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Abstract
This paper takes stock of all the various factors that cause the design-time opacity of autonomous systems behaviour. The 
factors include embodiment effects, design-time knowledge gap, human factors, emergent behaviour and tacit knowledge. 
This situation is contrasted with the usual representation of moral dilemmas that assume perfect information. Since perfect 
information is not achievable, the traditional moral dilemma representations are not valid and the whole problem of ethical 
autonomous systems design proves to be way more empirical than previously understood.
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1 Introduction

When we discuss the ethical issues of AI or autonomous 
systems, the debate is often about what a system should or 
should not do in a given situation. The possible outcomes 
are unambiguously defined, and there is only a manageable 
number of them, often as few as just two. The stakes are 
precise and deterministic, instead of being probabilistic. In 
other words, our information is perfect. This is especially 
true about the problem representations meant to the general 
public.

An excellent example of this is the famous MIT Moral 
Machine. The Moral Machine, in essence, is a very crea-
tively implemented survey hosted by the MIT Media Lab 
to gather what would people have the autonomous car to 
do, given a binary choice. The choice, of course, is between 
two quite adverse outcomes and yet the survey participant 
needs to decide, thereby revealing preferences and preserva-
tion biases between young and old car crash victims, male 
or female, dogs vs humans, criminals vs doctors, and so on 
(Awad et al. 2018).

This survey has gathered over 40 million individual deci-
sions this far and has provided valuable results. The percep-
tion of the experiment is overwhelmingly positive. Saxena 

et al. (2019) argue that this is a valuable input about what the 
general public—may be differentiated between cultures—
judges as fair and thus reinforces the design of algorithms. 
Others (Kaplan and Haenlein 2020) also see the results of 
this work as revealing. Of course, the MIT Moral Machine 
is just one of this kind of moral dilemma representations; 
there are several others (Goodall 2014a, b; Lin 2014, 2015). 
There is no question about the usefulness of such problem 
representations as tools to ascertain the moral preferences 
of the public. Based on more than 400 thousand subjects, 
this study was able to shed light on the cultural differences 
between countries and regions in their moral approach and 
value appraisal (Fig. 1).

This paper argues, however, that these representations and 
the debates they generate are not useful at helping the engi-
neering team that is responsible for the design of autono-
mous systems. In other words, the findings ascertained from 
such representations are not directly implementable.

The issue is that these representations make it appear like 
the design team of the autonomous system is in the position 
of deciding what the system will do in a given well-defined 
situation. However, this is not the case, since the design team 
cannot anticipate with full certainty what the designed sys-
tem would do in a given situation, nor can it be sure that 
the system will have the correct representation of the case. 
Moreover, the number of distinct alternatives possible could 
be quite high and also not definitely known at any point.

In other words, the design team is epistemically handi-
capped at least in comparison with those perfect information 
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cases the usual representations assume. The clarity of the 
representations of those morally problematic, tricky situ-
ations is a myth. The truth about any sufficiently complex 
system (and all systems of interest for the AI debate are very 
complex) is that the designers while having quite a high 
degree of power over their creations, are never in control 
enough on such a level that would enable them to simply 
just code a utilitarianist, deontologist, or any other kind of 
moral behaviour.

Let’s call this problem the design-time knowledge gap. 
Those moral problem representations mentioned above are 
never design-time dilemmas; they are in-situ decision prob-
lems. When a driver is at the wheel, there is an in-situ moral 
agent present. Autonomous systems get rid of the agent, 
therefore eliminating the in-situ decision making altogether. 
For machine autonomy to work, every moral decision needs 
to happen design-time, where of course some of the future 
situations may be envisioned, even simulated. Still, the antic-
ipated and foreseeable circumstances are, of course, just a 
subset of all the things could happen.

There are two significant reasons for the knowledge gap: 
the opacity of the surrounding environment of the system 
and the opacity of the system itself. This paper explains 
the latter: the sources of opacity and resistance against the 
designer’s intentions within the autonomous system itself. 
Then, it reveals that this is just a compound problem over 
the tacit knowledge of the system itself.

This paper will use autonomous vehicles as examples 
throughout; however, the author believes that the findings 
are relevant for all autonomous systems.

2  Main discussion

This paper enumerates the several obstacles of algorithmic 
transparency and argues that many of these are intrinsic to 
the situation in which humans design autonomous agents, 
hence there is no hope of overcoming them. After review-
ing the terminology, the emergent behaviour of machines, 
the embodiment effects, the hardware layer factors, statisti-
cal knowledge and human factors are presented as obsta-
cles to transparency.

2.1  Terminology

Throughout this article, we will be relying on the termi-
nology of Engineering and Philosophy of Science. This 
poses a risk on the text not being intelligible for the prac-
titioner of any one field; therefore, it is best to provide 
some definitions.

Layers and emergence feature in this article quite often. 
The important thing about the usage of these terms is that 
here they will always refer to epistemic categories. In other 
philosophical debates, layers may refer to layers of exist-
ence and emergence may be ontological. Here, no claims 
are made about ontology. The paper relies on Michael 
Polanyi’s emergence concept (Polanyi 1958; Paksi and 
Héder 2020) that is both epistemic and ontological. Still, 
the latter, more often contended dimension of that theory 
does not come into play here. Fortunately, it seems that the 

Fig. 1  A simplified represen-
tation of the moral machine 
experiment (left) and another 
thought experiment about 
whether to hit the motorist with 
or without the helmet (right)
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epistemic sense of emergence, as well as the differentia-
tion between the layers of engineering design knowledge 
in correspondence with the architecture of the machines, 
are practically never contested.

Opacity refers to the epistemic barrier between the engi-
neer and its creation. The created systems will become so 
complex, and self-modifying (via machine learning) and the 
engineering teams are so big, that no single person can com-
prehend it fully. Hence, there is a lack of visibility, or there 
is the presence of opacity in a sense from a human point of 
view. This is despite the fact that in the case of software, 
details are knowable down to the last bit.

The aforementioned design-time is an engineering con-
cept. It refers to the time window when a system is being 
designed. In software engineering runtime is the time win-
dow when the software runs. The distinction is crucial for 
us because of the tremendous epistemic gap between the 
two situations.

Autonomous systems are any AI-governed robotic plat-
forms that operate without continuous human controls. 
Autonomous vehicles or AVs are typical examples of autono-
mous systems, but there are plenty of others. In this article, 
all points will be illustrated with AVs but with the intent of 
being relevant for autonomous systems in general.

Technological stack or sometimes just stack refers to the 
layered architecture of an engineering solution. This phrase 
is likely coming from the programming world where soft-
ware engineers daily mention software stacks, which means 
layers of software working together, for instance, the operat-
ing system may host a software framework that in turn may 
host some “business logic”. The point is that this separation 
enables the division of labour in two senses: the higher-level 
pieces of software delegate tasks to the lower levels; also, 
on the human side, the layers will be developed by different 
people. This way the most common tasks will be done by the 
lower layers (like the operating system handles the files and 
the network), so the higher level can focus on details particu-
lar to the task at hand. This layering continues downwards 
on the hardware level; hence the phrase technological stack 
is created to cover the whole machine.

Underdetermination refers to the term from philosophy 
of science. Although there are certainly predecessors of 
the thought, this is commonly credited to Duhem (1954) in 
the context of scientific theories and to Quine (1951), who 
extended it to all knowledge claims. In this article, we use 
the term in the more extended meaning and precisely in the 
sense these philosophers of science intended.

Inductive and inductive statistical will also be men-
tioned, again from the philosophy of science vocabulary, 
with Hempel (1958) championing at the elucidation of these 
terms.

Performance will refer to the success of a system at a 
task in general.

2.2  Sources of the opacity of autonomous systems

The claim that autonomous system behaviour cannot be 
designed—on the profound level of detail that matters for 
implementing a value system or ethics. This is a claim 
admittedly quite serious. And yet, this is precisely the situ-
ation for several reasons.

One reason is the well-known opacity of machine learn-
ing systems, especially neural networks. This is subject to 
several investigations (Pasquale 2016; Diakopoulos 2014; 
Burrell 2016). This alone would be enough to support the 
intransparency claim to a very large extent, but there is more.

2.3  Emergent behaviour in autonomous systems

To understand the sources of intransparency, it is useful to 
examine the layered architecture of autonomous systems and 
the emergent behaviour that occurs between the layers. In an 
upper layer, at any point in the architecture, things happen 
that are within the boundaries set by the lower level, but not 
entirely governed by them. This is a feature of the architec-
ture, not a flaw: it allows for the operational principles of a 
higher level (Héder and Paksi 2012; Héder 2019) to work 
and carry out their function. Following Michael Polanyi’s 
account, we will call this the dual control principle. The 
exact interplay between the two layers cannot be predicted 
by either relying upon the descriptions of any of the layers 
(Héder 2019).

In the framework of personal knowledge, there is no 
distinction between knowledge and skill, so the evidently 
skilful autonomous systems may be said to know. And that 
means that there is robot tacit knowledge—or, in fact, all 
robot knowledge currently can be said to be tacit as it is 
argued in Héder and Paksi (2012).

To support this claim, let us review what are the levels 
of an autonomous system, for instance, an autonomous car 
(Fig. 2).

To illustrate the dual control principle, let us first review 
a simple example of DNA-based implementation tic-tac-toe.

In this case, we cannot talk about sensors, hardware, oper-
ating system or software. The system is the implementation 
of the perfect tic-tac-toe algorithm (the higher layer) of play-
ing tic-tac-toe based on a chemical system (lower layer), 
therefore an excellent example of dual control (Fig. 3).

The authors of this solution have created a chemical rep-
resentation for the cells from 1 to 9, and also a molecular 
representation to play the game. As long as the game gets the 
proper input molecules from its human opponent, it is able 
to respond with a good next move. However, on the level of 
the algorithm, there is no way to exactly know whether the 
underlying level of a chemical substance is within the limits 
it can function properly.
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Generalizing this claim, in autonomous systems, there 
is no sure way of self-health-check that can be done on a 
given level to verify that the conditions of functioning—a 
proper state of the lower level—are present. There are health 
checks, for instance, a computer can investigate its file sys-
tem and find signs that are inconsistent with well-function-
ing hardware and therefore declare a part of the hardware 
broken. In information storage, it is always possible to add 
redundancy that may correct information transfer or retrieval 
errors. But neither of these solutions are infallible. Going 
back to the DNA-based example, if the chemical conditions 
deteriorate, there is no way to tell on the algorithmic level 
if an answer is faulty or right. Of course, the experimenter 
sees that problem and may intervene. But that is mainly pos-
sible by virtue of being outside the situation and not, for 
instance, being a lot smarter or being a human. The human 
experimenter could also have neurobiological problems that 
would affect its higher-level consciousness in a way that is 
not so inconsistent that the person in question would know 
that something is wrong (Fig. 4).

Also, with the DNA-based machine, it is clear that we 
could introduce inputs that would not work properly and 
yet the system would muster some sort of response. But the 
input could be such a chemical compound that would break 
down the underlying chemical system.

This tic-tac-toe solution is very useful for us as an explan-
atory tool for the modern autonomous system. Imagine that 
this solution does not play tic-tac-toe; instead, it is on board 
of a self-driving vehicle. Now, it is entirely possible that the 

vehicle navigates itself into a situation, for instance, to some 
acidic environment that would modify the reactions of the 
chemical level.

If we substitute the multi-layered AV architecture in the 
place of this simple, two-layered chemical machine, we will 
still have the same kind of problem. The activity of a higher 
level (say, the algorithm) would get the system in a state 
where a lower level (e.g. hardware) cannot work properly. 
This way, the higher level can simply destroy the precondi-
tions of its own proper functioning. And the tacit nature of 
the whole functionality is on clear display: this system does 
not even use a programming language or any other expli-
cated language. Its body structure contains the knowledge 
of the perfect tic-tac-toe strategy that will cause it to win 
every time it has a first-mover advantage—provided that the 
chemical conditions do not deteriorate.

So, in order to prove that, for instance, our algorithm will 
not behave in a certain way we don’t want it to, we would 
have to prove that the output of such algorithm—remember 
it is embedded in an autonomous car in our case—would not 
govern the whole system into a situation that deteriorates 
the lower levels.

There could be guarantees in a given layer to remain 
within certain limits, for instance, in formal systems, there 

Fig. 2  The technological stack 
of an autonomous car that 
achieves the performance of 
driving autonomously

Fig. 3  The layers or “technological stack” realized in a wet comput-
ing system, like the DNA-based tic-tac-toe implementation (Sto-
janovic and Stefanovic 2003)

Fig. 4  The realization of a logical AND operator in DNA by Sto-
janovic and Stefanovic (2003)
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are ways to prove that the system maintains certain proper-
ties at all times (Butler 2001). But this is to be understood 
with a small print that says as long as the primitives of the 
system (provided by the underlying layer) work properly.

However, in the case of our autonomous vehicle, the algo-
rithm carries around the hardware, operating system and 
everything else which poses a risk to these lower layers that 
is not addressed at all on a higher-level proof. In fact, there is 
not even a language on a higher level to address those layers.

And if we go below the level of the software, there is no 
deductive model of deterioration of hardware, for instance. 
There are inductive-statistical models instead of how many 
years an average RAM module takes before some of its bits 
start dysfunction, and that is all we have.

2.4  Embodiment effects

One source of intransparency is what we may call the 
embodiment effect. Let us imagine that an Autonomous 
Vehicle technology stack was tested and now is released. 
The stack includes the mobile platform itself (the car), the 
computer hardware, the operating system, and the AV soft-
ware stack running a fine-tuned algorithm. Now let us also 
assume that an identical vehicle is reproduced except that 
it is a pale grey. Let us suppose that we find that the safety 
performance—the number of accident-free hours driven—
of this car in the pedestrian-rich environment is lower than 
the bright yellow one, precisely because of this difference 
in the colour. Our subsequent investigation establishes that 
this car is less visible for the pedestrians than the other one, 
and having no other difference, we will rely on Mill’s causal 
heuristic (Mill 1884) to assume this is the cause for the dif-
ference (Fig. 5).

So, how to account for and prepare against this defi-
ciency? The thought experiment highlights the hidden 
interdependencies between the layers of the technology 
stack when producing the performance of the car. And if 
that is true, then the overall engineering blueprint, that is, a 
different kind of engineering document for each level of the 
stack (source codes and runtime configuration on the OS and 

SW stack, blueprints form the mobile platform, etc.) need 
to reflect on this detail. In other words, the different colours 
may have to be tested, and only a limited range of offers may 
be allowed, and the user will be warned that all warranty is 
lost if an unofficial paint job is applied.

This kind of prohibition of alterations of a car is already 
commonplace. You are not allowed to change your car in 
many ways, like getting rid of breaks or lights. Furthermore, 
it is entirely possible that in the world of human-driven cars, 
a brighter car is statistically already safer given equivalent 
drivers. The reason why we don’t have a regulation for the 
car colours is that the presence of the driver—account-
able, punishable by law if need be—masks this problem. 
Drivers of grey cars may hit more people than yellow cars 
all else being equivalent, but this—in theory—will not be 
taken into account when the responsibility for an accident 
is established.

When it comes to AV cars, there is no similar responsi-
bility-absorbing agent, so it all comes down to the design 
and the designer. But the car colour and visibility is just a 
single example. In fact, there is no way of knowing what the 
important embodiment factors for which the design should 
explicate rules are. Every design underdetermines the even-
tual tangible artefact that will be created based upon it. And 
the dimensions of the freedoms that can be safely allowed 
cannot be established with deductive methods.

2.5  Material layer effects on hardware

One of the important bottlenecks of modern computer 
hardware is cooling; in other words, the effective dissipa-
tion of heat. This is tackled in three ways. The first is by 
making the calculations themselves more energy-effective 
so that there is less heat generated in the first place. Great 
advancements have been made in that direction in modern 
chips, but of course, it is still the case that the generated 
heat is roughly proportional to the number of calculations 
made, and as IBM’s excellent Landauer (1961) established, 
there is a theoretical minimum of energy needed for a unit 
of calculation.

Another way of dealing with the heat is to apply better 
cooling, but that itself consumes energy and also, is often 
very noisy.

So the third way is also used: throttling the speed of the 
computation based on the measured temperature of the 
hardware. This way the number of computations may be 
allowed to spike for a short period of time, nicely serving 
the user, whose typical pattern of computer usage is short 
bursts of activity followed by a longer period of inactivity, 
like loading a browser tab and then reading it. The high-
frequency computation, of course, cannot be sustained for 
long, because of the generated heat. To maintain the balance, 
limitations may be put on the computation frequency.

Fig. 5  The particular paint job of the car, an embodiment detail may 
factor into its performance, yet it is not the scope of the design; there-
fore design-time these two cars are not even distinguished from each 
other
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Because of this heat budget, a lower number of compu-
tations can be made in hotter environments, or the same 
computation takes longer. In the case of the autonomous 
car, in order to ensure that there is an answer in time, there 
might be real-time operating systems used, meaning that 
for certain operations there is a possibility to get an answer 
within some time period measured in real-time, instead of 
CPU time, which, as we have just seen, may take different 
real times in different heat conditions.

So the system will have to guarantee a certain respon-
sivity in any conditions where the vehicle can conceivably 
find itself. But it makes no sense to make this lower limit to 
become an upper limit as well: if it can, it should execute 
more calculations, which in this case may lead to a better 
classification of an object or more precise location informa-
tion of the vehicle. The presence of this margin between the 
minimal and maximal performance makes it very hard to 
exactly predict just how good the understanding of any situ-
ation will be at any moment of time. The designers need to 
accept that the very same situation in a bit better CPU heat 
condition might be better recognized than otherwise, and 
there is just no way of foreseeing the variations that result 
from this effect.

This is just one way how the processes of the material 
layer have an effect on the overall system, without breaking 
it. There are many more such examples, especially when it 
comes to the performance of sensors, like the cameras and 
the effects of the changing physical environment on them.

To know these processes to the extent that would allow 
the clear and well-defined ethical dilemmas we know from 
the usual representations, we would need a Laplace’s demon-
like knowledge of our system, which is just not possible.

2.6  Statistical‑only knowledge

All the arguments thus far are leading up to a representation 
in which the situation and the alternative outcomes are only 
known to some level of confidence. This will lead to the 
need for probabilistic representations of situations.

When it comes to the probability of the outcomes, another 
new set of uncertainties come into play. These have to do 
with the effect appraisal of the vehicle’s actions.

For instance, there is no way to know the exact brak-
ing distance in any given situation, because that obviously 
depends on the properties of the surfaces involved, etc. What 
will happen is that the system implements a feedback loop—
a well-known concept from control theory. It will calculate 
an action that will be put in effect; then the situation will 
be surveyed again and based on that, further actions will be 
taken. This is all to keep the system within the parameters 
set by some higher level of the architecture, like the cruise 
planning software. However, the resistance of the system—
because of its own factors and because of the environment’s 

unpredictability, will limit the extent it can be controlled. It 
can be imagined like a sort of momentum, sometimes quite 
literally in the physical sense, other times understood in state 
space.

The unpredictability of the autonomous system, as the 
subject of its own control mechanism and also because of the 
imperfect knowledge of the environment, results in a situa-
tion with several uncertainties as depicted below:

Figure 6 shows (on the right-hand side) how the realisti-
cally knowable information for the autonomous car looks 
like in an imagined situation. Since the situation itself isn’t 
known with perfect accuracy, even the input of the suppos-
edly moral decision is uncertain.

Yet, even this representation shows a too optimistic pic-
ture. That is, the probabilities depicted here rely on past 
experience distilled from real data by a machine learning 
process. The representativity of that learning data itself 
poses questions. We can expect that the rollout of autono-
mous applications will not happen all at once in all coun-
tries, between all income levels, among all layers and groups 
of society. So, at best, the learning data will be built from 
the data gathered from the early adopters. A good example 
of that is the Tesla autopilot software. It is well-known that 
it trains on actual driving footage: even in non-autopilot, the 
software is paying attention to what the driver does and cal-
culates what itself would do in the same situation, and notes, 
learns from the differences. This means embedded bias on at 
least two levels: first, the human driving to be taken as etalon 
will represent the driving habits of the group that can afford 
such an extensive car. Second, the roads and the environment 
of training will be the countries that have higher adoption of 
Teslas. So overall we can say, that the machine representa-
tion of situations of moral import is not only probabilistic, 
but the probabilities themselves are only based on training 
data at best approximating the actual environment, and being 
completely different at worst.

2.7  Incalculable human decisions

We have already seen that the autonomous system itself is 
a source of uncertainty, as well as it’s the physical environ-
ment. Yet another source of opacity of the outcomes is the 
reaction of the humans and possibly other autonomous vehi-
cles involved in the situation. Imagine a system that is on a 
crash course with a pedestrian who could have enough time 
still to jump left or right, or just stay stationary. If our system 
decides that it can safely swerve to either left or right, we are 
not in the clear yet, since the pedestrian may decide to jump 
exactly where the system tries to steer. In the usual repre-
sentations, the agency of the participants does not figure into 
the situation, only the agency of the designed system itself. 
This is quite obviously false. In any realistic representation, 
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the maximum we can have is maybe a probabilistic model 
of human behaviour, if anything at all.

There is another kind of incalculable human decisions: 
malevolent acts against the system and its environment. It 
has been shown that neural nets are hackable with stickers 
applied on road signs, invisible (for the human eye) graphic 
noise, or even by just projecting an image on the wall. There 
is also a school in attacking IT systems that will try and 
overwhelm the target system by presenting so much or so 
well-crafted input to it that it cannot process. Still, another 
approach taken by attackers is forcing systems in undesirable 
states by predicting what it would do in certain situations.

In design-time, the best predictions that the engineers can 
have about these human factors are educated guesses, or 
worse. This again is another source of opacity.

3  Conclusion

This article showed that the often hidden assumption of 
perfect information when discussing moral dilemmas is not 
achievable when designing autonomous systems. On the 
contrary, there is a huge gap between the epistemic condi-
tions of design-time and use-time. This paper refers to the 
problem as the design-time knowledge gap.

Beyond the epistemic gap, we may realize that there is 
a moral gap as well. Since there is no user (that may be 

responsible for what happens in use-time), all the responsi-
bility falls back on the designers, it seems (Fig. 7).

The reasons for this knowledge gap are twofold: the future 
environment cannot be fully predicted design-time, but more 
interestingly still, the system behaviour itself cannot be pre-
dicted, therefore designed because of its inherent opacity.

The latter is because of several factors. There are always 
epistemically emergent elements of behaviour, and not even 
by accident but by design: this is one feature of machine 
learning itself, by which machines acquire tacit knowledge. 
Activity is happening on several layers simultaneously, 
and only a few of them are formalized enough so that there 
is even a remote chance to prove that the behaviour stays 
between pre-set boundaries. Embodiment effects refer to 
important “bodily” or hardware factors and circumstances 
that are out of the scope of design. Material effects on hard-
ware, like heating of the hardware are effects that do not nec-
essarily affect the functionality of the hardware and software 
layers; however, they may affect the real-time performance 
of those processes, thereby the whole performance of the 
system. In other words, the layers of the technological stack 
not only interact with each other with the interfaces they are 
designed to, but also in other, incalculable ways.

When we move beyond the hardware layer, we will real-
ize that everything about machine learning, like the train-
ing data or the performance, are inductive-statistical and 
not deterministic. This makes any situation representation 
only a hypothesis with alternatives in the background and 

Fig. 6  The probabilistic repre-
sentation of the problem versus 
a simplified representation on a 
situation of moral import
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any supposed in-situ moral decisions should take the falli-
bility of the representation into account. Finally, the future 
environment of autonomous systems include humans, 
whose decisions (like a pedestrian jumps away from a 
threat or stays still) cannot be predicted, and therefore 
behaviour based on those decisions cannot be designed. 
A special category of the human factor is the malevolent 
act, like tricking or hacking the system on purpose.

To sum up, what counts as good, ethical design decision 
in any given systems design problem is underdetermined 
by several factors. Even worse, not all issues manifest 
itself as design questions in the first place.

Still, moving towards the epistemic transparency of 
autonomous systems would be a welcome development. 
To achieve this, instead of attempting to provide ever more 
details of the design, we may just test systems with human 
participation to see which systems the users feel they can 
predict. This shifts the problem to an entirely new level 
that takes into account the tacit knowledge of the humans 
involved. After all, people often feel about others that they 
are reliable, pose no threat, and it is safe being around 
them. And yet, the exact details of this reliable behaviour 
are ill-defined and ever-changing, so what really matters 
is the interface (Gill 2015), and not in the sense of any 
protocols but in the sense of human engagement with 
autonomous systems.

A consequence of the statements of this paper is that 
the design-time ethical problems are much more empiri-
cal than they first appear. But they are not really empirical 
in the sense The Moral Machine investigates the issue—
they are empirical in that since on the drawing board 
autonomous systems are hopelessly opaque, systematic 
human–machine engagements are necessary to establish 
the characteristics of the system. This will inevitably lead 
to an iterative process with many variants and also the ever 

lingering prospect of unforeseen behaviour in never-tested 
edge cases.
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