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Abstract

We construct potentially new manifolds homeomorphic but not dif-

feomorphic to CP2#8CP2 and CP2#9CP2 via rational blowdown surgery

along certain 4-valent plumbing graphs. This way all the graph classes

from [4] have a representative which admits a rational blowdown leading

to an exotic manifold. We emphasize the simplicity of the constructions

which boils down to finding a good configuration of complex lines and

quadrics in CP2, and deciding which intersections to blow up.

1 Introduction

Smooth 4-manifold topology is a very intriguing field which has been trans-

formed by several techniques and constructions in the past decades. Construct-

ing different smooth structures on any given smoothable 4-manifold is still not a

trivial problem, and for many of them it is not known whether there are different

smooth structures, let alone if there is an infinite number of smoothings.

The problem we will be focusing on in this paper is the construction of

small exotic 4-manifolds, meaning manifolds with small Euler characteristic and

signature, homeomorphic but not diffeomorphic to some standard 4-manifolds.

Donaldson first proved that a certain smooth 4-manifold admits two different

smooth structures [6], by using his newly constructed invariants to distinguish

Dolgachev surfaces which are homeomorphic to CP2#9CP2. Since then there

were several papers providing increasingly more intricate constructions of even

smaller exotic manifolds [12, 17, 23, 18, 1, 2]. In this note we prove the following:

Main Theorem. There exists a configuration of complex lines and quadrics in

CP2, and graphs from classes B4 and C4 shown in Figure 1, which can be used

to produce exotic CP2#8CP2 and CP2#9CP2 via rational blowdowns.

Examples of non-standard smooth structures on these manifolds were al-

ready known [6, 12], as well as the general technique we are using - the rational

blowdown surgery introduced by Fintushel and Stern [7]. In its most general
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form, this surgery technique replaces an adequate embedded plumbing with

some rational homology ball, simplifying the topology in a controlled way. In

our considerations all plumbings are neighbourhoods of spheres pairwise inter-

secting transversely in at most one point, and the plumbing graph is a tree.

The novelty is using particular plumbings from two graph classes B4 and C4

from [4] shown in Figure 1, previously unknown to produce exotic manifolds

via rational blowdown. This way we show that each class of graphs from [4]

has a representative which admits a rational blowdown leading to an exotic

manifold, which might eventually advance the understanding of smoothings of

singularities discussed there.

Figure 1: Classes A4, B4 and C4

Here it is worth emphasizing that we are actually not looking at a pencil of

curves, blowing it up, deforming the monodromies, and rationally blowing down.

Rather, we start with a good configuration of degree 1 and 2 curves (complex

lines and quadrics) in CP2 which are all already spheres by the genus-degree

formula. Then we blow up some intersection points, and some additional generic

points until we get a required configuration of intersecting spheres embedded

in CP2 blown up some number of times. After rationally blowing down this

configuration in a symplectic way, we determine the homeomorphism type and

concisely show that the diffeomorphism type is not standard.

Acknowledgements: I would like to thank my advisor András Stipsicz for

introducing me to smooth 4-dimensional topology, pointing me to the problems

discussed in this paper, and selflessly guiding me through my PhD journey.
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2 The curve configuration

The configuration of curves in CP2 that we start with is sketched in Figure 2

below. It will consist of two quadrics and four complex lines intersecting in

a certain way, and it is derived by studying the configuration in the master

thesis of Ta The Ahn [3] where an example from class A4 was used in an exotic

construction.

Figure 2: Sketch of the curve configuration

First, take two irreducible quadrics q1 and q2 which are tangent at one point

and have two more transverse intersections. We give an example of such two

quadrics, defined in standard projective coordinates in CP2 by homogeneous

degree 2 equations:

z2
1 + z2

2 + z2
3 = 0

z1z2 + 2
√

2i · z2z3 + z1z3 = 0

Their common tangency is the point [1 :
√

2
2 i :

√
2

2 i] which we further denote

by P8, and the two other intersections are [−(1 +
√

3)
√

2i : −(2 +
√

3) : 1] and

[−(1 −
√

3)
√

2i : −(2 −
√

3) : 1]. One general way to find two quadrics that

intersect this way is by deforming equations of an irreducible quadric and a

quadric consisting of a tangent to the irreducible one and a generic line.

After constructing q1 and q2, we take the tangent line to q1 at one of the

transverse intersection points with q2, denote this point by P1 and line by L1.
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This tangent line intersects q2 in another point, denote it P2. Now take a generic

line L2 which intersects q1 in points we name P3 and P6, and intersects q2 in

P4 and P5. Denote by L3 the line passing through P8 and P3, and by L4 the

line going through P8 and P6. The other intersections of L3 and L4 with q2 are

denoted by P7 and P9 respectively.

3 Blowing up and the incidence graph

We blow up CP2 as shown in Figure 2, starting from the point P1 to P9. One

red circle around a point means one blow up and two circles mean we did two

consecutive blow ups completely removing the intersections at the points of tan-

gency. Exceptional curves e1 and e2 correspond to the point P1, e3 corresponds

to P2, and so on, e9 and e10 correspond to P8, and e11 to P9.

In the process of blowing up a point, any curve passing through this point

can be transformed in a certain way (see e.g. [9, 21]), and the result is called the

proper transform of the curve. One effect is that proper transforms of the curves

which intersect transversely in the point that is blown up, no longer intersect

in that point. Another is that the homology class of the proper transform is

the homology class of the initial curve minus the class of the exceptional curve.

In our example, after the initial 11 blow ups, the homology classes of proper

transforms of the curves and their self-intersections are as follows:

q̃1 = q1 − e1 − e2 − e4 − e7 − e9 − e10 q̃1 · q̃1 = −2

q̃2 = q2 − e1 − e3 − e5 − e6 − e8 − e9 − e10 − e11 q̃2 · q̃2 = −4

L̃1 = L1 − e1 − e2 − e3 L̃1 · L̃1 = −2

L̃2 = L2 − e4 − e5 − e6 − e7 L̃2 · L̃2 = −3

L̃3 = L3 − e4 − e8 − e9 L̃3 · L̃3 = −2

L̃4 = L4 − e7 − e9 − e11 L̃4 · L̃4 = −2

Table 1: Homology classes and self-intersections of curves after 11 blow ups

We can now form the incidence graph of the new configuration by represent-

ing curves as vertices, with an edge connecting vertices if there is an intersection

between those two curves, as shown in Figure 3.

Two different ways of further blowing up intersection points in this configu-

ration eventually give embedded plumbings from classes B4 and C4 of 4-valent

graphs from [4], and this is shown in the beginnings of the next two sections.

Then we use the fact that these plumbings admit rational blowdown surgeries,

and that they can be done in a symplectic way. Finally, we find the homeo-

morphism types of the resulting manifolds, and prove that they are exotic. The

Main Theorem stated in the introduction is comprised of Theorem 1 in section

4 and Theorem 2 in section 5.
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Figure 3: The incidence graph of the curve configuration after 11 blow ups

4 Exotic CP2#8CP2 via a graph from class B4

Start by Figure 4 where we highlighted nodes and edges which will form the

required subgraph. The homology classes of curves at this point are in Table 1.

Blowing up the intersection of curves q̃1 and e2, their self-intersections drop to

−3 and −2, and we get a new exceptional sphere e12. Doing the same with the

intersection between L̃2 and e4, their self-intersections drop to−4 and−2 and we

get e13. After three additional blow ups needed to achieve the self-intersections

required for the rational blowdown surgery, we arrive to the subgraph shown in

Figure 5 which is of type B4 with p = 2 using notation of Figure 1: we can first

blow up a generic point of L̃1, creating an exceptional curve e14, and then two

different generic points of L̃4, making two new exceptional curves e15 and e16.
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Figure 4: Yellow stars are vertices and blue curly lines are edges which form a subgraph

from class B4 presented in Figure 5. Orange X’s show which 2 intersections to blow up,

whereas some additional blow ups used for adjusting the self-intersections to match

the vertex markings in Figure 5 are not visible here but described in the main text.

Denote the final classes by u1 = L̃2−e13, u2 = L̃1−e14, u3 = L̃4−e15−e16,

u4 = e2−e12, u5 = L̃3, u6 = e4−e13, u7 = q̃1−e12 and u8 = q̃2. Therefore, after

16 blow ups, we have the plumbing P from Figure 5 embedded in CP2#16CP2,

and the homology classes of plumbing spheres are in Table 2:
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u1 = h− e4 − e5 − e6 − e7 − e13

u2 = h− e1 − e2 − e3 − e14

u3 = h− e7 − e9 − e11 − e15 − e16

u4 = e2 − e12

u5 = h− e4 − e8 − e9

u6 = e4 − e13

u7 = 2h− e1 − e2 − e4 − e7 − e9 − e10 − e12

u8 = 2h− e1 − e3 − e5 − e6 − e8 − e9 − e10 − e11

Table 2: Homology classes of spheres of the plumbing P

Figure 5: Plumbing graph P from class B4

As our plumbing is from the class B4, by [4, Theorem 1.6], we can perform

the rational blowdown along P granting:

X = (CP2#16CP2 − intP ) ∪B

where B is the rational homology ball smoothing of the normal surface singu-

larity defined on pp. 1296-1297 of [4] using results of [22].

An important point is that we can assume that the rational blowdown can

be performed symplectically, which follows from the main result of [16]. First,

all the plumbing spheres of P can be assumed to be symplectic submanifolds

as proper transforms of complex submanifolds, and second, our plumbing graph

is a negative definite tree [4]. Then, from [16, Theorem 1.1], the appropri-

ate neighbourhood of the plumbing can be replaced by B so that (X,ωX) is

symplectic, and denoting V = CP2#16CP2 − intP , there is a symplectomor-

phism φV : (V, ωX |V ) −→ (V, ω|V ), where ω is any symplectic structure on

CP2#16CP2 that we started with.

Of course, this way we get a well-defined underlying smooth structure on

the new manifold X. The main goal of this section is to prove the following:
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Theorem 1. X is homeomorphic but not diffeomorphic to CP2#8CP2.

Proof. Propositions 1 and 2 in upcoming subsections prove the theorem.

4.1 The topology of X

To find the homeomorphism type of X, we use the foundational result of Freed-

man [8], which along with Donaldson’s theorem [5] implies that :

Two smooth simply connected 4-manifolds are homeomorphic if and only if their

Euler characteristics, signatures, and parity of the intersection forms are equal.

First we need to prove that X is simply connected, and to do so we will have

three standard applications of Van Kampen’s theorem. The main part is to

prove that for the inclusion i : ∂P ↪→ CP2#16CP2 − intP , the homomorphism

i∗ induced on fundamental groups is a trivial map.

From [15, Theorem 5.1], the boundary ∂P is a Seifert fibered 3-manifold with

a Seifert ivariant {0; (1, 3), (2, 1), (4, 1), (4, 1), (25, 18)}. Its fundamental group

is described by [10, Theorem 6.1] which implies:

Lemma 1. π1(∂P ) has a presentation given by generators q0, q1, q2, q3, q4, h and

relations:

• q0q1q2q3q4 = 1

• [h, qi] = 1 for all i = 0, 1, 2, 3, 4

• q0h
3 = 1, q2

1h = 1, q4
2h = 1, q4

3h = 1, q25
4 h18 = 1

Furthermore, the classes of q1, q2 and q3 can be chosen to be normal circles to

spheres u4, u1 and u3 respectively.

Lemma 2. i∗(π1(∂P )) is trivial.

Proof. We denoted V = CP2#16CP2 − intP , meaning V is the complement

of the plumbing. The normal circle to the sphere u3 can be contracted along

the sphere which intersects it in a single point, and we can choose e15 (or e16)

and contract that normal circle in V . Therefore, the corresponding generator

trivializes through the inclusion, i∗(q3) = 1. Relation q4
3h = 1 from Lemma 1

gives i∗(h) = 1 and then q0h
3 = 1 implies i∗(q0) = 1.

Looking at Figure 4, we can see that L̃2 and L̃4 do not intersect each other

but intersect the sphere e7 in one point each, and their proper transforms u1

and u3 do the same in the final picture. As e7 is disjoint from the rest of the

plumbing, normal circles to u1 and u3, namely q2 and q3, can be isotoped in e7

to bound an annulus in V . Therefore, i∗(q2) = i∗(q3), so i∗(q2) = 1 as well.

From q0q1q2q3q4 = 1 we are left with i∗(q1q4) = 1, which we multiply by

i∗(q1) on the left. Using i∗(q1)2 = 1 which holds since q2
1h = 1 and i∗(h) = 1, we
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get i∗(q4) = i∗(q1). So we have i∗(q4)2 = 1 as well, but by deducing i∗(q4)25 = 1

from the last relation in Lemma 1, it follows that i∗(q4) = 1. Finally, i∗(q1) =

i∗(q4) = 1 concludes the result.

Lemma 3. X is simply connected.

Proof. X is constructed as the union of V = CP2#16CP2 − intP and some

rational homology ball B glued along ∂P . Therefore Van Kampen’s theorem

gives us a presentation of its fundamental group through fundamental groups

of the two pieces.

To determine π1(V ) we also apply Van Kampen’s theorem, this time to the

decomposition CP2#16CP2 = V ∪ P . The fundamental group of the plumbing

P is trivial because it is homotopic to a wedge sum of several spheres. Also,

π1(CP2#kCP2) is trivial for any k because it can be built without 1-handles,

so from π1(CP2#16CP2) = π1(V ) ∗π1(∂P ) π1(P ) we get 1 = π1(V )
/
i∗(π1(∂P )).

Now Lemma 2 concludes that π1(V ) is a trivial group.

We denote the inclusion of the boundary ∂B into the rational homology ball

B by j : ∂B ↪→ B, and N := 〈i∗(x) · j∗(x)−1|x ∈ π1(∂B)〉. From Van Kampen’s

theorem and the triviality of π1(V ), we have that π1(X) = π1(V ) ∗N π1(B) =

π1(B)
/
〈j∗(x)|x ∈ π1(∂B)〉. However, surjectivity of j∗ comes from the fact that

our rational homology ball was constructed as a complement of a certain (dual)

plumbing P
′

from CP2#kCP2 for some k > 0 ([22, section 8.1] and [4, pp. 1296-

1297]). More precisely, from another application of Van Kampen’s theorem on

CP2#kCP2 = B ∪ P ′
, we get 1 = π1(B)

/
〈j∗(x)|x ∈ π1(∂B)〉. Therefore, X is

simply connected.

Proposition 1. X is homeomorphic to CP2#8CP2.

Proof. To calculate χ(X) and σ(X) we use the formulas:

χ(X) = χ(CP2#16CP2)− χ(P ) + χ(B) = 19− 9 + 1 = 11

σ(X) = σ(CP2#16CP2)− σ(P ) + σ(B) = −15− (−8) = −7

Rokhlin’s theorem [19] implies that if the signature of a smooth simply con-

nected 4-manifold is not divisible by 16, its intersection form must be odd, so

this is the case for X. Therefore, the three invariants of X match the corre-

sponding invariants of CP2#8CP2. As X is simply connected by Lemma 3, it

is homeomorphic to CP2#8CP2 as a consequence of Freedman’s theorem.

4.2 Exoticness of X

To prove that X is not diffeomorphic to CP2#8CP2, we will use its symplectic

structure ωX explained earlier (coming from [16]), and the following result:
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Lemma 4 ([13], Theorem D). There is a unique symplectic structure on

CP2#mCP2 for all 2 ≤ m ≤ 9 up to diffeomorphism and deformation.

Remark. We will slightly abuse notation denoting symplectic forms as their

cohomology classes. Poincaré dual of α will be denoted by PD(α).

A symplectic structure Ω on a 4-manifold M determines a contractible family

J of Ω-compatible almost complex structures J on the cotangent bundle T ∗M .

The first Chern class is the same for all J ∈ J and it is called the symplectic

canonical class KΩ = c1(T ∗M,J).

The strategy of proving that X is exotic is as in [17], to calculate the

cup product of the symplectic class and a compatible canonical class on both

CP2#8CP2 and X, see that the signs of these products differ, and prove that

this is impossible because of the uniqueness result stated in Lemma 4.

Lemma 5 essentially stated as [11, Lemma 5.4] presents a standard symplec-

tic structure on CP2#kCP2 and calculates the sign of the required cup product

to be negative. Lemma 6 shows that this product has to be negative for any

symplectic structure on CP2#8CP2 or CP2#9CP2, and this is a rather special

result for CP2#mCP2 given 2 ≤ m ≤ 9. In general, the sign Kω · ω can be

used as a smooth invariant on a symplectic manifold only when we know the

manifold in question is minimal, and this is called the Kodaira dimension.

Lemma 5. For every k > 0, CP2#kCP2 admits a symplectic structure ω

that satisfies PD(ω) = ah− b1e1 − ...− bkek for some positive rational num-

bers a, b1, ..., bk. For fixed a > 0, bi’s can be chosen to be arbitrarily small. The

induced canonical class K := Kω satisfies PD(K) = −3h+ e1 + ...+ ek and for

small enough b′is, we have K · ω < 0.

Proof. In CP2, the dual of the cohomology class of ω is ah for some a > 0 and we

can choose it to be rational - this is because the symplectic area of CP1 ⊂ CP2 is

a positive number a and it can be normalized to be rational (we could normalize

it so that a = 1, but keep ”a” to see its importance). The proof of this lemma

follows from [14, section 7.1], and more precisely from Theorem 7.1.21 on the

existence and properties of the symplectic blow up. Namely, part (v) of that

theorem implies that after the blow up, the cohomology class of the symplectic

form changes as ωM̃ = ωM − πλ2PD(e). Here e denotes the homology class

of the exceptional curve and λ is the radius of the ball removed in the process

of the symplectic blow up as explained in [14]. Choosing the ball in Darboux’s

chart to be as small as needed and πλ2 rational, and repeating the procedure k

times, gives us PD(ω) = ah− b1e1 − ...− bkek as required.

Formula (7.1.31) in [14] shows the canonical class of the blow up M̃ to be

c1(T ∗M̃) = c1(T ∗M) + PD(e). From the previous and PD(KCP2) = −3h, we

get PD(K) = −3h+ e1 + ...+ ek. Finally, K ·ω = −3a+ b1 + ...+ bk is negative

for bi’s small enough.
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Lemma 6. For any symplectic structure ω on M = CP2#mCP2 for 2 ≤ m ≤ 9:

Kω · ω < 0

Proof. This result essentially follows from Lemma 4, as ω has to be deforma-

tion equivalent to the standard symplectic structure ω, meaning that up to

diffeomorphism, there is a path of symplectic forms on M connecting them.

So there is a symplectomorphism ψ : (M,ωM ) −→ (CP2#mCP2, ω) such

that there is a path of symplectic forms ωt connecting ω0 = ω and ω1 = ωM .

Naturality of Chern classes gives KωM
= ψ∗(K) so KωM

·ωM = ψ∗(K) ·ψ∗(ω) =

ψ∗(K · ω) = K · ω so symplectomorphism does not change this product.

Assume that Kω ·ω ≥ 0. Firstly, the canonical class Kω does not change by

deformation so PD(Kω) = −3h + e1 + ... + em. Now PD(ω) = a0h + a1e1 +

... + amem for some numbers ai ∈ R. However, as ω is symplectic, we must

have ω · ω > 0 so a2
0 >

∑m
i=1 a

2
i . Having Kω · ω = −3a0 − a1 − ... − am ≥ 0,

we get 3a0 ≤ −(
∑m
i=1 ai). If a0 ≤ 0, from the path of symplectic forms with

PD(ωt) = at0h + at1e1 + ... + atmem, we would have a continuous funcition at0
connecting a0

0 = a0 ≤ 0 and a1
0 > 0 (as a > 0 for symplectomorphic ω). Then

there would be τ for which aτ0 = 0 and thus ωτ · ωτ ≤ 0, which is not possible.

Therefore, a0 > 0 and from earlier we have 0 < 3a0 ≤ −(
∑m
i=1 ai) so:

9a2
0 ≤ (

∑m
i=1 ai)

2 ≤ m(
∑m
i=1 a

2
i ) ≤ 9(

∑m
i=1 a

2
i ) < 9a2

0

provides the required contradiction using the Cauchy–Schwarz inequality.

Proposition 2. X is not diffeomorphic to CP2#8CP2.

Proof. As mentioned, the strategy is to calculate the cup product of the sym-

plectic class and a compatible canonical class for X, and see that the sign of

this product is positive, which proves exoticness of X using Lemma 6.

Let ω denote the symplectic form on CP2#16CP2 provided by Lemma 5,

whose Poincaré dual is equal to:

PD(ω) = ah− b1e1 − ...− b16e16

and let K denote the corresponding canonical class:

PD(K) = −3h+ e1 + ...+ e16

From the previous two we have:

K · ω = −3a+ b1 + ...+ b16

11



The symplectic structure ωX on X obtained after the rational blow down,

was defined earlier in section 4, and it has a compatible symplectic canonical

class KX coming from a generic almost complex structure compatible with ωX .

To be able to calculate KX · ωX , we will decompose the cohomology classes

K and ω. Denoting again V = CP2#16CP2 − intP , we have decompositions

CP2#16CP2 = V ∪ P and X = V ∪B.

As a first step, note that the boundary Seifered fibered 3-manifold ∂P =

−∂B is a rational homology sphere because 3
1 + 1

2 + 1
4 + 1

4 + 18
25 6= 0 (see section

1.2.3 in [20]). To prove it directly, we can calculate H1(∂P ;Z) from Lemma 1

and see that it is a finite group, which then implies H∗(∂P ;Q) = H∗(S3;Q).

From the Mayer-Vietoris sequences for decompositions CP2#16CP2 = V ∪P
and X = V ∪B, we get exact sequences:

H1(∂P ;Q) −→ H2(CP2#16CP2;Q) −→ H2(V ;Q)⊕H2(P ;Q) −→ H2(∂P ;Q)

H1(∂B;Q) −→ H2(X;Q) −→ H2(V ;Q)⊕H2(B;Q) −→ H2(∂B;Q)

The triviality in Q-cohomology gives H1(∂P ;Q) = 0 = H2(∂P ;Q) and

H1(∂B;Q) = 0 = H2(∂B;Q), so both middle arrows are isomorphisms. From

the first sequence, we can decompose the cohomology classes:

K = K|V +K|P and ω = ω|V + ω|P

As B is a rational homology 4-ball, H2(B;Q) = 0 so the second sequence

gives that classes KX and ωX satisfy:

KX = KX |V = φ∗V (K|V ) and ωX = ωX |V = φ∗V (ω|V )

where φV is the symplectomorphism from the beginning of section 4. So:

KX ·ωX = φ∗V (K|V ) ·φ∗V (ω|V ) = φ∗V (K|V ·ω|V ) = K|V ·ω|V = K ·ω−K|P ·ω|P

KX · ωX = K · ω −K|P · ω|P

The intersection matrix M of the plumbing P is defined by the intersections

[ui · uj ] as in Figure 5:

M =



−4 1

1 −3 1 1 1

1 −4

1 −2

1 −2 1

1 −2 1

1 −3 1

1 −4


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Let {γi}8i=1 be the basis of H2(P ;Q) which is dual to the basis {ui}8i=1,

meaning γi(uj) = δij . Then the intersections [γi · γj ] are given by [M−1]ij :

M−1 = − 1

512
·



153 100 25 50 72 44 16 4

100 400 100 200 288 176 64 16

25 100 153 50 72 44 16 4

50 200 50 356 144 88 32 8

72 288 72 144 576 352 128 32

44 176 44 88 352 528 192 48

16 64 16 32 128 192 256 64

4 16 4 8 32 48 64 144


From K|P =

∑8
i=1(K|P (ui))γi, and K|P (ui) = K(ui) = PD(K) · ui, we

have K|P =
∑8
i=1(PD(K) · ui)γi. Taking the values of ui’s from Table 2:

K|P = 2γ1 + γ2 + 2γ3 + γ7 + 2γ8

Analogously, we get ω|P =
∑8
i=1(PD(ω) · ui)γi:

ω|P = (a− b4 − b5 − b6 − b7 − b13)γ1 + (a− b1 − b2 − b3 − b14)γ2 + (a− b7 −
b9− b11− b15− b16)γ3 + (b2− b12)γ4 + (a− b4− b8− b9)γ5 + (b4− b13)γ6 + (2a−
b1− b2− b4− b7− b9− b10− b12)γ7 +(2a− b1− b3− b5− b6− b8− b9− b10− b11)γ8

After calculating K|P · ω|P , we use KX · ωX = K · ω −K|P · ω|P to get:

KX ·ωX = 5.625a−2.5b1−0.875b2−1.5b3−1.1875b4−0.6875b5−0.6875b6−
1.875b7−1.25b8−3.1875b9−0.75b10−0.6875b11−0.875b12−1.1875b13−0.75b14+

0.0625b15 + 0.0625b16

We have KX · ωX > 0 because a is positive and we can choose bi’s to be

arbitrarily small. If X was diffeomorphic to CP2#8CP2, Lemma 6 would imply

KX · ωX < 0 so this concludes that X is exotic.

5 Exotic CP2#9CP2 via a graph from class C4

In this section we construct a different plumbing from the one in section 4,

again starting with the construction in section 3. We keep the notation of some

auxiliary objects as in the previous sections to simplify the exposition. Apart

from the construction of the plumbing, all calculations are similar so we only

emphasize the differences.

Starting from the incidence graph in Figure 3, in Figure 6 we highlight nodes

and edges which will form the required subgraph from C4.
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Figure 6: Yellow stars are vertices and blue curly lines are edges which form a subgraph

from class C4 presented in Figure 7. Note that e15 is a new vertex compared to the

starting Figure 3, marked with a smaller orange star because it comes from a new

blow up. To arrive to an embedding, orange X shows which intersection to blow up.

Some additional blow ups used for adjusting the self-intersections to match the vertex

markings in Figure 7 are not visible here but are described in the main text.

We first blow up the intersection between e7 and L̃2 and denote the excep-

tional curve by e12. This way the proper transform of L̃2 gets self-intersection

−4. With two further blow ups of different generic points of L̃2, we transform

it into a curve of self-intersection −6, getting curves e13 and e14 in the process.

Then blow up a generic point of the curve L̃1 getting e15, and setting the self-

intersection of the proper transform of L̃1 to −3. Now blow up a generic point

of e15, allowing its self-intersection to drop to −2, and name the exceptional

14



curve e16. Lastly, blow up a generic point of L̃3 dropping its self-intersection to

−3 via the curve e17.

Denote the classes by v1 = e15 − e16, v2 = L̃1 − e15, v3 = L̃3 − e17, v4 =

L̃2 − e12 − e13 − e14, v5 = L̃4, v6 = e7 − e12, v7 = q̃1 and v8 = q̃2. These curves

form the plumbing Q embedded in CP2#17CP2, and its graph is presented in

Figure 7. Therefore, the homology classes of spheres in the plumbing Q are:

v1 = e15 − e16

v2 = h− e1 − e2 − e3 − e15

v3 = h− e4 − e8 − e9 − e17

v4 = h− e4 − e5 − e6 − e7 − e12 − e13 − e14

v5 = h− e7 − e9 − e11

v6 = e7 − e12

v7 = 2h− e1 − e2 − e4 − e7 − e9 − e10

v8 = 2h− e1 − e3 − e5 − e6 − e8 − e9 − e10 − e11

Table 3: Homology classes of spheres of the plumbing Q

Figure 7: Plumbing graph Q from class C4

We can rationally blow down Q by [4] and get the manifold:

Y = (CP2#17CP2 − intQ) ∪D

whereD is a different rational homology ball than the one from section 4. Details

are very similar to the ones in the previous section and we only emphasize the

differences, showing this time:

Theorem 2. Y is homeomorphic but not diffeomorphic to CP2#9CP2.

Proof. Propositions 3 and 4 together will complete the proof.
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5.1 The topology of Y

In this example, the boundary ∂Q is a Seifert fibered 3-manifold [15] with Seifert

ivariant {0; (1, 3), (6, 1), (3, 1), (2, 1), (13, 10)}. Analagously to Lemma 1, by [10]

we have:

Lemma 7. π1(∂Q) has a presentation given by generators q0, q1, q2, q3, q4, h and

relations:

• q0q1q2q3q4 = 1

• [h, qi] = 1 for all i = 0, 1, 2, 3, 4

• q0h
3 = 1, q6

1h = 1, q3
2h = 1, q2

3h = 1, q13
4 h10 = 1

Furthermore, the classes of q1, q2 and q3 can be chosen to be normal circles to

spheres v4, v3 and v1 respectively.

Lemma 8. i∗(π1(∂Q)) is trivial.

Proof. In this case, compared to the previous section, it is easier to deduce the

triviality of i∗(π1(∂Q)), as we made a lot of generic blow ups. More precisely,

each of the three leaves of the plumbing graph Q in Figure 7, that is v4, v3

and v1, is intersecting a different exceptional sphere otherwise disjoint from the

plumbing. As in the proof of Lemma 2, the normal circles can be contracted in

the complement of Q, so we can deduce i∗(q1) = 1, i∗(q2) = 1 and i∗(q3) = 1.

From q6
1h = 1, we get i∗(h) = 1 and then q0h

3 = 1 implies i∗(q0) = 1. The first

relation of Lemma 7 now gives i∗(q4) = 1 and concludes that i∗(π1(∂Q)) is a

trivial group.

Lemma 9. Y is simply connected.

Proof. Using Lemma 8 instead of Lemma 2, the proof is analogous to the proof

of Lemma 3.

Proposition 3. Y is homeomorphic to CP2#9CP2.

Proof. As before we have:

χ(Y ) = χ(CP2#17CP2)− χ(Q) + χ(D) = 20− 9 + 1 = 12

σ(Y ) = σ(CP2#17CP2)− σ(Q) + σ(D) = −16− (−8) = −8

Y has an odd intersection form by Rohlkin’s theorem [19] and thus, all the

invariants match the ones of CP2#9CP2. From Lemma 9, these 4-manifolds are

both simply connected, so by Freedman’s theorem we get that they must be

homeomorphic.
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5.2 Exoticness of Y

Proposition 4. Y is not diffeomorphic to CP2#9CP2.

Proof. The proof is essentially the same as the proof of Proposition 2. Start by

introducing a symplectic form on CP2#17CP2 using Lemma 5:

PD(ω) = ah− b1e1 − ...− b17e17

This time, let K be the standard canonical class of CP2#17CP2:

PD(K) = −3h+ e1 + ...+ e17

From these two we have:

K · ω = −3a+ b1 + ...+ b17

The intersection matrix of the plumbing Q is [vi · vj ]:

N =



−2 1

1 −3 1 1 1

1 −3

1 −6

1 −2 1

1 −2 1

1 −2 1

1 −4


The intersection matrix of the basis {γi}8i=1 dual to {vi}8i=1 is:

N−1 = − 1

576
·



405 234 78 39 180 126 72 18

234 468 156 78 360 252 144 36

78 156 244 26 120 84 48 12

39 78 26 109 60 42 24 6

180 360 120 60 720 504 288 72

126 252 84 42 504 756 432 108

72 144 48 24 288 432 576 144

18 36 12 6 72 108 144 180


To calculate KY · ωY , we can aquire K|Q and ω|Q decomposing the second

cohomology classes as before. Again, this is possible because the boundary

manifold ∂Q is Seifert fibered and 3
1 + 1

6 + 1
3 + 1

2 + 10
13 6= 0, so it is a rational

homology sphere (see [20]). K|Q =
∑8
i=1(PD(K) · vi)γi so using the values of

PD(K) and vi’s from Table 3:

K|Q = γ2 + γ3 + 4γ4 + 2γ8

17



A similar formula ω|Q =
∑8
i=1(PD(ω) · vi)γi gives:

ω|Q = (b15− b16)γ1 + (a− b1− b2− b3− b15)γ2 + (a− b4− b8− b9− b17)γ3 +

(a− b4− b5− b6− b7− b12− b13− b14)γ4 + (a− b7− b9− b11)γ5 + (b7− b12)γ6 +

(2a−b1−b2−b4−b7−b9−b10)γ7 +(2a−b1−b3−b5−b6−b8−b9−b10−b11)γ8

And once again, from KY · ωY = K · ω −K|Q · ω|Q:

KY · ωY = 5.625a− 2.5b1 − 1.75b2 − 1.5b3 − 1.875b4 − 0.7083b5 − 0.7083b6 −
1.2083b7 − 0.6b8 − 3.16b9 − 0.697916b10 − 1.25b11 − 1.2083b12 + 0.0416b13 +

0.0416b14 + 0.125b15 + 0.125b16 + 0.083b17

KY · ωY > 0 because a is positive and bi’s can be arbitrarily small. By

Lemma 6, this is impossible unless Y is exotic.

Remark. Finding interesting configurations of lines and quadrics could produce

even smaller exotic 4-manifolds via suitable rational blowdowns, so this is one

upcoming challenge. It seems that the exoticness proof will remain true if enough

curves from the initial configuration are used in the plumbing, so it would only

remain to take care of simple connectedness.
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