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ON A PARAMETRIZATION OF NON-COMPACT WAVELET MATRICES BY

WIENER-HOPF FACTORIZATION

LASHA EPHREMIDZE1,2, NIKA SALIA3,4, AND ILYA SPITKOVSKY2

Abstract. A complete parametrization (one-to-one and onto mapping) of a certain class of non-

compact wavelet matrices is introduced in terms of coordinates of infinite-dimensional Euclidian

space. The developed method relies on Wiener-Hopf factorization of corresponding unitary matrix
functions.

1. Introduction

Let l2(Z) be the standard Hilbert space of two-sided sequences of complex numbers. A matrix A
with m rows and infinitely many columns

A =


· · · a1−1 a10 a11 a12 · · ·
· · · a2−1 a20 a21 a22 · · ·

...
...

· · · am−1 am0 am1 am2 · · ·

 , aij ∈ C, (1)

where the rows belong to l2(Z), is called a wavelet matrix (of rank m) if its rows satisfy the so called
shifted orthogonality condition [4]:

∞∑
k=−∞

aik+mj a
r
k+ms = δirδjs for all 1 ≤ i, r ≤ m; j, s ∈ Z (2)

(δ stands for the Kronecker delta). Such matrices are a generalization of ordinary m × m unitary
matrices and they play the crucial role in the theory of wavelets [6] and multirate filter banks [7].
Note that if A is a wavelet matrix and A′ is obtained by shifting some of its rows by a multiple of m,
then A′ is a wavelet matrix as well.

In the polyphase representation [8] of matrix A,

A(z) =

∞∑
k=−∞

Akz
k , (3)

where A = (. . . A−1 A0 A1 A2 . . . ) is the partition of A into m×m blocks Ak = (aikm+j), 1 ≤ i ≤ m,

0 ≤ j ≤ m− 1, condition (2) is equivalent to

A(z)Ã(z) = Im, (4)

where Ã(z) =
∞∑

k=−∞
A∗kz

−k is the adjoint of A(z) (A∗ := A
T

is the Hermitian conjugate, and Im

stands for the m×m unit matrix). This is easy to see as (2) can be written in the block matrix form
∞∑

k=−∞
AkA

∗
l+k = δl0Im.

On the other hand, if series (3) is convergent a.e. on T := {z ∈ C : |z| = 1}, condition (4) means
that A is a unitary matrix function on the unit circle, i.e.,

A(z)
(
A(z)

)∗
= Im for z ∈ T. (5)
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Therefore, wavelet matrices are closely related with unitary matrix functions. There is a natural
one-to-one correspondence between them and we will rely on this connection throughout the paper.

Our notion of a wavelet matrix is somewhat different from the standard one. Namely, the linear
condition A(1) e =

√
m e1, where e = (1, 1, . . . , 1)T and e1 = (1, 0, . . . , 0)T , must be satisfied in

the usual definition (see [6, Eq. 4.9]) in order the corresponding orthogonal basis of L2(R) can be
constructed by means of A (see [6, Ch-s 4, 5]). In our consideration, the linear condition is irrelevant.
Furthermore, since the structure of coefficients of unitary matrix functions A(z) and A(z) ·U , where
U is a constant unitary matrix, are closely related, we introduce the equivalent classes of wavelet
matrices as follows:

A ∼ A′ ⇐⇒ Aj = A′jU for some constant unitary matrix U and every j ∈ Z. (6)

We get a unique representative with a corresponding linear condition in each class in this way.
If the number of non-zero columns in (1) is finite, then the wavelet matrix A is called compact.

Otherwise, it is non-compact.
For a compact wavelet matrix

A(z) =

N∑
k=0

Akz
k , (7)

in order to avoid a chaotic rearrangement of the rows of A, we assume that not only A0 6= 0 and
AN 6= 0 (N is called the order of (7) in this case) but also

detA(z) = czN . (8)

Since it follows from (5) that detA(z) is a monomial for compact wavelet matrices, it has necessarily
form (8) and the power of z is called the degree of (7). It is proved in [1] that the degree of (7) is N
if and only if rankA0 = m− 1 (see Lemma 1 therein). This is the maximal possible value for the rank
of A0 and such situation is naturally called nonsingular.

In [1], a complete parametrization (one-to-one and onto mapping) of compact wavelet matrices of
rank m and of order and degree N , with a minor restriction that the last row of AN is not all zeros
(this set is denoted by CWM1[m,N,N ]), is proposed in terms of coordinates in the Euclidian space
C(m−1)N . Namely, we have

CWM1[m,N,N ]←→ P−N × P
−
N × · · · × P

−
N︸ ︷︷ ︸

m−1

∼= CN × CN × · · · × CN︸ ︷︷ ︸
m−1

(9)

in the following sence: For each A ∈ CWM1[m,N,N ] there exists a unique Laurent matrix polynomial
F (z) of the form

F (z) =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0

ζ−1 (z) ζ−2 (z) ζ−3 (z) · · · ζ−m−1(z) 1


, (10)

where ζ−i (z) ∈ P−N , j = 1, 2, . . . ,m− 1, such that

F (z)U(z) ∈ P+
N (m×m),

where

U(z) = diag[1, . . . , 1, z−N ]A(z) (11)

(the last row of A is shifted to the left by mN), and

P+
N :=

{ N∑
k=0

ckz
k : ck ∈ C, k = 0, . . . , N

}
; P−N :=

{ N∑
k=1

ckz
−k : ck ∈ C, k = 1, . . . , N

}
.

In other words

U(z) = U−(z)U+(z),
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where

U−(z) = F−1(z) and U+(z) = F (z)U(z),

is the (right) Wiener-Hopf factorization of U . Note that F−1 can be obtained from F if we replace
each ζ−i in (10) by −ζ−i .

It readily follows from (11) and properties of A that the unitary Laurent matrix polynomial U has
the following properties:

detU(z) = Const, and

m∑
j=1

|umj(0)| > 0.

In the present paper, we are going to extend parametrization (9) to a certain class of non-compact
wavelet matrices by letting N → ∞ in the above formulations. To this end, we introduce some
additional definitions.

Let L+
p = Hp, where 0 < p ≤ ∞, be the Hardy space of analytic functions (we usually identify

analytic functions in the unit disk and their boundary values on T) and L−p := {f : f ∈ L+
p } be the

corresponding set of anti-analytic functions. Denote also

L± :=
⋂

0<p<∞
L±p .

Obviously, both of the sets L+ and L− are closed under multiplication:

f, g ∈ L± =⇒ fg ∈ L±. (12)

Let WM±[m] be the set of equivalent classes (see (6)) of wavelet matrices (1) with aij = 0 for
i = 1, 2, . . . ,m − 1 and j < 0 or i = m and j ≥ m (i.e., the entries in the first m − 1 rows in the
polyphase representation (3) are from L+

∞ and the entries in the last row are from L−∞) such that

detA(z) = Const for a.a. z ∈ T, (13)

and the analytic functions fj(z) := Ãm, j(z) =
∞∑
k=0

amj−1−mkz
k, j = 1, 2, . . . ,m (the adjoints of the

entries in the last row of A(z)) are not simultaneously equal to 0 in the space of maximal ideals of
H∞, i.e.,

m∑
j=0

|fj(z)| > δ, |z| < 1, for some δ > 0;

and let P−∞ be the projection of L∞ on the set of anti-analytic functions vanishing at the infinity, i.e.,

P−∞ :=

{ −1∑
k=−∞

ckt
k : there exist f ∈ L∞ such that f̂(k) = ck for k < 0

}
⊂ L−,

where f̂(k) stands for the k-th Fourier coefficient of f . Then we have a ono-to-one and onto mapping
similar to (9):

WM±[m]←→ P−∞ × P−∞ × · · · × P−∞︸ ︷︷ ︸
m−1

,

which is the claim of the following

Theorem 1. Let A = A(z) ∈ WM±[m]. Then there exists a unique matrix function F (z) of the
form (10), where

ζ−i ∈ P
−
∞, (14)

j = 1, 2, . . . ,m− 1, such that

F (z)A(z) ∈ L+(m×m). (15)

Conversly, for each matrix function (10), (14) there exists a unique A(z) ∈ WM±[m] such that (15)
holds.
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The inclusion (15) means again that the representation

A(z) = A−(z)A+(z),

where

A−(z) = F−1(z) and A+(z) = F (z)A(z),

is the (right) Wiener-Hopf factorization of A(z).

2. Proof of Theorem 1

Proof of Theorem 1 is based on the technique developed in [2].
Since A(z) ∈ L∞(m×m) is a unitary matrix function, we have

A−1(z) = A∗(z) a.e. on T. (16)

Because of the Carleson Corona Theorem (see, e.g. [5]) there exist functions g1, g2, . . . , gm from H∞
such that

m∑
j=1

fj(z)gj(z) = 1 for |z| < 1. (17)

Let B ∈ L+
∞(m ×m) be the matrix function A with its last row replaced by (g1, g2, . . . , gm). Then,

since the last column of A is (f1, f2, . . . , fm)T and (16), (17) hold, we have

BA∗ =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
ζ1 ζ2 · · · ζm−1 1

 =: Φ ∈ L∞(m×m),

where ζi =
∑m

k=1 gkÃik. Thus, it follows from (16) that

ΦA = B. (18)

Let

ζi = ζ+i + ζ−i , where ζ± ∈ P±∞, i = 1, 2, . . . ,m− 1 (19)

(the definition of P+
∞ and the inclusion P+

∞ ⊂ L+ are obvious). Then

Φ = Φ+Φ−, (20)

where Φ± ∈ P± is the matrix Φ whith its last row replaced by (ζ±1 , ζ
±
2 , . . . , ζ

±
m−1, 1). The equations

(18) and (20) imply that

Φ−A = (Φ+)−1B ∈ L+(m×m), (21)

which proves (15) if we observe that F (z) = Φ−(z) and (Φ+)−1 is the matrix Φ+ whith its last row
replaced by (−ζ+1 ,−ζ

+
2 , . . . ,−ζ

+
m−1, 1).

Let us now prove the uniqueness of F .
Assume

Fi(z)A(z) = Φ+
i (z) ∈ L+(m×m), i = 1, 2, (22)

are two representations of type (10), (14), where F1 = F and F2 is the matrix F with its last row
replaced by (ζ ′1, ζ

′
2, . . . , ζ

′
m−1, 1).

Since Φ+
i ∈ L+(m×m) =⇒ det Φ+

i ∈ L+ (see (12)) and det Φ+
i (z) = C a.e. on T (see (13), (22)),

it follows that det Φ+
i (z) = C for |z| < 1. Therefore (Φ+

i (z))−1 ∈ L+(m ×m) because of Cramer’s
formula.

Equations in (22) imply that

P−∞(m×m) 3 F−12 (z)F1(z) = (Φ+
2 (z))−1Φ+

1 (z) ∈ L+(m×m).

Hence the matrix function F−12 F1 is constant, while it has form (10) whith its last row replaced by
(ζ−1 − ζ ′1, ζ

−
2 − ζ ′2, . . . , ζ

−
m−1 − ζ ′m−1, 1). Consequently

ζ−i = ζ ′i for i = 1, 2, . . . ,m− 1.
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Let us now show the converse part of Theorem 1. The essential part of the claim is proved
in [3, Lemma 4]: For each matrix of form (10), where ζ−i ∈ L

−
2 , i = 1, 2, . . . ,m − 1, there exists a

unique (up to a constant right factor) unitary matrix function

U(t) =



u+11(t) u+12(t) · · · u+1,m−1(t) u+1m(t)

u+21(t) u+22(t) · · · u+2,m−1(t) u+2m(t)
...

...
...

...
...

u+m−1,1(t) u+m−1,2(t) · · · u+m−1,m−1(t) u+m−1,m(t)

u+m1(t) u+m2(t) · · · u+m,m−1(t) u+mm(t)


, u+ij ∈ L

+
∞,

with constant determinant

detU(t) = Const for a.a. t ∈ T, (23)

such that

F (t)U(t) ∈ L+
2 (m×m).

It remains to prove that if (14) holds, then

m∑
j=0

|u+mj(z)| > δ, |z| < 1, for some δ > 0, (24)

and

F (t)U(t) ∈ L+(m×m). (25)

We obtain both relations simultaneously.
Since (14) holds, there exist bounded functions ζi ∈ L∞ such that (19) holds. Let Φ± be defined

as in (20). Then Φ+F = Φ+Φ− = Φ is bounded and therefore

Φ+FU =: Ψ+ ∈ L+
∞(m×m). (26)

Hence

FU = (Φ+)−1Ψ+ ∈ L+(m×m)

and (25) holds.
To show (24), let us first observe that det Ψ+(z) = Const for |z| < 1 since det Ψ+ ∈ H∞ and it is

constant a.e. on the boundary (see (20), (23), and (26)). Therefore

m∑
j=1

Ψ+
mi(z) Cof(Ψ+

mi)(z) = C, (27)

where Cof stands for the cofactor. However, the first m− 1 rows of U and Ψ+ coincide. So that

Cof(Ψ+
mi) = Cof(Umi), j = 1, 2, . . . ,m. (28)

In addition, since U is unitary, i.e., U−1 = U∗, the formula for the inverse matrix implies that

u+mj =
1

C
Cof(Umj). (29)

Therefore, substituting (28) and (29) in (27), we get

m∑
j=1

Ψ+
mi(z)u

+
mj(z) = 1,

and, because of boundedness of the functions Ψ+
mi (see (26)), relation (24) holds.
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3. Open Problems

For compact wavelet matrices, it is proved in [1] that the entries ζ−i of the matrix (10) in Theorem 1
can be computed by the formula

ζ−i (z) = P−N
(
Ãij(z)/Amj(z)

)
, if Amj(0) 6= 0, (30)

where P−N is the projection of a (formal) Fourier series
∞∑

k=−N
ckt

k on P−N (see [1, Eq. (25)]). To describe

the conditions under which we can let N →∞ in equation (30) and to determine in which sense the
limit exists is an interesting problem. It is related to the computation of partial indices of Wiener-Hopf
factorization for a certain class of matrix functions which is the subject of a forthcoming paper.
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8. M. Vetterli, J. Kovačević, Wavelets and Subband Coding. Prentice Hall PTR, New Jersey, 1995.

(Received 17.07.2019)

1A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str.,
Tbilisi 0177, Georgia

2Faculty of Science and Mathematics, New York University Abu Dhabi (NYUAD), Saadiyat Island, P.O.
Box 129188, Abu Dhabi, United Arab Emirates
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