ON A PARAMETRIZATION OF NON-COMPACT WAVELET MATRICES BY WIENER-HOPF FACTORIZATION

LASHA EPHREMIDZE $^{1,2},$ NIKA SALIA $^{3,4},$ AND ILYA SPITKOVSKY 2

Abstract. A complete parametrization (one-to-one and onto mapping) of a certain class of noncompact wavelet matrices is introduced in terms of coordinates of infinite-dimensional Euclidian space. The developed method relies on Wiener-Hopf factorization of corresponding unitary matrix functions.

1. INTRODUCTION

Let $l^2(\mathbb{Z})$ be the standard Hilbert space of two-sided sequences of complex numbers. A matrix \mathcal{A} with m rows and infinitely many columns

$$\mathcal{A} = \begin{pmatrix} \cdots & a_{-1}^{i} & a_{0}^{i} & a_{1}^{i} & a_{2}^{i} & \cdots \\ \cdots & a_{-1}^{2} & a_{0}^{2} & a_{1}^{2} & a_{2}^{2} & \cdots \\ \vdots & \vdots & & & \\ \cdots & a_{-1}^{m} & a_{0}^{m} & a_{1}^{m} & a_{2}^{m} & \cdots \end{pmatrix}, \quad a_{j}^{i} \in \mathbb{C},$$

$$(1)$$

where the rows belong to $l^2(\mathbb{Z})$, is called a wavelet matrix (of rank m) if its rows satisfy the so called *shifted orthogonality condition* [4]:

$$\sum_{k=-\infty}^{\infty} a_{k+mj}^{i} \overline{a_{k+ms}^{r}} = \delta_{ir} \delta_{js} \quad \text{for all} \quad 1 \le i, r \le m; \quad j, s \in \mathbb{Z}$$
(2)

(δ stands for the Kronecker delta). Such matrices are a generalization of ordinary $m \times m$ unitary matrices and they play the crucial role in the theory of wavelets [6] and multirate filter banks [7]. Note that if \mathcal{A} is a wavelet matrix and \mathcal{A}' is obtained by shifting some of its rows by a multiple of m, then \mathcal{A}' is a wavelet matrix as well.

In the polyphase representation [8] of matrix \mathcal{A} ,

$$\mathbf{A}(z) = \sum_{k=-\infty}^{\infty} A_k z^k \,, \tag{3}$$

where $\mathcal{A} = (\dots A_{-1} A_0 A_1 A_2 \dots)$ is the partition of \mathcal{A} into $m \times m$ blocks $A_k = (a_{km+j}^i), 1 \le i \le m, 0 \le j \le m-1$, condition (2) is equivalent to

$$\mathbf{A}(z)\widetilde{\mathbf{A}}(z) = I_m,\tag{4}$$

where $\widetilde{\mathbf{A}}(z) = \sum_{k=-\infty}^{\infty} A_k^* z^{-k}$ is the *adjoint* of $\mathbf{A}(z)$ ($A^* := \overline{A}^T$ is the Hermitian conjugate, and I_m stands for the $m \times m$ unit matrix). This is easy to see as (2) can be written in the block matrix form $\sum_{k=-\infty}^{\infty} A_k A_{l+k}^* = \delta_{l0} I_m$.

On the other hand, if series (3) is convergent a.e. on $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$, condition (4) means that **A** is a unitary matrix function on the unit circle, i.e.,

$$\mathbf{A}(z) \big(\mathbf{A}(z) \big)^* = I_m \quad \text{for} \quad z \in \mathbb{T}.$$
(5)

²⁰¹⁰ Mathematics Subject Classification. 42C40, 47A68.

Key words and phrases. Wavelet matrices; Unitary matrix functions; Wiener-Hopf factorization.

Therefore, wavelet matrices are closely related with unitary matrix functions. There is a natural one-to-one correspondence between them and we will rely on this connection throughout the paper.

Our notion of a wavelet matrix is somewhat different from the standard one. Namely, the *linear* condition $\mathbf{A}(1) \mathbf{e} = \sqrt{m} \mathbf{e}_1$, where $\mathbf{e} = (1, 1, \dots, 1)^T$ and $\mathbf{e}_1 = (1, 0, \dots, 0)^T$, must be satisfied in the usual definition (see [6, Eq. 4.9]) in order the corresponding orthogonal basis of $L^2(\mathbb{R})$ can be constructed by means of \mathbf{A} (see [6, Ch-s 4, 5]). In our consideration, the linear condition is irrelevant. Furthermore, since the structure of coefficients of unitary matrix functions $\mathbf{A}(z)$ and $\mathbf{A}(z) \cdot U$, where U is a constant unitary matrix, are closely related, we introduce the equivalent classes of wavelet matrices as follows:

$$\mathcal{A} \sim \mathcal{A}' \iff A_j = A'_j U$$
 for some constant unitary matrix U and every $j \in \mathbb{Z}$. (6)

We get a unique representative with a corresponding linear condition in each class in this way.

If the number of non-zero columns in (1) is finite, then the wavelet matrix \mathcal{A} is called compact. Otherwise, it is non-compact.

For a compact wavelet matrix

$$\mathbf{A}(z) = \sum_{k=0}^{N} A_k z^k \,, \tag{7}$$

in order to avoid a chaotic rearrangement of the rows of \mathcal{A} , we assume that not only $A_0 \neq 0$ and $A_N \neq 0$ (N is called the *order* of (7) in this case) but also

$$\det \mathbf{A}(z) = cz^N. \tag{8}$$

Since it follows from (5) that det $\mathbf{A}(z)$ is a monomial for compact wavelet matrices, it has necessarily form (8) and the power of z is called the *degree* of (7). It is proved in [1] that the degree of (7) is N if and only if rank $A_0 = m - 1$ (see Lemma 1 therein). This is the maximal possible value for the rank of A_0 and such situation is naturally called nonsingular.

In [1], a complete parametrization (one-to-one and onto mapping) of compact wavelet matrices of rank m and of order and degree N, with a minor restriction that the last row of A_N is not all zeros (this set is denoted by $\mathcal{CWM}_1[m, N, N]$), is proposed in terms of coordinates in the Euclidian space $\mathbb{C}^{(m-1)N}$. Namely, we have

$$\mathcal{CWM}_1[m, N, N] \longleftrightarrow \underbrace{\mathcal{P}_N^- \times \mathcal{P}_N^- \times \dots \times \mathcal{P}_N^-}_{m-1} \cong \underbrace{\mathbb{C}^N \times \mathbb{C}^N \times \dots \times \mathbb{C}^N}_{m-1}$$
(9)

in the following sence: For each $\mathbf{A} \in \mathcal{CWM}_1[m, N, N]$ there exists a unique Laurent matrix polynomial F(z) of the form

$$F(z) = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ \zeta_1^-(z) & \zeta_2^-(z) & \zeta_3^-(z) & \cdots & \zeta_{m-1}^-(z) & 1 \end{pmatrix},$$
(10)

where $\zeta_i^-(z) \in \mathcal{P}_N^-$, $j = 1, 2, \ldots, m-1$, such that

$$F(z)U(z) \in \mathcal{P}_N^+(m \times m),$$

where

$$U(z) = \operatorname{diag}[1, \dots, 1, z^{-N}]\mathbf{A}(z)$$
(11)

(the last row of \mathcal{A} is shifted to the left by mN), and

$$\mathcal{P}_{N}^{+} := \bigg\{ \sum_{k=0}^{N} c_{k} z^{k} : c_{k} \in \mathbb{C}, \ k = 0, \dots, N \bigg\}; \quad \mathcal{P}_{N}^{-} := \bigg\{ \sum_{k=1}^{N} c_{k} z^{-k} : c_{k} \in \mathbb{C}, \ k = 1, \dots, N \bigg\}.$$

In other words

$$U(z) = U_{-}(z)U_{+}(z),$$

where

$$U_{-}(z) = F^{-1}(z)$$
 and $U_{+}(z) = F(z)U(z)$,

is the (right) Wiener-Hopf factorization of U. Note that F^{-1} can be obtained from F if we replace each ζ_i^- in (10) by $-\zeta_i^-$.

It readily follows from (11) and properties of \mathbf{A} that the unitary Laurent matrix polynomial U has the following properties:

det
$$U(z) = \text{Const}$$
, and $\sum_{j=1}^{m} |u_{mj}(0)| > 0.$

In the present paper, we are going to extend parametrization (9) to a certain class of non-compact wavelet matrices by letting $N \to \infty$ in the above formulations. To this end, we introduce some additional definitions.

Let $L_p^+ = H_p$, where 0 , be the Hardy space of analytic functions (we usually identify $analytic functions in the unit disk and their boundary values on <math>\mathbb{T}$) and $L_p^- := \{f : \overline{f} \in L_p^+\}$ be the corresponding set of anti-analytic functions. Denote also

$$L^{\pm} := \bigcap_{0$$

Obviously, both of the sets L^+ and L^- are closed under multiplication:

$$f, g \in L^{\pm} \Longrightarrow fg \in L^{\pm}.$$
 (12)

Let $\mathcal{WM}^{\pm}[m]$ be the set of equivalent classes (see (6)) of wavelet matrices (1) with $a_j^i = 0$ for $i = 1, 2, \ldots, m-1$ and j < 0 or i = m and $j \ge m$ (i.e., the entries in the first m-1 rows in the polyphase representation (3) are from L_{∞}^+ and the entries in the last row are from L_{∞}^-) such that

$$\det \mathbf{A}(z) = \text{Const} \quad \text{for a.a.} \quad z \in \mathbb{T}, \tag{13}$$

and the analytic functions $f_j(z) := \widetilde{\mathbf{A}}_{m,j}(z) = \sum_{k=0}^{\infty} \overline{a_{j-1-mk}^m} z^k$, $j = 1, 2, \ldots, m$ (the adjoints of the entries in the last row of $\mathbf{A}(z)$) are not simultaneously equal to 0 in the space of maximal ideals of H_{∞} , i.e.,

$$\sum_{j=0}^{m} |f_j(z)| > \delta, \quad |z| < 1, \text{ for some } \delta > 0;$$

and let \mathcal{P}_{∞}^{-} be the projection of L_{∞} on the set of anti-analytic functions vanishing at the infinity, i.e.,

$$\mathcal{P}_{\infty}^{-} := \left\{ \sum_{k=-\infty}^{-1} c_k t^k : \text{ there exist } f \in L_{\infty} \text{ such that } \hat{f}(k) = c_k \text{ for } k < 0 \right\} \subset L^-,$$

where $\hat{f}(k)$ stands for the k-th Fourier coefficient of f. Then we have a ono-to-one and onto mapping similar to (9):

$$\mathcal{WM}^{\pm}[m] \longleftrightarrow \underbrace{\mathcal{P}_{\infty}^{-} \times \mathcal{P}_{\infty}^{-} \times \cdots \times \mathcal{P}_{\infty}^{-}}_{m-1},$$

which is the claim of the following

Theorem 1. Let $\mathcal{A} = \mathbf{A}(z) \in \mathcal{WM}^{\pm}[m]$. Then there exists a unique matrix function F(z) of the form (10), where

$$\zeta_i^- \in \mathcal{P}_\infty^-,\tag{14}$$

 $j = 1, 2, \ldots, m - 1$, such that

$$F(z)\mathbf{A}(z) \in L^+(m \times m). \tag{15}$$

Conversely, for each matrix function (10), (14) there exists a unique $\mathbf{A}(z) \in \mathcal{WM}^{\pm}[m]$ such that (15) holds.

The inclusion (15) means again that the representation

$$\mathbf{A}(z) = \mathbf{A}_{-}(z)\mathbf{A}_{+}(z),$$

where

$$A_{-}(z) = F^{-1}(z)$$
 and $A_{+}(z) = F(z)A(z)$.

is the (right) Wiener-Hopf factorization of $\mathbf{A}(z)$.

2. Proof of Theorem 1

Proof of Theorem 1 is based on the technique developed in [2].

Since $\mathbf{A}(z) \in L_{\infty}(m \times m)$ is a unitary matrix function, we have

$$\mathbf{A}^{-1}(z) = \mathbf{A}^*(z) \quad \text{a.e. on } \mathbb{T}.$$
 (16)

Because of the Carleson Corona Theorem (see, e.g. [5]) there exist functions g_1, g_2, \ldots, g_m from H_{∞} such that

$$\sum_{j=1}^{m} f_j(z)g_j(z) = 1 \quad \text{for} \quad |z| < 1.$$
(17)

Let $\mathbf{B} \in L^+_{\infty}(m \times m)$ be the matrix function \mathbf{A} with its last row replaced by (g_1, g_2, \ldots, g_m) . Then, since the last column of \mathbf{A} is $(f_1, f_2, \ldots, f_m)^T$ and (16), (17) hold, we have

$$\mathbf{BA}^* = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ \zeta_1 & \zeta_2 & \cdots & \zeta_{m-1} & 1 \end{pmatrix} =: \Phi \in L_{\infty}(m \times m),$$

where $\zeta_i = \sum_{k=1}^m g_k \widetilde{\mathbf{A}}_{ik}$. Thus, it follows from (16) that

$$\Phi \mathbf{A} = \mathbf{B}.\tag{18}$$

Let

$$\zeta_i = \zeta_i^+ + \zeta_i^-, \quad \text{where} \quad \zeta^\pm \in \mathcal{P}_\infty^\pm, \quad i = 1, 2, \dots, m-1$$
(19)

(the definition of \mathcal{P}^+_{∞} and the inclusion $\mathcal{P}^+_{\infty} \subset L^+$ are obvious). Then

$$\Phi = \Phi^+ \Phi^-, \tag{20}$$

where $\Phi^{\pm} \in \mathcal{P}^{\pm}$ is the matrix Φ which its last row replaced by $(\zeta_1^{\pm}, \zeta_2^{\pm}, \ldots, \zeta_{m-1}^{\pm}, 1)$. The equations (18) and (20) imply that

$$\Phi^{-}\mathbf{A} = (\Phi^{+})^{-1}\mathbf{B} \in L^{+}(m \times m), \tag{21}$$

which proves (15) if we observe that $F(z) = \Phi^{-}(z)$ and $(\Phi^{+})^{-1}$ is the matrix Φ^{+} which its last row replaced by $(-\zeta_1^+, -\zeta_2^+, \dots, -\zeta_{m-1}^+, 1)$. Let us now prove the uniqueness of F.

Assume

$$F_i(z)\mathbf{A}(z) = \Phi_i^+(z) \in L^+(m \times m), \quad i = 1, 2,$$
(22)

are two representations of type (10), (14), where $F_1 = F$ and F_2 is the matrix F with its last row replaced by $(\zeta'_1, \zeta'_2, ..., \zeta'_{m-1}, 1)$.

Since $\Phi_i^+ \in L^+(m \times m) \Longrightarrow \det \Phi_i^+ \in L^+$ (see (12)) and $\det \Phi_i^+(z) = C$ a.e. on \mathbb{T} (see (13), (22)), it follows that $\det \Phi_i^+(z) = C$ for |z| < 1. Therefore $(\Phi_i^+(z))^{-1} \in L^+(m \times m)$ because of Cramer's formula.

Equations in (22) imply that

$$\mathcal{P}_{\infty}^{-}(m \times m) \ni F_{2}^{-1}(z)F_{1}(z) = (\Phi_{2}^{+}(z))^{-1}\Phi_{1}^{+}(z) \in L^{+}(m \times m)$$

Hence the matrix function $F_2^{-1}F_1$ is constant, while it has form (10) which its last row replaced by $(\zeta_1^- - \zeta_1', \zeta_2^- - \zeta_2', \ldots, \zeta_{m-1}^- - \zeta_{m-1}', 1)$. Consequently

$$\zeta_i^- = \zeta_i'$$
 for $i = 1, 2, \dots, m - 1$.

Let us now show the converse part of Theorem 1. The essential part of the claim is proved in [3, Lemma 4]: For each matrix of form (10), where $\zeta_i^- \in L_2^-$, i = 1, 2, ..., m - 1, there exists a unique (up to a constant right factor) unitary matrix function

$$U(t) = \begin{pmatrix} u_{11}^{+}(t) & u_{12}^{+}(t) & \cdots & u_{1,m-1}^{+}(t) & u_{1m}^{+}(t) \\ u_{21}^{+}(t) & u_{22}^{+}(t) & \cdots & u_{2,m-1}^{+}(t) & u_{2m}^{+}(t) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{m-1,1}^{+}(t) & u_{m-1,2}^{+}(t) & \cdots & u_{m-1,m-1}^{+}(t) & u_{m-1,m}^{+}(t) \\ \hline u_{m1}^{+}(t) & \overline{u_{m2}^{+}(t)} & \cdots & \overline{u_{m,m-1}^{+}(t)} & \overline{u_{mm}^{+}(t)} \end{pmatrix}, \ u_{ij}^{+} \in L_{\infty}^{+},$$

with constant determinant

$$\det U(t) = \text{Const} \quad \text{for a.a.} \quad t \in \mathbb{T},$$
(23)

such that

$$F(t)U(t) \in L_2^+(m \times m)$$

It remains to prove that if (14) holds, then

$$\sum_{j=0}^{m} |u_{mj}^{+}(z)| > \delta, \quad |z| < 1, \text{ for some } \delta > 0,$$
(24)

and

$$F(t)U(t) \in L^+(m \times m). \tag{25}$$

We obtain both relations simultaneously.

Since (14) holds, there exist bounded functions $\zeta_i \in L_{\infty}$ such that (19) holds. Let Φ^{\pm} be defined as in (20). Then $\Phi^+F = \Phi^+\Phi^- = \Phi$ is bounded and therefore

$$\Phi^+ FU =: \Psi^+ \in L^+_\infty(m \times m).$$
⁽²⁶⁾

Hence

$$FU = (\Phi^+)^{-1}\Psi^+ \in L^+(m \times m)$$

and (25) holds.

To show (24), let us first observe that det $\Psi^+(z) = \text{Const}$ for |z| < 1 since det $\Psi^+ \in H_{\infty}$ and it is constant a.e. on the boundary (see (20), (23), and (26)). Therefore

$$\sum_{j=1}^{m} \Psi_{mi}^{+}(z) \operatorname{Cof}(\Psi_{mi}^{+})(z) = C, \qquad (27)$$

where Cof stands for the cofactor. However, the first m-1 rows of U and Ψ^+ coincide. So that

$$Cof(\Psi_{mi}^+) = Cof(U_{mi}), \quad j = 1, 2, \dots, m.$$
 (28)

In addition, since U is unitary, i.e., $U^{-1} = U^*$, the formula for the inverse matrix implies that

$$u_{mj}^{+} = \frac{1}{C} \operatorname{Cof}(U_{mj}).$$
 (29)

Therefore, substituting (28) and (29) in (27), we get

$$\sum_{j=1}^{m} \Psi_{mi}^{+}(z) u_{mj}^{+}(z) = 1,$$

and, because of boundedness of the functions Ψ_{mi}^+ (see (26)), relation (24) holds.

3. Open Problems

For compact wavelet matrices, it is proved in [1] that the entries ζ_i^- of the matrix (10) in Theorem 1 can be computed by the formula

$$\zeta_i^-(z) = \mathbb{P}_N^-\big(\widetilde{\mathbf{A}}_{ij}(z)/\mathbf{A}_{mj}(z)\big), \quad \text{if } \mathbf{A}_{mj}(0) \neq 0, \tag{30}$$

where \mathbb{P}_N^- is the projection of a (formal) Fourier series $\sum_{k=-N}^{\infty} c_k t^k$ on \mathcal{P}_N^- (see [1, Eq. (25)]). To describe

the conditions under which we can let $N \to \infty$ in equation (30) and to determine in which sense the limit exists is an interesting problem. It is related to the computation of partial indices of Wiener-Hopf factorization for a certain class of matrix functions which is the subject of a forthcoming paper.

4. Acknowledgement

The first two authors were supported by the Shota Rustaveli National Science Foundation of Georgia (Project No. DI-18-118). The third author was also supported in part by Faculty Research funding from the Division of Science and Mathematics, New York University Abu Dhabi.

References

- 1. L. Ephremidze, E. Lagvilava, On compact wavelet matrices of rank *m* and of order and degree *N*. J. Fourier Anal. Appl. **20** (2014), no. 2, 401–420.
- L. Ephremidze, G. Janashia, E. Lagvilava, On the factorization of unitary matrix-functions. Proc. A. Razmadze Math. Inst. 116 (1998), 101–106.
- L. Ephremidze, G. Janashia, E. Lagvilava, On approximate spectral factorization of matrix functions. J. Fourier Anal. Appl. 17 (2011), no. 5, 976–990.
- J. Kautsky, R. Turcajová, Pollen product factorization and construction of higher multiplicity wavelets. *Linear Algebra Appl.* 222 (1995), 241–260.
- Paul Koosis, Introduction to H_p Spaces. With an Appendix on Wolff's Proof of the Corona Theorem. London Mathematical Society Lecture Note Series, 40. Cambridge University Press, Cambridge-New York, 1980.
- H. L. Resnikoff, R. O. Wells, Wavelet Analysis. The scalable structure of information. Springer-Verlag, New York, 1998.
- 7. P. L. Vaidyanathan, Multirate Systems and Filter Banks Prentice-Hall. Englewood Cliffs, NJ 1993.
- 8. M. Vetterli, J. Kovačević, Wavelets and Subband Coding. Prentice Hall PTR, New Jersey, 1995.

(Received 17.07.2019)

¹A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0177, Georgia

²Faculty of Science and Mathematics, New York University Abu Dhabi (NYUAD), Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates

³Alfréd Rényi Institute of Mathematics, Reáltanoda st. 13-15, 1053, Budapest, Hungary

⁴CENTRAL EUROPEAN UNIVERSITY, NADOR U. 9, 1051, BUDAPEST, HUNGARY E-mail address: lasha@rmi.ge E-mail address: salia.nika@renyi.hu E-mail address: ims2@nyu.edu