v3}. This
induces a triangle from the Lemma 2.2. Without loss of generality, let us assume that
number of vertices in the inner smaller region of the cut set is minimal possible, say
x .

Case 3.1. If x ≤ 2.
From the minimality of x , we have x = 1. Let us denote this vertex as v. Let

Gn−1 be a maximal planar graph obtained from G by deleting the vertex v. From the
Lemma 2.3, we have σG(v) ≤ 1

6 (n
2 + n) − 1

313|(n−1), where 13|(n−1) equals one if 3
divides n − 1 and zero otherwise. Finally we have,

W (G) ≤ W (Gn−1) + σG(v)

≤ 1

18
((n − 1)3 + 3(n − 1)2) − 1

9
13|n − 2

9
13|(n−2) + 1

6
(n2 + n)

− 1

3
13|(n−1) = n3

18
+ n2

6
+ 1

9
− 1

9
13|(n) − 2

9
13|(n−2) − 1

3
13|(n−1)

≤
⌊
1

18
(n3 + 3n2)

⌋
.

(6)

In this case, the equality holds if and only if the graph obtained after deleting the vertex
v is Tn−1. We can observe that, if we add the vertex v to the graph Tn−1, the choice
that maximizes the status of v , σG(v) = 1

6 (n
2 + n) − 1

313|(n−1), is only when we add
v in one ot the two faces which gets us the graph Tn . Hence we have the desired upper
bound of the Wiener index and equality holds if and only if G = Tn .

Case 3.2 If x = 3.
Let us denote vertices in the inner region as x1, x2 and x3. From the minimality

of x and maximality of G, the structure of G in the inner region is well defined, see
Fig. 3a. If we remove these three inner vertices, the graph we get is denoted by Gn−3
and is still maximal. Hence we may use the induction hypothesis for the graph Gn−3.
Consider the graph Gn−3 and a vertex set S = {v1, v2, v3}. Each level of PGn−3

S has at
least three vertices except the terminal one. Therefore we may apply Lemma 2.3, then
we have σGn−3({v1, v2, v3}) ≤ 1

6 ((n−6)2 +3(n−6)+2). To estimate distances from
the vertices in the outer region to the vertices in the inner region we do the following.
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v1 v3

v2

(a) x = 3.

v1 v3

v2

(b) x = 4.

Fig. 3 The unique inner regions for the 3-connected case when x = 3 and x = 4

We first estimate distances from the outer region to the cut set and from the fixed
vertex on the cut set to all xi . The distances from the vertices in the outer region to
the set {v1, v2, v3}, is σGn−3({v1, v2, v3}). The sum of distances from vi to the vertices
{x1, x2, x3} is 4. Note that, if we take a vertex in the outer region which has at least
two neighbours on the cut set, then for this vertex we need to count 3 for the distances
from the cut set to the vertices {x1, x2, x3}. Since we have at least two such vertices,
all cross distances can be bounded by 3σGn−3({v1, v2, v3}) + 4(n − 5) + 6. Then we
have,

W (G) ≤ W (Gn−3) + W (K3) + 3σGn−3({v1, v2, v3}) + 4n − 14

≤ 1

18
((n − 3)3 + 3(n − 3)2) + 1

2
((n − 6)2 + 3(n − 6) + 2) + 4n − 11

<

⌊
1

18
(n3 + 3n2)

⌋
. (7)

Therefore, this case is also settled.
Case 3.3 If x = 4.
From the minimality of x and the maximality of the planar graph G, there is only

one configuration of the inner region (Fig. 3b). Consider amaximal planar graph on the
n−4 vertices, sayGn−4, that is obtained fromG by deleting the four inner vertices.We
will apply the induction hypothesis for this graph, to upper bound the sum of distances
between all pairs of vertices from V (Gn−4) in G. By applying Lemma 2.3 for Gn−4
and S = {v1, v2, v3}, we get σGn−4({v1, v2, v3}) ≤ 1

6 ((n−4−3)2 + (n−4−3)+2).
The sum of the distances between the four inner vertices is 7. The sum of the distances
from each vi to all of the vertices inside is at most six. By a similar argument as in the
previous case we have,

W (G) ≤ 1

18
((n − 4)3 + 3(n − 4)2) + 7 + 4

6
((n − 7)2 + (n − 7) + 2) + 6(n − 4)

<

⌊
1

18
(n3 + 3n2)

⌋
. (8)
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v1 v3

v2

v1 v3

v2

v1 v3

v2

Fig. 4 3-Connected, x = 5

Therefore, this case is also settled.
Case 3.4 If x = 5.
From the minimality of x and the maximality of the planar graph G, there are three

configurations of the inner region, see Fig. 4. Consider a maximal planar graph on the
n−5 vertices, sayGn−5, which is obtained fromG by deleting 5 vertices from the inner
region.Wewill apply the induction hypothesis for this graphGn−5, to bound the sumof
the distances between the vertices of V (Gn−5) in the graphG. By applying Lemma 2.3
forGn−5 and S = {v1, v2, v3}, we get σGn−5({v1, v2, v3}) ≤ 1

6 ((n−8)2+(n−8)+2).
The sum of the distances between five inner vertices is at most 13. The sum of the
distances from vi to all of the vertices inside is at most 8. Finally, we have

W (G) ≤ 1

18
((n − 5)3 + 3(n − 5)2) + 13 + 5

6
((n − 8)2 + (n − 8) + 2) + 8(n − 5)

<

⌊
1

18
(n3 + 3n2)

⌋
. (9)

Therefore this case is also settled.
Case 3.5 If x ≥ 6.
First we settle for x ≥ 7 and then for x = 6. Consider the maximal planar graph

on n − x vertices, say Gn−x , which is obtained from G by deleting those x vertices
from the inner region of the cut set {v1, v2, v3}. Consider the maximal planar graph
on x + 3 vertices, say Gx+3, which is obtained from G, by deleting all n − x − 3
vertices from the outer region of the cut set {v1, v2, v3}. We know by induction that
W (Gx+3) ≤ 1

18 ((x + 3)3 + 3(x + 3)2). There are at least two vertices from the
cut set {v1, v2, v3}, such that each of them has at least two neighbours in the outer
region of the cut set. Without loss of generality, we may assume they are v1 and v2.
Hence if we consider PGn−x

v1 and PGn−x
v2 , we will have 4 vertices in the first level

of and at least three in the following levels until the last one. Therefore we have
σGn−x (v1) ≤ σ3(n− x−2)+1 ≤ 1

6 ((n− x−2)2+3(n− x−2)+8) from Lemma 2.3

and same for v2. Now let us considerPGx+3
{v1,v2}, fromminimality of x , each non-terminal

level of the PGx+3
{v1,v2} contains at least 4 vertices. Therefore by applying Lemma 2.4, we
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get σGx+3({v1, v2}) ≤ 1
8 (x

2 + 6x + 9). We have,

W (G) ≤ (W (Gx+3) + W (Gn−x ) − 3) + (n − x − 3)(σGx+3({v1, v2}) − 1)

+ x

(
max

{
σGn−x (v1), σGn−x (v2)

}
− 2

)
.

(10)

The first term of the sum is an upper bound for the sum of all distances which does
not cross the cut set. The second and the third terms upper-bounds all cross distances
in the following way- we may split this sum into two parts for each crossing pair sum
from inside to the set {v1, v2} and from vi , i ∈ {1, 2} to the vertex outside, those are
the second and the third terms of the sum accordingly. Therefore applying estimates,
we get

1

18
(n3 + 3n2) − 1 ≥ 1

18
((x + 3)3 + 3(x + 3)2) + 1

18
((n − x)3 + 3(n − x)2) − 3

+ (n − x − 3)(x2 + 6x + 1)

8

+ x((n − x − 2)2 + 3(n − x − 2) − 4)

6
.

(11)
After simplification we have

− x3 + x2(n + 3) + x(21 − 6n) − (15 + 3n) ≥ 0. (12)

where

δ

δx

(
− x3 + x2(n + 3) + x(21 − 6n) − (15 + 3n)

)
= −3x2 + (2n + 6)x + 21 − 6n.

The derivative is positive when x ∈ [7, n
2 ]. Hence since the inequality (12) holds for

x = 7, it also holds for all x , x ∈ [7, n
2 ]. Therefore, if x ≥ 7 we are done.

Finally if x = 6, then distances from v1 and v2 to all vertices inside is 9 instead
of 73

8 as it was used the in Inequality 11. Thus we get an improvement of Inequality
(11), which shows that W (G) <

⌊ 1
18 (n

3 + 3n2)
⌋
even for x = 6. Therefore we have

settled 3-connected case too.

4 Concluding remarks

There is the unique maximal planar graph Tn , maximizing the Wiener index, Theo-
rem 1.3. Clearly Tn is not 4-connected. One may ask for the maximum Wiener index
for the family of 4-connected and 5-connected maximal planar graphs. In Ćzabarka
et al. (2019), asymptotic results were proved for both cases. Moreover, based on their
constructions, they conjecture sharp bounds for both 4-connected and 5-connected
maximal planar graphs. Their conjectures are the following.
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Conjectute 4.1 Let G be an n ≥ 6 vertex maximal 4-connected planar graph. Then

W (G) ≤

⎧
⎪⎨

⎪⎩

1
24n

3 + 1
4n

2 + 1
3n − 2, if n ≡ 0, 2 (mod 4);

1
24n

3 + 1
4n

2 + 5
24n − 3

2 , if n ≡ 1 (mod 4);
1
24n

3 + 1
4n

2 + 5
24n − 1, if n ≡ 3 (mod 4);

Conjectute 4.2 Let G be an n ≥ 12 vertex maximal 4-connected planar graph. Then

W (G) ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
30n

3 + 3
10n

2 − 23
15n + 32, if n ≡ 0 (mod 5);

1
30n

3 + 3
10n

2 − 23
15n + 156

5 , if n ≡ 1 (mod 5);
1
30n

3 + 3
10n

2 − 23
15n + 168

5 , if n ≡ 2 (mod 5);
1
30n

3 + 3
10n

2 − 23
15n + 31, if n ≡ 3 (mod 5);

1
30n

3 + 3
10n

2 − 23
15n + 161

5 , if n ≡ 4 (mod 5);
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