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Dénes Takács
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ABSTRACT
The aim of this study is to highlight nonlinear behaviors and

periodic orbits of the single-track vehicle model with a delayed
feedback controller. Two widely used tire models, namely a lin-
ear tire characteristic and Pacejka’s Magic Formula are consid-
ered. Linearly stable domains of parameters such as the vehicle
speed and the control gains are determined. Periodic solutions
originating from Hopf bifurcation points are followed using nu-
merical continuation and the results obtained with the two dif-
ferent tire models are compared. It is shown that neglecting the
saturation of the tire lateral forces at total sliding might change
the sense of certain Hopf bifurcations from subcritical to super-
critical. The results are verified by numerical simulations. The
resulting bifurcation diagrams aim to quantify the degree of ro-
bustness of these controllers with regards to the initial conditions
at various parameter ranges in order to assure stable and safe
operation.

INTRODUCTION
The lateral position control of the vehicle is a cornerstone of

any advanced driver assistance system which involves the track-
ing of a trajectory. Lane keeping and lane changing functions, as
well as the automatic execution of emergency maneuvers all re-
quire that the vehicle can reliably steer itself to follow a specific

trajectory.

Widely used solutions to this problem include simple pre-
view control [1], the pure pursuit [2] or the Stanley controller [3].
With advances in computational power and optimization algo-
rithms, the real-time use of model predictive control is also be-
coming a viable option [4]. Nonlinear control techniques have
also been successfully applied to control the lateral dynamics of
the vehicle, such as feedback linearization [5] and differential
flatness [6]. In this paper, a simple feedback controller is in-
vestigated with the explicit consideration of time delay. Sources
of time delay in the closed-loop system may include sensor and
communication delays [7], data processing time for lane detec-
tion and position estimation [8–10], as well as the non-modeled
dynamics of the steering system [3,11]. Overall, when added up,
the individual sources of delays can amount to several hundreds
of milliseconds.

A crucial step to reliable and safe control design is under-
standing how the system reacts to large disturbances. This can be
achieved with the methods of nonlinear analysis and bifurcation
theory [12, 13]. Because of its importance regarding road safety,
the nonlinear behavior of vehicles has already been extensively
studied in the literature [14–20]. In this paper, the bifurcation
analysis of straight-line motion of the closed-loop system is per-
formed with the help of numerical continuation [12, 13, 21], by
considering the vehicle speed and the control gains as the bifur-
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cation parameter. Following the branches of periodic solutions
originating from the linear stability limit paints a picture of what
kinds of motions to expect due to large enough disturbances in
different parameter ranges. In addition, we also consider a sim-
pler, linear tire characteristic (while keeping the geometrical non-
linearities of the vehicle model), which is also widely used in
control applications. Our aim is to understand how the choice
of tire model affects the global dynamics of the system. Be-
ing aware of these differences is crucial for the design of robust
model-based control solutions.

The rest of the paper is organized as follows: first, the equa-
tions of motion of the single-track vehicle model are presented.
Two different options for tire modeling are considered, and the
vehicle model is extended with a delayed feedback controller that
generates the steering angle. Afterwards, the linear stability anal-
ysis of the closed-loop system is performed. The final section is
devoted to the nonlinear analysis of the system, uncovering sta-
ble and unstable periodic solutions by varying the vehicle speed
and the control gains. The results are verified by numerical sim-
ulations.

MECHANICAL MODEL
The well-known single-track vehicle model is considered in

this study, with two different tire characteristics. In the final part
of this section, the model is extended with lane-keeping control
based on delayed state feedback.

Single-Track Vehicle Model

FIGURE 1. The single-track vehicle model (for further details, see
[22, 23]).

The main simplification of the single-track vehicle model
(shown in Fig. 1) is that the tire contact patches are summarized
along each axle and the vehicle body is modeled with respect to

its longitudinal axis. Furthermore, the center of gravity is as-
sumed to be on the ground level, therefore roll and pitch dy-
namics are neglected, and a constant longitudinal velocity V is
assumed. The governing equations are

ẋ =V cosψ−σ1 sinψ , (1)
ẏ =V sinψ +σ1 cosψ , (2)

ψ̇ = σ2 , (3)

m(σ̇1−V σ2) =−
d2m+ Jz

Jz
(sinψ (FF,x +FR,x)

−cosψ (FF,y +FR,y))+
f dm
Jz

(sinψFF,x− cosψFF,y) ,

(4)

Jzσ̇2 = sinψ ((d− f )FF,x +dFR,x)− cosψ ((d− f )FF,y +dFR,y) ,
(5)

where the state variables are the global coordinates x and y of the
rear axle (point R), the vehicle heading ψ , the lateral velocity σ1
of point R, and the yaw rate σ2. The vehicle parameters include
the mass m, the yaw moment of inertia Jz around the center of
gravity C, the wheelbase f , and the distance d between the rear
axle and the center of gravity. The tire side forces are denoted
by Fi, j, where the first index represents the front or the rear axle
(F or R, respectively), and the second index denotes the x or y
force component in the global coordinate system. For the de-
tailed derivation of the above equations using the Gibbs–Appell-
method [24, 25], the reader is referred to [26].

Tire Models
Since our focus is on the lateral dynamics of the vehicle in

case of constant longitudinal speed, longitudinal tire forces are
not considered here. Moreover, the self-aligning moments gen-
erated by the tire side forces are also neglected, due to the in-
significant moment arms compared to the vehicle geometry. The
side forces are modeled as a function of the side slip angles αF
and αR:

αF = arctan
(

ẏ+ f cosψψ̇

ẋ− f sinψψ̇

)
−ψ−δs , (6)

αR = arctan
(

ẏ
ẋ

)
−ψ , (7)

where δs denotes the steering angle. A common simplification
is often used for the tire forces, namely, a linear relationship be-
tween the side slip angles and the side forces can be considered,
leading to

F lat
i = C̃iαi , i ∈ {F, R} , (8)
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where C̃i is the so-called cornering stiffness. The superscript lat
refers to the fact that the above represents the overall side forces
acting on the wheels, prior to decomposing them into their x and
y components, as in Eqn. (4) and (5).

The above model is a good approximation for small side-slip
angles, but it fails to capture the saturation of the tire forces when
total sliding starts. Therefore the other tire model considered in
this study is Pacejka’s Magic Formula [22], which calculates the
tire side forces as

F lat
i = Di sin(Ci arctan(Biαi−Ei (Biαi− arctan(Biαi)))) . (9)

This model is also widely used for both simulation and control
purposes, since it is capable of reproducing the distinct shape of
measured tire characteristics in a single continuous function. The
parameters Bi, Ci, Di and Ei are usually determined by curve fit-
ting. Linearizing the Magic Formula around zero side slip angle
leads to the relationship C̃i = BiCiDi between the parameters of
the two models.

FIGURE 2. Tire characteristics using the Magic Formula with pa-
rameters listed in Table 1 (continuous), and its linear approximation
(dashed). Black: front axle, red: rear axle.

In this paper, an understeering vehicle setup is considered,
with parameter values of the Magic Formula listed in Table 1
(the rest of the vehicle parameters are listed in Table 2). The
parameters DF and DR are determined by the corresponding ver-
tical wheel loads, which were calculated assuming a friction co-
efficient of 0.9 at both axles. The cornering stiffness values of
the corresponding linear model are C̃F = BFCFDF = 45 kN and
C̃R = BRCRDR = 60 kN. The tire characteristics are plotted in
Fig. 2.

TABLE 1. Parameter Values of the Magic Formula Tire Model for the
Front (F) and Rear (R) Axle

BF BR CF CR DF DR EF ER

5.940 6.336 1.2 1.5 6313 N 6313 N 0 0

TABLE 2. Vehicle Parameter Values
Parameter Notation Value

Vehicle wheelbase f 2.7 m
Distance between rear
axle and center of gravity d 1.35 m

Vehicle mass m 1430 kg

Yaw moment of inertia Jz 2500 kgm2

Lane-Keeping Control
The goal of the lane-keeping controller is to guide the ve-

hicle to the center of the lane. To this end, the steering angle is
generated proportionally to the lateral position error and the ori-
entation error with respect to the lane centerline. Without loss
of generality, the reference path in this paper is going to be a
straight line at y = 0, leading to the control law

δs(t) =−Pyy(t− τ)−Pψ ψ(t− τ) , (10)

where Py and Pψ are the control gains, and the time delay τ in-
cludes sensor and communication delays, processing time as well
as the dynamics of the actuators and the steering mechanism.

LINEAR STABILITY ANALYSIS
In case of the uncontrolled system, the coordinates x, y and

the yaw angle ψ can be decoupled from the rest of the state vari-
ables, since the dynamics of the vehicle are independent from
its position and orientation in the plane. However, once position
control is introduced, this is not true anymore: due to feedback
control, the dynamics will also depend on the vehicle’s position
relative to the desired path. Since in this analysis we only con-
sider motion along the x-axis, the position error can be calculated
based on the y coordinate alone. Control law (10) also requires
feedback of the orientation error, but the state variable x can still
be decoupled from the rest and further calculations can be based
on Eqn. (2)-(5).

The equilibrium of straight ahead motion along the x axis
corresponds to the state vector q =

[
y ψ σ1 σ2

]T
= 0. Lineariz-

ing the system around this equilibrium leads to the following
state space representation:

q̇(t) = Aq(t)+Bu(t− τ) , (11)
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FIGURE 3. Linearly stable parameter regions of straight-line motion for various amounts of time delay.

with the system and input matrices

A =


0 V 1 0
0 0 0 1
0 0 A33 A34
0 0 A43 A44

 , B =


0
0

B3
B4

 , (12)

with elements

A33 =−
B3

V
− C̃R(d2m+ Jz)

mV Jz
, A34 =−B3

f
V
−V ,

A43 =−
B4

V
+

C̃Rd
V Jz

, A44 =−B4
f

V
,

(13)

and

B3 =
C̃F(d(d− f )m+ Jz)

mJz
, B4 =

C̃F( f −d)
Jz

. (14)

Using the delayed state feedback controller in Eqn. (10), the sys-
tem input can be written as u(t− τ) = Kq(t− τ) with the gain
vector K =

[
−Py −Pψ 0 0

]
. The characteristic equation of the

closed-loop linear system can then be written as

D(λ ) := det
(

λ I−A−BKe−λτ

)
= 0 , (15)

where λ ∈ C denotes the characteristic exponent and I is the
identity matrix. The exact form of D(λ ) can be found in [26].

The linear stability of the system can be checked using e.g.
the Routh–Hurwitz-criterion [24] for the delay-free case, and
with the help of the D-subdivision or the semi-discretizetion

method in the delayed case [27]. The resulting stability maps
can be seen in Fig. 3. These show the stable parameter regions
in terms of the control gains Py and Pψ , as well as the vehicle
speed V , for various amounts of time delay. Figure 3(a) corre-
sponds to V = 20 m/s. In Fig. 3(b), Pψ is fixed at 0.2762, while
Fig. 3(c) was plotted for Py = 0.0058 1/m. These control gains
provide the most highly damped system response at the speed of
20 m/s, assuming a time delay of τ = 0.4 s. The bifurcation dia-
grams in the next section are plotted along these values, denoted
by dashed lines in Fig. 3.

BIFURCATION ANALYSIS
The stability maps in Fig. 3 only give us information about

the local stability of straight-line motion. It is possible, however,
that depending on the initial conditions (or as a result of large
enough disturbances), the system exhibits a qualitatively differ-
ent behavior than what the stability maps may suggest. In order
to uncover what kinds of system dynamics are possible near the
linearly stable regions, the methods of bifurcation theory are ap-
plied [12,13,28]. In particular, we use the numerical continuation
capabilities of the Matlab package DDE-Biftool [21, 29, 30] to
follow branches of periodic solutions emerging from Hopf bifur-
cation points. The periodic orbits in DDE-Biftool are calculated
using orthogonal collocation with piecewise polynomials. This
is particularly important for unstable periodic solutions, since di-
rect numerical methods cannot be used in such cases. For further
details, the reader is referred to [31] and the references in [30].

In order to help visualize the corresponding dynamics, the
amplitude of the lateral displacement of the arising periodic mo-
tions will be shown as a function of the bifurcation parameter (ei-
ther the vehicle speed, or one of the control gains). However, the
domains of attraction of the stable solutions depend on the rest
of the variables too (note the infinite dimensional phase space of
the delayed system), therefore the resulting bifurcation diagrams
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are not sufficient to determine the critical lateral displacement of
the vehicle above which it loses its stability. Nevertheless, they
still provide guidelines about which parameter regions might be
more dangerous than the rest.

FIGURE 4. Bifurcation diagram showing the amplitude of the lateral
displacement of the vehicle as a function of speed, for various amounts
of time delay (Py = 0.0058 1/m, Pψ = 0.2762). Continuous lines are
calculated using the Magic Formula and dashed lines refer to the linear
tire model. The coloring of the yamp = 0 solution shows the stability of
the equilibrium for τ = 0.5 s (green: stable, red: unstable).

First, the vehicle speed V is used as the bifurcation pa-
rameter, while fixing the control gains at Py = 0.0058 1/m and
Pψ = 0.2762 (see the horizontal dashed lines in panels (b) and
(c) of Fig. 3). The resulting bifurcation diagram can be seen
in Fig. 4. It shows that at the point of stability loss, a subcriti-
cal Hopf bifurcation occurs, leading to an unstable periodic orbit
around the locally stable equilibrium. This means that certain
initial conditions can lead to unstable vehicle motion even below
the critical speed. However, the criticality of the arising Hopf
bifurcation also depends on other parameters, such as the vehicle
and tire configuration as well as the control gains. As a result,
both a subcritical or a supercritical (as in e.g. [16]) Hopf bifur-
cation may be observed when increasing the speed of an under-
steering vehicle in case of delayed feedback control. Uncovering
the exact dependence of the periodic solutions on these aspects
is the subject of further research.

According to Fig. 4, there is a major difference between the
two tire models regarding the amplitude of the periodic solutions
at certain vehicle speeds. This difference is illustrated in the nu-
merical simulations of Fig. 5. Choosing a linearly stable vehi-
cle speed (V = 72 m/s) close to the Hopf bifurcation point at

FIGURE 5. Simulation results near the critical speed of V = 73.2 m/s
where Hopf-bifurcation occurs for τ = 0.5 s (see points A and B in
Fig. 4). Because of the smaller amplitude unstable limit cycle, the non-
linear tire model is more sensitive to the initial conditions.

V = 73.2 m/s (for τ = 0.5 s), the simulations were run from two
different initial conditions, shown as points A and B in Fig. 4.
First, starting from a lateral displacement of y(t ≤ 0) = 1 m
(while the other state variables are 0), both tire models lead to
stable straight ahead motion. However, when the initial dis-
placement is increased to y(t ≤ 0) = 2 m, the vehicle with the
Magic Formula starts oscillating with increasing amplitude, even
though the longitudinal velocity is below the critical value. Al-
though the above speed values are rather high with limited prac-
tical relevance, but the point of these simulations is to verify the
differences between the two tire models.

In the bifurcation diagram of Fig. 6, the control gain Py is
used as the bifurcation parameter, while Pψ is fixed at 0.2762 and
V = 20 m/s (see the horizontal dashed line in Fig. 3(a), or the ver-
tical line in Fig. 3(b)). With increasing time delay, the upper limit
of Py decreases. In this case (for lower values of τ), the criticality
of the Hopf bifurcation depends on the choice of tire model: with
a linear tire characteristic, stable periodic solutions arise from the
stability boundaries, while the Magic Formula leads to a subcrit-
ical Hopf bifurcation. Therefore, the linearly stable parameter
domain might appear to be globally stable when using a simpler
tire model, while in fact the saturation of the tire forces limit the
domain of attraction of the stable equilibrium. For τ = 0.4 s, the
periodic branch of the Magic Formula starts off as supercritical,
but it shortly changes direction through a fold bifurcation point,
forming an unstable limit cycle around the stable equilibrium.

The corresponding numerical simulations can be seen in
Fig. 7: when the simulations are started from a smaller initial
displacement of y(0) = 0.5 m with a linearly stable control gain
(Py = 0.045 1/m; denoted as point C in Fig. 6), the vehicle is sta-
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FIGURE 6. Bifurcation diagram showing the amplitude of the lateral
displacement of the vehicle as a function of the control gain Py, for var-
ious amounts of time delay (Pψ = 0.2762, V = 20 m/s). Continuous:
Magic Formula, dashed: linear tire model. The coloring of the yamp = 0
solution shows the stability of the equilibrium for τ = 0.5 s (green: sta-
ble, red: unstable).

FIGURE 7. Simulation results near the stability boundary of Py =

0.0456 1/m where Hopf-bifurcation occurs for τ = 0 (see points C, D
and E in Fig. 6). Choosing the control gain outside the linearly stable
region leads to a globally unstable solution with the Magic Formula,
while the vehicle with linear tire characteristics finds a stable periodic
orbit.

ble with both tire models. However, when the initial condition
is increased to y(0) = 1 m (point D), the vehicle with the Magic

Formula produces violent oscillations due to the presence of the
unstable limit cycle. If the control gain is chosen from the lin-
early unstable region (Py = 0.047 1/m; point E), then the solution
using the linear tire model tends to a stable periodic orbit, while
no periodic solution is found using the Magic Formula.

FIGURE 8. Bifurcation diagram showing the amplitude of the lateral
displacement of the vehicle as a function of the control gain Pψ , for
various amounts of time delay (Py = 0.0058 1/m, V = 20 m/s). Contin-
uous: Magic Formula, dashed: linear tire model. The coloring of the
yamp = 0 solution shows the stability of the equilibrium for τ = 0.5 s
(green: stable, red: unstable).

The bifurcation diagram in Fig. 8 shows that increasing Pψ

around the (upper) edge of stability has a similar effect to in-
creasing Py: when using a linear tire model, a supercritical Hopf
bifurcation can be observed, while the Magic Formula leads to
a subcritical bifurcation (which can also start off as supercritical
for large enough delays). However, unlike Py, choosing a too low
value for the gain Pψ can also lead to stability loss (see Fig. 3 for
a different perspective). Here, another Hopf bifurcation occurs,
which is generally supercritical for both tire models, but in the
case of the Magic Formula, it starts off as slightly subcritical for
lower delay values.

Based on Fig. 8, the designer should be particularly careful
when choosing the gain of the orientation error. As an example,
the linear stability limit for the case of τ = 0.2s is at Pψ = 0.99,
but the amplitude of the unstable limit cycle is well within the
width of a single lane even at Pψ = 0.6. Although this is a single
example only, it still shows that depending on the parameters,
there can be dangerous ranges of the control gains far within the
linearly stable domain that should be avoided.

Figure 9 shows the verification of the stable and unstable
limit cycles in Fig. 8 with numerical simulations (for τ = 0.2 s).
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FIGURE 9. Simulation results near the stability boundary of Pψ =

0.99 where Hopf-bifurcation occurs for τ = 0.2 s (see points F, G and H
in Fig. 8).

First, the gain was set to Pψ = 0.985. Although this is below
the critical value of 0.99, the vehicle with the Magic Formula
can still lose its stability depending on the initial conditions. The
simulation starting in point H shows the stable limit cycle of the
linear tire model and the global instability of the Magic Formula
at the linearly unstable value of Pψ = 1.02.

CONCLUSION
A lane-keeping controller with explicit consideration of

feedback delay was analyzed in this paper. With the help of nu-
merical continuation, periodic orbits around the stable straight-
line motion were highlighted. It was shown that neglecting the
saturation of lateral tire forces leads to qualitatively different re-
sults, changing the criticality of certain Hopf bifurcations from
subcritical to supercritical. It was also shown that (based on
Fig. 4), it is very easy to largely overestimate the domain of at-
traction of the stable solution using only the linear tire model,
which is important to keep in mind from a safety point of view.

Although the amplitude of most of the detected periodic mo-
tions are too large to be observed under normal road conditions,
the bifurcation diagrams still provide useful guidelines about
which parameter regions are more robust against disturbances.
Moreover, it should be noted that our analysis was more on the
conservative side in terms of two aspects: on the one hand, an
understeering vehicle configuration was considered, which is in-
herently more stable than an oversteering one. On the other hand,
the controller was tuned using a less aggressive tuning method.
A more dynamic response can be reached by increasing the con-
trol gains, and other tuning strategies (e.g. optimizing some kind

of cost function) could easily lead to larger gains. In such cases,
the amplitude of the arising periodic solutions are expected to be-
come lower (as in Fig. 8), making the consideration of nonlinear
behavior even more important in order to ensure a stable and safe
operation.
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