ON A PARAMETRIZATION OF NON-COMPACT WAVELET MATRICES BY WIENER-HOPF FACTORIZATION

LASHA EPHREMIDZE ${ }^{1,2}$, NIKA SALIA ${ }^{3,4}$, AND ILYA SPITKOVSKY ${ }^{2}$

Abstract

A complete parametrization (one-to-one and onto mapping) of a certain class of noncompact wavelet matrices is introduced in terms of coordinates of infinite-dimensional Euclidian space. The developed method relies on Wiener-Hopf factorization of corresponding unitary matrix functions.

1. Introduction

Let $l^{2}(\mathbb{Z})$ be the standard Hilbert space of two-sided sequences of complex numbers. A matrix \mathcal{A} with m rows and infinitely many columns

$$
\mathcal{A}=\left(\begin{array}{cccccc}
\cdots & a_{-1}^{1} & a_{0}^{1} & a_{1}^{1} & a_{2}^{1} & \cdots \tag{1}\\
\cdots & a_{-1}^{2} & a_{0}^{2} & a_{1}^{2} & a_{2}^{2} & \cdots \\
& \vdots & \vdots & & & \\
\cdots & a_{-1}^{m} & a_{0}^{m} & a_{1}^{m} & a_{2}^{m} & \cdots
\end{array}\right), \quad a_{j}^{i} \in \mathbb{C},
$$

where the rows belong to $l^{2}(\mathbb{Z})$, is called a wavelet matrix (of rank m) if its rows satisfy the so called shifted orthogonality condition [4]:

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} a_{k+m j}^{i} \overline{a_{k+m s}^{r}}=\delta_{i r} \delta_{j s} \text { for all } 1 \leq i, r \leq m ; \quad j, s \in \mathbb{Z} \tag{2}
\end{equation*}
$$

(δ stands for the Kronecker delta). Such matrices are a generalization of ordinary $m \times m$ unitary matrices and they play the crucial role in the theory of wavelets [6] and multirate filter banks [7]. Note that if \mathcal{A} is a wavelet matrix and \mathcal{A}^{\prime} is obtained by shifting some of its rows by a multiple of m, then \mathcal{A}^{\prime} is a wavelet matrix as well.

In the polyphase representation [8] of matrix \mathcal{A},

$$
\begin{equation*}
\mathbf{A}(z)=\sum_{k=-\infty}^{\infty} A_{k} z^{k}, \tag{3}
\end{equation*}
$$

where $\mathcal{A}=\left(\ldots A_{-1} A_{0} A_{1} A_{2} \ldots\right)$ is the partition of \mathcal{A} into $m \times m$ blocks $A_{k}=\left(a_{k m+j}^{i}\right), 1 \leq i \leq m$, $0 \leq j \leq m-1$, condition (2) is equivalent to

$$
\begin{equation*}
\mathbf{A}(z) \widetilde{\mathbf{A}}(z)=I_{m} \tag{4}
\end{equation*}
$$

where $\widetilde{\mathbf{A}}(z)=\sum_{k=-\infty}^{\infty} A_{k}^{*} z^{-k}$ is the adjoint of $\mathbf{A}(z)\left(A^{*}:=\bar{A}^{T}\right.$ is the Hermitian conjugate, and I_{m} stands for the $m \times m$ unit matrix). This is easy to see as (2) can be written in the block matrix form $\sum_{k=-\infty}^{\infty} A_{k} A_{l+k}^{*}=\delta_{l 0} I_{m}$.

On the other hand, if series (3) is convergent a.e. on $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$, condition (4) means that \mathbf{A} is a unitary matrix function on the unit circle, i.e.,

$$
\begin{equation*}
\mathbf{A}(z)(\mathbf{A}(z))^{*}=I_{m} \text { for } z \in \mathbb{T} \tag{5}
\end{equation*}
$$

2010 Mathematics Subject Classification. 42C40, 47A68.
Key words and phrases. Wavelet matrices; Unitary matrix functions; Wiener-Hopf factorization.

Therefore, wavelet matrices are closely related with unitary matrix functions. There is a natural one-to-one correspondence between them and we will rely on this connection throughout the paper.

Our notion of a wavelet matrix is somewhat different from the standard one. Namely, the linear condition $\mathbf{A}(1) \mathbf{e}=\sqrt{m} \mathbf{e}_{1}$, where $\mathbf{e}=(1,1, \ldots, 1)^{T}$ and $\mathbf{e}_{1}=(1,0, \ldots, 0)^{T}$, must be satisfied in the usual definition (see [6, Eq. 4.9]) in order the corresponding orthogonal basis of $L^{2}(\mathbb{R})$ can be constructed by means of \mathbf{A} (see $[6$, Ch-s 4,5$]$). In our consideration, the linear condition is irrelevant. Furthermore, since the structure of coefficients of unitary matrix functions $\mathbf{A}(z)$ and $\mathbf{A}(z) \cdot U$, where U is a constant unitary matrix, are closely related, we introduce the equivalent classes of wavelet matrices as follows:

$$
\begin{equation*}
\mathcal{A} \sim \mathcal{A}^{\prime} \Longleftrightarrow A_{j}=A_{j}^{\prime} U \text { for some constant unitary matrix } U \text { and every } j \in \mathbb{Z} \tag{6}
\end{equation*}
$$

We get a unique representative with a corresponding linear condition in each class in this way.
If the number of non-zero columns in (1) is finite, then the wavelet matrix \mathcal{A} is called compact. Otherwise, it is non-compact.

For a compact wavelet matrix

$$
\begin{equation*}
\mathbf{A}(z)=\sum_{k=0}^{N} A_{k} z^{k} \tag{7}
\end{equation*}
$$

in order to avoid a chaotic rearrangement of the rows of \mathcal{A}, we assume that not only $A_{0} \neq 0$ and $A_{N} \neq 0$ (N is called the order of (7) in this case) but also

$$
\begin{equation*}
\operatorname{det} \mathbf{A}(z)=c z^{N} \tag{8}
\end{equation*}
$$

Since it follows from (5) that $\operatorname{det} \mathbf{A}(z)$ is a monomial for compact wavelet matrices, it has necessarily form (8) and the power of z is called the degree of (7). It is proved in [1] that the degree of (7) is N if and only if $\operatorname{rank} A_{0}=m-1$ (see Lemma 1 therein). This is the maximal possible value for the rank of A_{0} and such situation is naturally called nonsingular.

In [1], a complete parametrization (one-to-one and onto mapping) of compact wavelet matrices of rank m and of order and degree N, with a minor restriction that the last row of A_{N} is not all zeros (this set is denoted by $\mathcal{C W \mathcal { W } _ { 1 }}[m, N, N]$), is proposed in terms of coordinates in the Euclidian space $\mathbb{C}^{(m-1) N}$. Namely, we have

$$
\begin{equation*}
\mathcal{C W M} \mathcal{M}_{1}[m, N, N] \longleftrightarrow \underbrace{\mathcal{P}_{N}^{-} \times \mathcal{P}_{N}^{-} \times \cdots \times \mathcal{P}_{N}^{-}}_{m-1} \cong \underbrace{\mathbb{C}^{N} \times \mathbb{C}^{N} \times \cdots \times \mathbb{C}^{N}}_{m-1} \tag{9}
\end{equation*}
$$

in the following sence: For each $\mathbf{A} \in \mathcal{C} \mathcal{W} \mathcal{M}_{1}[m, N, N]$ there exists a unique Laurent matrix polynomial $F(z)$ of the form

$$
F(z)=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \tag{10}\\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
\zeta_{1}^{-}(z) & \zeta_{2}^{-}(z) & \zeta_{3}^{-}(z) & \cdots & \zeta_{m-1}^{-}(z) & 1
\end{array}\right)
$$

where $\zeta_{i}^{-}(z) \in \mathcal{P}_{N}^{-}, j=1,2, \ldots, m-1$, such that

$$
F(z) U(z) \in \mathcal{P}_{N}^{+}(m \times m)
$$

where

$$
\begin{equation*}
U(z)=\operatorname{diag}\left[1, \ldots, 1, z^{-N}\right] \mathbf{A}(z) \tag{11}
\end{equation*}
$$

(the last row of \mathcal{A} is shifted to the left by $m N$), and

$$
\mathcal{P}_{N}^{+}:=\left\{\sum_{k=0}^{N} c_{k} z^{k}: c_{k} \in \mathbb{C}, k=0, \ldots, N\right\} ; \quad \mathcal{P}_{N}^{-}:=\left\{\sum_{k=1}^{N} c_{k} z^{-k}: c_{k} \in \mathbb{C}, k=1, \ldots, N\right\}
$$

In other words

$$
U(z)=U_{-}(z) U_{+}(z)
$$

where

$$
U_{-}(z)=F^{-1}(z) \text { and } U_{+}(z)=F(z) U(z)
$$

is the (right) Wiener-Hopf factorization of U. Note that F^{-1} can be obtained from F if we replace each ζ_{i}^{-}in (10) by $-\zeta_{i}^{-}$.

It readily follows from (11) and properties of \mathbf{A} that the unitary Laurent matrix polynomial U has the following properties:

$$
\operatorname{det} U(z)=\text { Const, } \quad \text { and } \quad \sum_{j=1}^{m}\left|u_{m j}(0)\right|>0
$$

In the present paper, we are going to extend parametrization (9) to a certain class of non-compact wavelet matrices by letting $N \rightarrow \infty$ in the above formulations. To this end, we introduce some additional definitions.

Let $L_{p}^{+}=H_{p}$, where $0<p \leq \infty$, be the Hardy space of analytic functions (we usually identify analytic functions in the unit disk and their boundary values on \mathbb{T}) and $L_{p}^{-}:=\left\{f: \bar{f} \in L_{p}^{+}\right\}$be the corresponding set of anti-analytic functions. Denote also

$$
L^{ \pm}:=\bigcap_{0<p<\infty} L_{p}^{ \pm}
$$

Obviously, both of the sets L^{+}and L^{-}are closed under multiplication:

$$
\begin{equation*}
f, g \in L^{ \pm} \Longrightarrow f g \in L^{ \pm} \tag{12}
\end{equation*}
$$

Let $\mathcal{W M}^{ \pm}[m]$ be the set of equivalent classes (see (6)) of wavelet matrices (1) with $a_{j}^{i}=0$ for $i=1,2, \ldots, m-1$ and $j<0$ or $i=m$ and $j \geq m$ (i.e., the entries in the first $m-1$ rows in the polyphase representation (3) are from L_{∞}^{+}and the entries in the last row are from L_{∞}^{-}) such that

$$
\begin{equation*}
\operatorname{det} \mathbf{A}(z)=\text { Const } \text { for a.a. } \quad z \in \mathbb{T} \tag{13}
\end{equation*}
$$

and the analytic functions $f_{j}(z):=\widetilde{\mathbf{A}}_{m, j}(z)=\sum_{k=0}^{\infty} \overline{a_{j-1-m k}^{m}} z^{k}, j=1,2, \ldots, m$ (the adjoints of the entries in the last row of $\mathbf{A}(z)$) are not simultaneously equal to 0 in the space of maximal ideals of H_{∞}, i.e.,

$$
\sum_{j=0}^{m}\left|f_{j}(z)\right|>\delta, \quad|z|<1, \text { for some } \quad \delta>0
$$

and let \mathcal{P}_{∞}^{-}be the projection of L_{∞} on the set of anti-analytic functions vanishing at the infinity, i.e.,

$$
\mathcal{P}_{\infty}^{-}:=\left\{\sum_{k=-\infty}^{-1} c_{k} t^{k}: \text { there exist } f \in L_{\infty} \text { such that } \hat{f}(k)=c_{k} \text { for } k<0\right\} \subset L^{-}
$$

where $\hat{f}(k)$ stands for the k-th Fourier coefficient of f. Then we have a ono-to-one and onto mapping similar to (9):

$$
\mathcal{W} \mathcal{M}^{ \pm}[m] \longleftrightarrow \underbrace{\mathcal{P}_{\infty}^{-} \times \mathcal{P}_{\infty}^{-} \times \cdots \times \mathcal{P}_{\infty}^{-}}_{m-1}
$$

which is the claim of the following
Theorem 1. Let $\mathcal{A}=\mathbf{A}(z) \in \mathcal{W}^{ \pm}[m]$. Then there exists a unique matrix function $F(z)$ of the form (10), where

$$
\begin{equation*}
\zeta_{i}^{-} \in \mathcal{P}_{\infty}^{-} \tag{14}
\end{equation*}
$$

$j=1,2, \ldots, m-1$, such that

$$
\begin{equation*}
F(z) \mathbf{A}(z) \in L^{+}(m \times m) \tag{15}
\end{equation*}
$$

Conversly, for each matrix function (10), (14) there exists a unique $\mathbf{A}(z) \in \mathcal{W} \mathcal{M}^{ \pm}[m]$ such that (15) holds.

The inclusion (15) means again that the representation

$$
\mathbf{A}(z)=\mathbf{A}_{-}(z) \mathbf{A}_{+}(z)
$$

where

$$
\mathbf{A}_{-}(z)=F^{-1}(z) \text { and } \mathbf{A}_{+}(z)=F(z) \mathbf{A}(z)
$$

is the (right) Wiener-Hopf factorization of $\mathbf{A}(z)$.

2. Proof of Theorem 1

Proof of Theorem 1 is based on the technique developed in [2].
Since $\mathbf{A}(z) \in L_{\infty}(m \times m)$ is a unitary matrix function, we have

$$
\begin{equation*}
\mathbf{A}^{-1}(z)=\mathbf{A}^{*}(z) \text { a.e. on } \mathbb{T} \tag{16}
\end{equation*}
$$

Because of the Carleson Corona Theorem (see, e.g. [5]) there exist functions $g_{1}, g_{2}, \ldots, g_{m}$ from H_{∞} such that

$$
\begin{equation*}
\sum_{j=1}^{m} f_{j}(z) g_{j}(z)=1 \quad \text { for } \quad|z|<1 \tag{17}
\end{equation*}
$$

Let $\mathbf{B} \in L_{\infty}^{+}(m \times m)$ be the matrix function \mathbf{A} with its last row replaced by $\left(g_{1}, g_{2}, \ldots, g_{m}\right)$. Then, since the last column of \mathbf{A} is $\left(f_{1}, f_{2}, \ldots, f_{m}\right)^{T}$ and (16), (17) hold, we have

$$
\mathbf{B A}^{*}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
\zeta_{1} & \zeta_{2} & \cdots & \zeta_{m-1} & 1
\end{array}\right)=: \Phi \in L_{\infty}(m \times m)
$$

where $\zeta_{i}=\sum_{k=1}^{m} g_{k} \widetilde{\mathbf{A}}_{i k}$. Thus, it follows from (16) that

$$
\begin{equation*}
\Phi \mathbf{A}=\mathbf{B} \tag{18}
\end{equation*}
$$

Let

$$
\begin{equation*}
\zeta_{i}=\zeta_{i}^{+}+\zeta_{i}^{-}, \quad \text { where } \zeta^{ \pm} \in \mathcal{P}_{\infty}^{ \pm}, \quad i=1,2, \ldots, m-1 \tag{19}
\end{equation*}
$$

(the definition of \mathcal{P}_{∞}^{+}and the inclusion $\mathcal{P}_{\infty}^{+} \subset L^{+}$are obvious). Then

$$
\begin{equation*}
\Phi=\Phi^{+} \Phi^{-} \tag{20}
\end{equation*}
$$

where $\Phi^{ \pm} \in \mathcal{P}^{ \pm}$is the matrix Φ whith its last row replaced by $\left(\zeta_{1}^{ \pm}, \zeta_{2}^{ \pm}, \ldots, \zeta_{m-1}^{ \pm}, 1\right)$. The equations (18) and (20) imply that

$$
\begin{equation*}
\Phi^{-} \mathbf{A}=\left(\Phi^{+}\right)^{-1} \mathbf{B} \in L^{+}(m \times m) \tag{21}
\end{equation*}
$$

which proves (15) if we observe that $F(z)=\Phi^{-}(z)$ and $\left(\Phi^{+}\right)^{-1}$ is the matrix Φ^{+}whith its last row replaced by $\left(-\zeta_{1}^{+},-\zeta_{2}^{+}, \ldots,-\zeta_{m-1}^{+}, 1\right)$.

Let us now prove the uniqueness of F.
Assume

$$
\begin{equation*}
F_{i}(z) \mathbf{A}(z)=\Phi_{i}^{+}(z) \in L^{+}(m \times m), \quad i=1,2 \tag{22}
\end{equation*}
$$

are two representations of type (10), (14), where $F_{1}=F$ and F_{2} is the matrix F with its last row replaced by $\left(\zeta_{1}^{\prime}, \zeta_{2}^{\prime}, \ldots, \zeta_{m-1}^{\prime}, 1\right)$.

Since $\Phi_{i}^{+} \in L^{+}(m \times m) \Longrightarrow \operatorname{det} \Phi_{i}^{+} \in L^{+}$(see (12)) and $\operatorname{det} \Phi_{i}^{+}(z)=C$ a.e. on \mathbb{T} (see (13), (22)), it follows that $\operatorname{det} \Phi_{i}^{+}(z)=C$ for $|z|<1$. Therefore $\left(\Phi_{i}^{+}(z)\right)^{-1} \in L^{+}(m \times m)$ because of Cramer's formula.

Equations in (22) imply that

$$
\mathcal{P}_{\infty}^{-}(m \times m) \ni F_{2}^{-1}(z) F_{1}(z)=\left(\Phi_{2}^{+}(z)\right)^{-1} \Phi_{1}^{+}(z) \in L^{+}(m \times m)
$$

Hence the matrix function $F_{2}^{-1} F_{1}$ is constant, while it has form (10) whith its last row replaced by $\left(\zeta_{1}^{-}-\zeta_{1}^{\prime}, \zeta_{2}^{-}-\zeta_{2}^{\prime}, \ldots, \zeta_{m-1}^{-}-\zeta_{m-1}^{\prime}, 1\right)$. Consequently

$$
\zeta_{i}^{-}=\zeta_{i}^{\prime} \quad \text { for } \quad i=1,2, \ldots, m-1
$$

Let us now show the converse part of Theorem 1. The essential part of the claim is proved in [3, Lemma 4]: For each matrix of form (10), where $\zeta_{i}^{-} \in L_{2}^{-}, i=1,2, \ldots, m-1$, there exists a unique (up to a constant right factor) unitary matrix function

$$
U(t)=\left(\begin{array}{ccccc}
u_{11}^{+}(t) & u_{12}^{+}(t) & \ldots & u_{1, m-1}^{+}(t) & u_{1 m}^{+}(t) \\
u_{21}^{+}(t) & u_{22}^{+}(t) & \ldots & u_{2, m-1}^{+}(t) & u_{2 m}^{+}(t) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
u_{m-1,1}^{+}(t) & u_{m-1,2}^{+}(t) & \cdots & u_{m-1, m-1}^{+}(t) & u_{m-1, m}^{+}(t) \\
\overline{u_{m 1}^{+}(t)} & \overline{u_{m 2}^{+}(t)} & \cdots & \overline{u_{m, m-1}^{+}(t)} & \overline{u_{m m}^{+}(t)}
\end{array}\right), u_{i j}^{+} \in L_{\infty}^{+},
$$

with constant determinant

$$
\begin{equation*}
\operatorname{det} U(t)=\text { Const } \quad \text { for a.a. } \quad t \in \mathbb{T}, \tag{23}
\end{equation*}
$$

such that

$$
F(t) U(t) \in L_{2}^{+}(m \times m)
$$

It remains to prove that if (14) holds, then

$$
\begin{equation*}
\sum_{j=0}^{m}\left|u_{m j}^{+}(z)\right|>\delta, \quad|z|<1, \text { for some } \quad \delta>0 \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
F(t) U(t) \in L^{+}(m \times m) \tag{25}
\end{equation*}
$$

We obtain both relations simultaneously.
Since (14) holds, there exist bounded functions $\zeta_{i} \in L_{\infty}$ such that (19) holds. Let $\Phi^{ \pm}$be defined as in (20). Then $\Phi^{+} F=\Phi^{+} \Phi^{-}=\Phi$ is bounded and therefore

$$
\begin{equation*}
\Phi^{+} F U=: \Psi^{+} \in L_{\infty}^{+}(m \times m) \tag{26}
\end{equation*}
$$

Hence

$$
F U=\left(\Phi^{+}\right)^{-1} \Psi^{+} \in L^{+}(m \times m)
$$

and (25) holds.
To show (24), let us first observe that $\operatorname{det} \Psi^{+}(z)=$ Const for $|z|<1 \operatorname{since} \operatorname{det} \Psi^{+} \in H_{\infty}$ and it is constant a.e. on the boundary (see (20), (23), and (26)). Therefore

$$
\begin{equation*}
\sum_{j=1}^{m} \Psi_{m i}^{+}(z) \operatorname{Cof}\left(\Psi_{m i}^{+}\right)(z)=C \tag{27}
\end{equation*}
$$

where Cof stands for the cofactor. However, the first $m-1$ rows of U and Ψ^{+}coincide. So that

$$
\begin{equation*}
\operatorname{Cof}\left(\Psi_{m i}^{+}\right)=\operatorname{Cof}\left(U_{m i}\right), \quad j=1,2, \ldots, m \tag{28}
\end{equation*}
$$

In addition, since U is unitary, i.e., $U^{-1}=U^{*}$, the formula for the inverse matrix implies that

$$
\begin{equation*}
u_{m j}^{+}=\frac{1}{C} \operatorname{Cof}\left(U_{m j}\right) \tag{29}
\end{equation*}
$$

Therefore, substituting (28) and (29) in (27), we get

$$
\sum_{j=1}^{m} \Psi_{m i}^{+}(z) u_{m j}^{+}(z)=1
$$

and, because of boundedness of the functions $\Psi_{m i}^{+}$(see (26)), relation (24) holds.

3. Open Problems

For compact wavelet matrices, it is proved in [1] that the entries ζ_{i}^{-}of the matrix (10) in Theorem 1 can be computed by the formula

$$
\begin{equation*}
\zeta_{i}^{-}(z)=\mathbb{P}_{N}^{-}\left(\widetilde{\mathbf{A}}_{i j}(z) / \mathbf{A}_{m j}(z)\right), \quad \text { if } \quad \mathbf{A}_{m j}(0) \neq 0 \tag{30}
\end{equation*}
$$

where \mathbb{P}_{N}^{-}is the projection of a (formal) Fourier series $\sum_{k=-N}^{\infty} c_{k} t^{k}$ on \mathcal{P}_{N}^{-}(see [1, Eq. (25)]). To describe the conditions under which we can let $N \rightarrow \infty$ in equation (30) and to determine in which sense the limit exists is an interesting problem. It is related to the computation of partial indices of Wiener-Hopf factorization for a certain class of matrix functions which is the subject of a forthcoming paper.

4. Acknowledgement

The first two authors were supported by the Shota Rustaveli National Science Foundation of Georgia (Project No. DI-18-118). The third author was also supported in part by Faculty Research funding from the Division of Science and Mathematics, New York University Abu Dhabi.

References

1. L. Ephremidze, E. Lagvilava, On compact wavelet matrices of rank m and of order and degree N. J. Fourier Anal. Appl. 20 (2014), no. 2, 401-420.
2. L. Ephremidze, G. Janashia, E. Lagvilava, On the factorization of unitary matrix-functions. Proc. A. Razmadze Math. Inst. 116 (1998), 101-106.
3. L. Ephremidze, G. Janashia, E. Lagvilava, On approximate spectral factorization of matrix functions. J. Fourier Anal. Appl. 17 (2011), no. 5, 976-990.
4. J. Kautsky, R. Turcajová, Pollen product factorization and construction of higher multiplicity wavelets. Linear Algebra Appl. 222 (1995), 241-260.
5. Paul Koosis, Introduction to H_{p} Spaces. With an Appendix on Wolff's Proof of the Corona Theorem. London Mathematical Society Lecture Note Series, 40. Cambridge University Press, Cambridge-New York, 1980.
6. H. L. Resnikoff, R. O. Wells, Wavelet Analysis. The scalable structure of information. Springer-Verlag, New York, 1998.
7. P. L. Vaidyanathan, Multirate Systems and Filter Banks Prentice-Hall. Englewood Cliffs, NJ 1993.
8. M. Vetterli, J. Kovačević, Wavelets and Subband Coding. Prentice Hall PTR, New Jersey, 1995.
(Received 17.07.2019)
[^0]
[^0]: ${ }^{1}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0177, Georgia
 ${ }^{2}$ Faculty of Science and Mathematics, New York University Abu Dhabi (NYUAD), Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates
 ${ }^{3}$ Alfréd Rényi Institute of Mathematics, Reáltanoda st. 13-15, 1053, Budapest, Hungary
 ${ }^{4}$ Central European University, Nador u. 9, 1051, Budapest, Hungary
 E-mail address: lasha@rmi.ge
 E-mail address: salia.nika@renyi.hu
 E-mail address: ims2@nyu.edu

