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Abstract: Given a complete non-compact Riemannian manifold (M, g) with certain curvature
restrictions, we introduce an expansion condition concerning a group of isometries G of (M, g) that
characterizes the coerciveness of G in the sense of Skrzypczak and Tintarev (Arch. Math., 2013).
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are proved for the full range of admissible parameters (Sobolev, Moser-Trudinger and Morrey).
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1. Introduction and main results

Compact Sobolev embeddings turn out to be fundamental tools in the study of variational problems,
being frequently used to study the existence of solutions to elliptic equations, see e.g. Willem [45].
More precisely, they are used for proving essential properties of the energy functionals associated with
the studied problems (such as sequential lower semicontinuity or the Palais–Smale condition), in order
to apply certain minimization and/or minimax arguments.

If Ω ⊆ Rd is an open set with sufficiently smooth boundary in the Euclidean space Rd, it is well
known that the Sobolev space W 1,p(Ω) can be continuously embedded into the Lebesgue space Lq(Ω),

assuming the parameters p and q verify the range properties: (i) p ≤ q ≤ p∗ := pd
d−p if p < d; (ii)

q ∈ [p,+∞) if p = d, and (iii) q = +∞ if p > d. On one hand, when Ω is bounded, due to the
Rellich-Kondrachov theorem, the previous embeddings are all compact injections, see Brezis [8]. On
the other hand, when Ω is unbounded, the aforementioned compactness need not hold, see Adams
and Fournier [1]; for instance, if Ω = Rd, the dilation and translation of functions preclude such
compactness phenomena. However, symmetries may recover compactness; indeed, it was proved by
Berestycki–Lions (see Berestycki and Lions [5], Lions [32], and also Cho and Ozawa [10], Ebihara and
Schonbek [16], Strauss [43], and Willem [45]) that if p ≤ d then the embedding W 1,p

rad(Rd) ↪→ Lq(Rd) is
compact whenever p < q < p∗, whereW 1,p

rad(Rd) stands for the subspace of radially symmetric functions
of W 1,p(Rd), i.e.

W 1,p
rad(Rd) =

{
u ∈W 1,p(Rd) : u(ξx) = u(x) for all ξ ∈ O(d)

}
,

where O(d) is the orthogonal group in Rd. In the case of Morrey–Sobolev embeddings, it turns out
that W 1,p

rad(Rd) can be also compactly embedded into L∞(Rd) when 2 ≤ d < p < +∞, see Kristály [25].
Geometrically, Berestycki–Lions’ compactness is based on a careful estimate of the functions at

infinity. One first observes that the maximal number of mutually disjoint balls having a fixed radius
and centered on the orbit {ξx : ξ ∈ O(d)} tends to infinity whenever |x| → ∞; this phenomenon is
similar to the maximal number of disjoint patches with fixed diameter on a balloon with continuous
expansion. Now, the latter expansiveness property of the balls combined with the invariance of the
Lebesgue measure w.r.t. translations implies that the radially symmetric functions rapidly decay to
zero at infinity; this fact is crucial to recovering compactness of Sobolev embeddings on unbounded
domains, see e.g. Ebihara and Schonbek [16], Kristály [25] and Willem [45]; moreover, this argument
is in full concordance with the initial approach of Strauss [43].
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Notice that a Berestycki–Lions-type theorem has been established on Riemannian manifolds by
Hebey and Vaugon [23], see also Hebey [22, Theorems 9.5 & 9.6]. More precisely, if G is a compact
subgroup of the group of global isometries of the complete Riemannian manifold (M, g), then (un-
der additional assumptions on the geometry of (M, g) and on the orbits under the action of G) the
embedding W 1,p

G (M) ↪→ Lq(M) is compact, where W 1,p
G (M) denotes the set of G-invariant functions

of W 1,p
g (M). Berestycki–Lions-type compactness results have been extended to non-compact metric

measure spaces as well, see Górka [21], and generalized to Lebesgue–Sobolev spaces W 1,p(·)
G (M) in the

setting of complete Riemannian manifolds, see Gaczkowski, Górka and Pons [19] and Skrzypczak [40].
Skrzypczak and Tintarev [41, 44] identified general geometric conditions that are behind the com-

pactness of Sobolev embeddings of the type W 1,p
G (M) ↪→ Lq(M) for certain ranges of p and q; their

studies deeply depend on the curvature of the Riemannian manifold. In the light of their works, our
purpose is twofold; namely, we provide an alternative characterization of the properties described by
Skrzypczak and Tintarev [41, 44] by using the expansion of geodesic balls and state the compact
Sobolev embeddings of isometry-invariant Sobolev functions to Lebesgue spaces for the full admissible
range of parameters. Given d ∈ N with d ≥ 2, we say that (p, q) ∈ (1,∞) × (1,∞] is a d-admissible
pair whenever

(S): p < q < p∗ = pd
d−p if 1 < p < d (Sobolev-type);

(MT): q ∈ (p,∞) if p = d (Moser-Trudinger-type);
(M): q = +∞ if p > d (Morrey-type).
In order to present our results, let (M, g) be a complete d-dimensional Riemannian manifold, and

let dg : M × M → [0,∞) be the distance function induced by the Riemannian metric g. Denote
by Isomg(M) the isometry group of the manifold (M, g). It is well-known that Isomg(M) is a Lie
group with respect to the compact open topology and it acts differentiably on M . Let G be a compact
connected subgroup of Isomg(M). In the sequel, we denote the action of an element ξ ∈ G by ξx := ξ(x)
for every x ∈M . Let

FixM (G) = {x ∈M : ξx = x for all ξ ∈ G}
be the fixed point set of G on M . Denote by OxG = {ξx : ξ ∈ G} the G-orbit of the point x ∈M . The
subspace of W 1,p

g (M) consisting by G-invariant functions is

W 1,p
G (M) =

{
u ∈W 1,p

g (M) : u ◦ ξ = u for all ξ ∈ G
}
.

Since G is a subgroup of isometries, W 1,p
G (M) turns out to be a closed subspace of W 1,p

g (M). We say
that a continuous action of a group G on a complete Riemannian manifold M is coercive (see Tintarev
[44, Definition 7.10.8] or Skrzypczak and Tintarev [41, Definition 1.2]), if for every t > 0, the set

Ot := {x ∈M : diamOxG ≤ t}

is bounded. Let m(y, ρ) be the maximal number of mutually disjoint geodesic balls with radius ρ on
OyG, i.e.

m(y, ρ) = sup {n ∈ N : ∃ξ1, . . . , ξn ∈ G such that Bg(ξiy, ρ) ∩Bg(ξjy, ρ) = ∅,∀i 6= j} , (1.1)

where Bg(x, ρ) = {z ∈ M : dg(x, z) < ρ} is the usual metric ball in M . For ρ > 0 and x0 ∈ M fixed,
we introduce the following expansion condition

(EC)G: m(y, ρ)→∞ as dg(x0, y)→∞.
Clearly, condition (EC)G is independent of the choice of x0.

Now, we are in the position to state the first main result, concerning Hadamard manifolds (i.e.,
simply connected, complete Riemannian manifolds with non-positive sectional curvature):

Theorem 1.1. Let (M, g) be a d-dimensional Hadamard manifold, and let G be a compact connected
subgroup of Isomg(M) such that FixM(G) 6= ∅. Then the following statements are equivalent:

(i) G is coercive;
(ii) FixM (G) is a singleton;
(iii) (EC)G holds.

Moreover, from any of the above statements it follows that the embedding W 1,p
G (M) ↪→ Lq(M) is

compact for every d-admissible pair (p, q).



SOBOLEV COMPACTNESS VERSUS ORBIT EXPANSIONS 3

We notice that the equivalence between (i) and (ii) in Theorem 1.1 is proved by Skrzypczak
and Tintarev [41, Proposition 3.1], from which they conclude the compactness of the embedding
W 1,p
G (M) ↪→ Lq(M) for the admissible case (S); for a similar result in the case (MT), see Kristály [27].

Accordingly, our purpose in Theorem 1.1 is to characterize their geometric properties by our expan-
sion condition (EC)G, by applying a careful constructive argument based on the Rauch comparison
principle, complementing also the admissible range of parameters in the Morrey-case (M).

Our next result concerns Riemannian manifolds with bounded geometry (i.e., complete non-compact
Riemannian manifolds with Ricci curvature bounded from below having positive injectivity radius):

Theorem 1.2. Let (M, g) be a d-dimensional Riemannian manifolds with bounded geometry, and let
G be a compact connected subgroup of Isomg(M). Then the following statements are equivalent:

(i) G is coercive;
(ii) (EC)G holds;
(iii) the embedding W 1,p

G (M) ↪→ Lq(M) is compact for every d-admissible pair (p, q);

(iv) the embedding W 1,p
G (M) ↪→ Lq(M) is compact for some d-admissible pair (p, q).

In Theorem 1.2, the equivalence between (i) and the compactness of the embedding W 1,p
G (M) ↪→

Lq(M) for every d-admissible pair (p, q) in (S) is well known by Tintarev [44, Theorem 7.10.12]; in
addition, Gaczkowski, Górka and Pons [21, 19] proved that a slightly stronger form of (EC)G implies
(iii) in the (S) admissible case by using a Strauss-type argument. Thus, the novelty of Theorem 1.2 is
the equivalence of our expansion condition (EC)G not only with the coerciveness of G but also with
the validity of the compact embeddings in the full range of d-admissible pairs (p, q).

Our next aim is to study similar compactness results on non-compact Finsler manifolds. We notice
that in non-Riemannian Finsler settings the situation may change dramatically; indeed, there exist
non-compact Finsler–Hadamard manifolds (M,F ) such that the Sobolev space W 1,p

F (M) over (M,F )
is not even a vector space, see Farkas, Kristály and Varga [18], as well as Kristály and Rudas [30].
In spite of such examples, it turns out that similar compactness results to Theorems 1.1 & 1.2 can
be established on a subclass of Finsler manifolds, namely on Randers spaces with finite reversibility
constant.

Randers spaces are specific non-reversible Finsler structures which are deduced as the solution
of the Zermelo navigation problem. In fact, a Randers metric shows up as a suitable perturbation
of a Riemannian metric; more precisely, a Randers metric on a manifold M is a Finsler structure
F : TM → R defined as

F (x, y) =
√
gx(y, y) + βx(y), (x, y) ∈ TM, (1.2)

where g is a Riemannian metric and βx is a 1-form on M . For further use, let ‖β‖g(x) :=
√
g∗x(βx, βx)

for every x ∈M, where g∗ is the co-metric of g.
In order to state our result on Randers spaces, we emphasize that if F is given by (1.2), then the

isometry group of (M,F ) is a closed subgroup of the isometry group of the Riemannian manifold (M, g),
see Deng [12, Proposition 7.1]. As usual, W 1,p

F,G(M) stands for the subspace of G-invariant functions
of W 1,p

F (M), where G is a subgroup of IsomF (M), while mF (y, ρ) denotes the maximal number of
mutually disjoint geodesic Finsler balls with radius ρ on the orbit OyG.

Theorem 1.3. Let (M,F ) be a d-dimensional Randers space endowed with the Finsler metric (1.2),
such that (M, g) is either a Hadamard manifold or a Riemannian manifold with bounded geometry.
Let G be a compact connected subgroup of IsomF (M) such that mF (y, ρ) → ∞ as dF (x0, y) → ∞ for
some x0 ∈ M and ρ > 0. If sup

x∈M
‖β‖g(x) < 1, then for every d-admissible pair (p, q) the embedding

W 1,p
F (M) ↪→ Lq(M) is continuous, while the embedding W 1,p

F,G(M) ↪→ Lq(M) is compact.

In fact, assumption sup
x∈M
‖β‖g(x) < 1 in Theorem 1.3 is equivalent to the finiteness of the reversibility

constant of (M,F ) (see Section 5). Furthermore, Example 5.1 shows that this assumption is indis-
pensable. Indeed, we prove that on the Finslerian Funk model (Bd(1), F ), –which is a non-compact
Finsler manifold of Randers-type, having infinite reversibility constant,– the spaceW 1,p

F (Bd(1)) cannot
be continuously embedded into Lq(Bd(1)) for every d-admissible pair (p, q), thus no further compact
embedding can be expected.
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In the sequel, we provide an application of Theorem 1.3 in the admissible case (M); we notice that
applications in the admissible cases (S) and (MT) can be found in Gaczkowski, Górka and Pons [19]
and Kristály [27], respectively. Accordingly, in the last part of the paper we consider the following
elliptic equation on the d-dimensional Randers space (M,F ) endowed with the metric (1.2), namely{

−∆F,pu(x) = λα(x)h(u(x)), x ∈M,

u ∈W 1,p
F (M),

(Pλ)

where ∆F,p is the Finsler p-Laplace operator with p > d, λ is a positive parameter, α ∈ L1(M)∩L∞(M)

and h : R→ R is a continuous function. For each s ∈ R, put H(s) =

s∫
0

h(t) dt, and we further assume

that:
(A1): there exists s0 > 0 such that, H(s) > 0 ∀s ∈ (0, s0];
(A2): there exist C > 0 and 1 < w < p such that |h(s)| ≤ C(1 + |s|w−1), ∀s ∈ R;
(A3): there exists q > p such that

lim sup
s→0

H(s)

|s|q
<∞.

Theorem 1.4. Let (M,F ) be a d-dimensional Randers space endowed with the Finsler metric (1.2)
such that supx∈M ‖β‖g(x) < 1 and g is a Riemannian metric where (M, g) is a Hadamard manifold
with sectional curvature bounded above by −κ2, κ > 0. Let G be a compact connected subgroup of
IsomF (M) such that FixM (G) = {x0} for some x0 ∈ M . Let h : R → R be a continuous function
verifying (A1) – (A3), and α ∈ L1(M) ∩ L∞(M) be a non-zero, non-negative function which depends
on dF (x0, ·) and satisfies sup

R>0
essinf

dF (x0,x)≤R
α(x) > 0. Then there exists an open interval Λ ⊂ [0, λ∗] and

a number µ > 0 such that for every λ ∈ Λ, problem (Pλ) admits at least three solutions in W 1,p
F,G(M)

having W 1,p
F (M)-norms less than µ.

The proof of Theorem 1.4 is based on the compact embedding from Theorem 1.3 combined with
variational arguments.

The organization of the paper is the following. After presenting some preliminary results in Rie-
mannian geometry (see Section 2), Sections 3 and 4 are devoted to the proof of Theorems 1.1 & 1.2,
respectively. Section 5 contains preliminaries on Randers spaces and the proof of Theorem 1.3, together
with Example 5.1, emphasizing the sharpness of Theorem 1.3. Finally, in the last part of Section 5,
we present the proof of Theorem 1.4.

2. Preliminaries

Let (M, g) be a complete non-compact Riemannian manifold with dimM = d. Let TxM be the
tangent space at x ∈ M , TM =

⋃
x∈M

TxM be the tangent bundle, and dg : M ×M → [0,+∞) be

the distance function associated to the Riemannian metric g. Let Bg(x, ρ) = {y ∈ M : dg(x, y) < ρ}
be the open metric ball with center x and radius ρ > 0; if dvg is the canonical volume element on

(M, g), the volume of a bounded open set Ω ⊂ M is Volg(Ω) =

∫
Ω

dvg = Hd(Ω). If dσg denotes the

(d− 1)-dimensional Riemannian measure induced on ∂Ω by g, then

Areag(∂Ω) =

∫
∂Ω

dσg = Hd−1(∂Ω)

stands for the area of ∂Ω with respect to the metric g. Hereafter, Hl denotes the l-dimensional
Hausdorff measure.

Let p > 1. The norm of Lp(M) is given by

‖u‖Lp(M) =

(∫
M
|u|pdvg

)1/p

.

Let u : M → R be a function of class C1. If (xi) denotes the local coordinate system on a coordinate
neighbourhood of x ∈ M , and the local components of the differential of u are denoted by ui = ∂u

∂xi
,
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then the local components of the gradient ∇gu are ui = gijuj . Here, gij are the local components of
g−1 = (gij)

−1. In particular, for every x0 ∈M one has the eikonal equation

|∇gdg(x0, ·)| = 1 a.e. on M. (2.1)

When no confusion arises, if X,Y ∈ TxM , we simply write |X| and 〈X,Y 〉 instead of the norm |X|x
and inner product gx(X,Y ) = 〈X,Y 〉x, respectively.

The Lp(M) norm of ∇gu : M → TM is given by

‖∇gu‖Lp(M) =

(∫
M
|∇gu|pdvg

) 1
p

.

The space W 1,p
g (M) is the completion of C∞0 (M) with respect to the norm

‖u‖p
W 1,p
g (M)

= ‖u‖pLp(M) + ‖∇gu‖pLp(M).

For any c ≤ 0, let

Vc,d(ρ) = dωd

∫ ρ

0
sc(t)

d−1dt

be the volume of the ball with radius ρ > 0 in the d-dimensional space form (i.e., either the hyperbolic
space with sectional curvature c when c < 0, or the Euclidean space when c = 0), where

sc(t) =

{
t if c = 0,
sinh(

√
−ct)√
−c if c < 0,

and ωd is the volume of the unit d-dimensional Euclidean ball. Note that for every x ∈M , we have

lim
ρ→0+

Volg(Bg(x, ρ))

Vc,d(ρ)
= 1. (2.2)

The notation K ≤ c means that the sectional curvature is bounded from above by c at any point and
direction. The Bishop-Gromov volume comparison principle states that if (M, g) be a d-dimensional
Hadamard manifold with K ≤ c ≤ 0 and x ∈M fixed, then the function

ρ 7→ Volg(Bg(x, ρ))

Vc,d(ρ)
, ρ > 0

is non-decreasing; in particular, from (2.2) one has

Volg(Bg(x, ρ)) ≥ Vc,d(ρ) for all ρ > 0. (2.3)

If equality holds in (2.3) for all x ∈M and ρ > 0, then K ≡ c; for further details, see Shen [38].
In a similar way, if the Ricci curvature of (M, g) is bounded from below by (n − 1)c (with c ≤ 0),

then

ρ 7→ Volg(Bg(x, ρ))

Vc,d(ρ)
, ρ > 0

is non-increasing; moreover, by (2.2) one has

Volg(Bg(x, ρ)) ≤ Vc,d(ρ) for all ρ > 0. (2.4)

Let G be a compact connected subgroup of Isomg(M), and let OxG = {ξx : ξ ∈ G} be the orbit of
the element x ∈M . The action of G on W 1,p

g (M) is defined by

(ξu)(x) = u(ξ−1x) for all x ∈M, ξ ∈ G, u ∈W 1,p
g (M), (2.5)

where ξ−1 : M → M is the inverse of the isometry ξ. We say that a continuous action of a group G
on a complete Riemannian manifold M is coercive (see Tintarev [44, Definition 7.10.8] or Skrzypczak
and Tintarev [41, Definition 1.2]) if for every t > 0, the set

Ot = {x ∈M : diamOxG ≤ t}
is bounded. Let

W 1,p
G (M) = {u ∈W 1,p

g (M) : ξu = u for all ξ ∈ G}

be the subspace of G-invariant functions of W 1,p
g (M).

Let C (M) be the space of continuous functions u : M → [0,∞) having compact support D ⊂ M ,
where D is smooth enough, u being of class C2 in D and having only non-degenerate critical points
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in D. Based on classical Morse theory and density arguments, in the sequel we shall consider test
functions u ∈ C (M) in order to handle generic Sobolev inequalities.

Let u ∈ C (M) and Ω ⊂ supp(u) ⊂ M be an open set. Similarly to Druet, Hebey, and Vaugon
[15], we may associate to the restriction of u to Ω, namely u|Ω, its Euclidean rearrangement function
u∗ : Be(0, RΩ)→ [0,∞), which is radially symmetric, non-increasing in |x|, and for every t ≥ infΩ u is
defined by

Vole({x ∈ Be(0, RΩ) : u∗(x) > t}) = Volg({x ∈ Ω : u(x) > t}); (2.6)
here, Vole denotes the usual d-dimensional Euclidean volume and RΩ > 0 is chosen such that Volg(Ω) =

Vole(Be(0, RΩ)) = ωdR
d
Ω. In the sequel, we state the most important properties of this rearrangement

which are crucial in the proof of Theorem 1.1; the proof relies on suitable application of the co-area
formula combined with the weak form of the isoperimetric inequality on Hadamard manifolds (for a
similar proof, see Druet, Hebey, and Vaugon [15], and Kristály [28]).

Lemma 2.1. Let (M, g) be a d(≥ 2)−dimensional Hadamard manifold. Let u ∈ C (M) be a non-zero
function, Ω ⊂ supp(u) ⊂ M be an open set, and u∗ : Be(0, RΩ)→ [0,∞) its Euclidean rearrangement
function. Then the following properties hold:

(i) Norm-preservation: for every q ∈ (0,∞], ‖u‖Lq(Ω) = ‖u∗‖Lq(Be(0,RΩ));
(ii) Pólya-Szegő inequality: for every p > 1,

‖∇gu‖Lp(Ω) ≥
C(d)

dω
1
d
d

‖∇u∗‖Lp(Be(0,RΩ)), (2.7)

where C(d) > 0 is the Croke-constant (see Croke [11]), i.e., C(2) = 1 and

C(d) = (dωd)
1− 1

d

(
(d− 1)ωd−1

∫ π
2

0
cos

d
d−2 (t) sind−2(t) dt

) 2
d
−1

, d ≥ 3.

We conclude this section with the following Rellich–Kondrachov-type embedding, an expected result
based on Aubin [3, Chapter 2]; nevertheless, for convenience, we propose here an alternative proof which
is needed both in Theorems 1.1 and 1.2.

Lemma 2.2. Let (M, g) be a d-dimensional complete Riemannian manifold. If R > 0, then the
embedding W 1,p

g (Bg(y,R)) ↪→ Lq(Bg(y,R)) is compact for every y ∈ M and every d-admissible pair
(p, q).

Proof. Since Bg(y,R) ⊂ M is compact (due to Hopf-Rinow theorem), the Ricci curvature is bounded
from below, see Bishop and Crittenden [6, p. 166] and the injectivity radius is positive on Bg(y,R),
see Klingenberg [24, Proposition 2.1.10] or Bao, Chern, and Shen [4, Chapter 8].

Thus, we are in the position to use Hebey [22, Theorem 1.2]; therefore, for every ε > 0 there exists
a harmonic radius rH > 0, such that for every z ∈ Bg(y,R) one can find a harmonic coordinate chart
ϕz : Bg(z, rH)→ Rd such that ϕz(z) = 0 and the components (gjl) of g in this chart satisfy

1

1 + ε
δjl ≤ gjl ≤ (1 + ε)δjl (2.8)

as bilinear forms. Therefore, it follows that
1√

1 + ε
dg(z, x) ≤ |ϕz(x)| ≤

√
1 + εdg(z, x), for all x ∈ Bg(z, rH). (2.9)

Now let 0 < ρ < rH . Since Bg(y,R) is compact, there exists L ∈ N and z1, . . . , zL ∈ Bg(y,R) such

that Bg(y,R) ⊆
L⋃
j=1

Bg(zj , ρ). For every zj ∈ B(y,R), j = 1, L, denote by

Uzj := Bg(zj , ρ) ∩Bg(y,R) and Ωzj := ϕzj
(
Uzj
)
⊂ Rd,

thus
{
Uzj
}
j=1,L

is a finite covering of Bg(y,R).

First observe that for any j ∈ {1, . . . , L} and u ∈W 1,p
g (Bg(y,R)), on account of (2.9), we have that∫

Uzj

|∇gu|p + |u|pdvg ≥
(

1√
1 + ε

)d+p
(∫

Ωzj

|∇(u ◦ ϕ−1
zj )|p + |u ◦ ϕ−1

zj |
pdx

)
. (2.10)
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We first focus on the (S) admissible case. Observe that∫
Uzj

|u|qdvg ≤ (1 + ε)
d
2

∫
Ωzj

|u ◦ ϕ−1
zj |

qdx. (2.11)

Now, by the euclidean Sobolev inequality (see Brezis [8, Corollary 9.14]), for every j ∈ {1, . . . , L}
there exists a constant CS,j such that(∫

Ωzj

|u ◦ ϕ−1
zj |

qdx

) 1
q

≤ CS,j

(∫
Ωzj

|∇(u ◦ ϕ−1
zj )|p + |u ◦ ϕ−1

zj |
pdx

) 1
p

. (2.12)

Therefore, by (2.10), (2.11) and (2.12) we have that

‖u‖Lq(Bg(y,R)) ≤
L∑
j=1

‖u‖Lq(Uzj ) ≤ (1 + ε)
d
2q

L∑
j=1

‖u ◦ ϕ−1
zj ‖Lq(Ωzj )

≤ (1 + ε)
d
2q

L∑
j=1

CS,j‖u ◦ ϕ−1
zj ‖W 1,p(Ωzj ) ≤ (1 + ε)

dp+dq+pq
2pq

L∑
j=1

CS,j‖u‖W 1,p
g (Uzj )

≤ (1 + ε)
dp+dq+pq

2pq

L∑
j=1

CS,j · ‖u‖W 1,p
g (Bg(y,R))

, (2.13)

which proves the validity of the continuous Sobolev embedding W 1,p
g (Bg(y,R)) ↪→ Lq(Bg(y,R)) in the

(S) case. Now we prove that the previous embedding is compact. To do this, let {un}n be a bounded
sequence in W 1,p

g (Bg(y,R)), and denote ũjn = un|Uzj for every j ∈ {1, . . . , L}. Using (2.10), we have

that for every j, the sequence ũjn = un ◦ ϕ−1
zj is bounded in W 1,p(Ωzj ). By the Rellich-Kondrachov

theorem one gets that there exists a subsequence of {ũjn}n which is a Cauchy sequence in Lq(Ωzj ). Let
{um}m be a subsequence of {un}n such that for any j, {ũjm}m is a Cauchy sequence in Lq(Ωzj ). Thus,
applying (2.11), for any m1,m2 we have that

‖um1 − um2‖Lq(Bg(y,R)) ≤
L∑
j=1

‖ujm1
− ujm2

‖Lq(Uzj ) ≤ (1 + ε)
d
2q

L∑
j=1

‖ũjm1
− ũjm2

‖Lq(Ωzj ),

hence {um}m is a Cauchy sequence in Lq(Bg(y,R)), which proves the claim.
One can prove the (MT) admissible case analogously, replacing (2.12) with the euclidean Sobolev

inequality when p = d.
Finally, in the (M) case, we have that

sup
x∈Bg(y,R)

|u(x)| = max
j=1,L

‖u‖C0(Uzj ) = max
j=1,L

‖u ◦ ϕ−1
zj ‖C0(Ωzj ). (2.14)

Again, by Brezis [8, Corollary 9.14], for each j ∈ {1, . . . , L} there exists a constant C0,j such that

‖u ◦ ϕ−1
zj ‖C0(Ωzj ) ≤ C0,j · ‖u ◦ ϕ−1

zj ‖W 1,p(Ωzj ),

thus this inequality together with (2.10) and (2.14) yields that

sup
x∈Bg(y,R)

|u(x)| ≤ max
j=1,L

C0,j‖u ◦ ϕ−1
zj ‖W 1,p(Ωzj )

≤ max
j=1,L

C0,j(1 + ε)
d+p
2p ‖u‖

W 1,p
g (Uzj )

≤ max
j=1,L

C0,j · (1 + ε)
d+p
2p ‖u‖

W 1,p
g (Bg(y,R))

, (2.15)

which proves again that the continuous embedding holds. Now we prove that this injection is com-
pact. To do this, consider a bounded set A ⊂ W 1,p

g (Bg(y,R)) , i.e. there exists M > 0 such that
‖u‖p

W 1,p
g (Bg(y,R))

≤ M for all u ∈ A. From the previous inequality and (2.15) it follows that there

exists C2 > 0 such that ‖u‖
C0(Bg(y,R))

≤MC2 for all u ∈ A. Thus by Ascoli’s Theorem (see Aubin [3,

Theorem 3.15]), we get that A is precompact in C0(Bg(y,R)), which concludes the proof. �
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3. Proof of Theorem 1.1

(i)⇔ (ii) This equivalence can be found in Skrzypczak and Tintarev [41, Proposition 3.1].
(ii)⇒ (iii) Without loss of any generality, it is enough to prove that m(γ(t), ρ)→∞ as t→∞ for

every unit speed geodesic γ : [0,∞) → M emanating from x0 = γ(0), i.e., γ(t) = expx0
(ty) for some

y ∈ Tx0M with |y|gx0
= 1, where gx0 and | · |gx0

denote the inner product and norm on Tx0M induced
by the metric g.

We notice that Oγ(t)
G contains infinitely many elements for every t > 0. Indeed, Oγ(t)

G is a connected
submanifold of M whose dimension is at least 1; if its dimension would be 0 for some t0 > 0, by
connectedness, Oγ(t0)

G would be a singleton, i.e.,

γ(t0) ∈ FixM (G) = {x0} = {γ(0)},

which is a contradiction. Therefore, cardOγ(t)
G = +∞ for every t > 0.

If for a fixed t0 > 0, we choose different elements ξi ∈ G, i ∈ N such that ξiγ(t0) ∈ Oγ(t0)
G , then

we also have (ξi ◦ γ)(t) = ξiγ(t) ∈ Oγ(t)
G for every i ∈ N and t > 0; the latter statement immediately

follows from the fact that ξi ∈ G, i ∈ N are isometries, thus t 7→ (ξi ◦ γ)(t), are also geodesics of unit
speed emanating from x0.

Let us transplant the geodesic balls Bg(ξiγ(t), ρ) ⊂ M , i ∈ N, into the tangent space Tx0M by the
exponential map expx0

, i.e., exp−1
x0

(Bg(ξiγ(t), ρ)) ⊂ Tx0M , i ∈ N.
We claim that

exp−1
x0

(Bg(ξiγ(t), ρ)) ⊂ Bx0
ρ (exp−1

x0
(ξiγ(t))) =: Bt

i(ρ), i ∈ N, (3.1)

where Bx0
ρ (v) = {z ∈ Tx0M : |v − z|gx0

< ρ} ⊂ Tx0M for any v ∈ Tx0M.

To see this, let i ∈ N and t ∈ [0,∞) be arbitrarily fixed. Take an element z ∈ exp−1
x0

(Bg(ξiγ(t), ρ)),
thus z̃ := expx0

(z) ∈ Bg(ξiγ(t), ρ). If z = exp−1
x0

(ξiγ(t)), we have nothing to prove. Otherwise, consider
the geodesic triangle uniquely determined by the points x0, ξiγ(t) and z̃, respectively. Since (M, g)
is a Hadamard manifold, the Rauch comparison principle (see e.g. do Carmo [14, Proposition 2.5, p.
218]) implies that

| exp−1
x0

(ξiγ(t))− z|gx0
= | exp−1

x0
(ξiγ(t))− exp−1

x0
(z̃)|gx0

≤ dg(ξiγ(t), z̃) < ρ,

which concludes the proof of (3.1).
Since the geodesics ξi ◦ γ are mutually different for any i ∈ N, the angle between any two vectors

exp−1
x0

(ξiγ(t)) ⊂ Tx0M are positive and it does not depend on the value of t > 0. Let αij ∈ (0, π] be
the angle between vi := exp−1

x0
(ξiγ(t)) and vj := exp−1

x0
(ξjγ(t)), i 6= j.

Geometrically, the semilines τ 7→ τvi ⊂ Tx0M , τ > 0, move away in Tx0M from each other,
independently of t > 0. Accordingly, it turns out that larger values of t > 0 imply more mutually
disjoint balls of the form Bt

i(ρ). More precisely, if we define

m̃(t, ρ) = sup
{
n ∈ N : Bt

k(ρ) ∩Bt
l (ρ) = ∅, ∀k 6= l with k, l ∈ {1, . . . , n}

}
,

we claim that m̃(t, ρ)→∞ as t→∞. To prove this, for every n ≥ 2, let

tn := max

{
ρ

sin
(αij

2

) : i, j ∈ {1, . . . , n}, i 6= j

}
.

Let t1 = 0. By the latter definition, it turns out that m̃(t, ρ) ≥ n whenever t ≥ tn. Let us observe that
the sequence {tn}n is non-decreasing and lim

n→∞
tn = +∞. The former statement is trivial, while the

limit follows from the fact that the sequence of wi := vi
|vi|gx0

, i ∈ N (belonging to the unit sphere of
Tx0M with center 0 ∈ Tx0M) has a convergent subsequence, say {wik}k; in particular, the sequence of
angles {αikik+1

}k converges to 0, which implies the validity of the required limit.
Now, let {tnk}k be a strictly increasing subsequence of {tn}n with tn1 = t1 = 0, and let f : [0,∞)→

[0,∞) be defined by
f(s) = tnk + (s− k)(tnk+1

− tnk),

for every s ∈ [k, k + 1), k ∈ N. It is clear that f is strictly increasing and lim
s→∞

f−1(s) = +∞. By the
above construction, for every t > 0, there exists a unique k ∈ N such that tnk ≤ t < tnk+1

.
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In particular, it follows that k = f−1(tnk) ≤ f−1(t) < f−1(tnk+1
) = k + 1, thus

f−1(t)− 1 < k ≤ nk ≤ m̃(t, ρ).

The above relation immediately implies that m̃(t, ρ)→∞ as t→∞.
On the other hand, by (3.1) and the fact that expx0

is a diffeomorphism, it turns out that

Bg(ξiγ(t), ρ) ∩Bg(ξjγ(t), ρ) = ∅, ∀i 6= j with i, j ∈ {1, . . . , m̃(t, ρ)}.

Therefore, we have that
m(γ(t), ρ) ≥ m̃(t, ρ), (3.2)

and the aforementioned limit concludes the proof.
(iii)⇒ (ii) Let us assume that the set FixG(M) is not a singleton, i.e. there exists x0, x1 ∈ FixG(M)

such that δ := dg(x0, x1) > 0. Since M is a Hadamard manifold, there exists a unique minimal
geodesic γ : R → M , parametrized by arc-length, and passing throughout the points x0 and x1. Let
x2 ∈ Imγ \ {x0} be such that dg(x1, x2) = δ and t0 < t1 < t2 with xi = γ(ti), i ∈ {0, 1, 2}. Fix an
arbitrary element ξ ∈ G; in particular, t 7→ γ̃(t) := (ξ ◦ γ)(t) is also a geodesic.

It is clear that γ̃(t2) = ξx2 and due to the fact that x0, x1 ∈ FixG(M), it turns out that γ̃(ti) =
ξxi = xi, i ∈ {0, 1}. Therefore, by the uniqueness of the geodesic between x0 and x1, it follows that
γ̃(t) = γ(t) for every t ∈ [t0, t1]. Since Riemannian manifolds are non-branching spaces, it follows in
fact that γ̃ ≡ γ, thus ξx2 = x2; by the arbitrariness of ξ ∈ G we obtain that x2 ∈ FixG(M) and
dg(x0, x2) = dg(x0, x1) + dg(x1, x2) = 2δ. By repeating this argument, one can construct a sequence of
point {xn}n ⊂M such that xn ∈ FixG(M) and dg(x0, xn) = nδ, n ∈ N. In particular, dg(x0, xn)→∞
as n → ∞ and since xn ∈ FixG(M) for every n ∈ N, it follows that m(xn, ρ) = 1, which is a
contradiction.

(ii)⇒ compact embeddings. First of all, the compactness of embeddings W 1,p
G (M) ↪→ Lq(M) in the

admissible cases (S) and (MT) follow by Skrzypczak and Tintarev [41]. It remains to consider the
admissible case (M), i.e. to prove the compactness of W 1,p

G (M) ↪→ L∞(M) whenever p > d.
To complete this, we first claim that for every ρ > 0 fixed, one has

inf
y∈M

S(y, ρ)−1 > 0, (3.3)

where S(y, ρ) is the embedding constant defined by the embedding W 1,p
g (Bg(y, ρ)) ↪→ C0(Bg(y, ρ)),

see Lemma 2.2. It is clear that S(y, ρ) > 0 can be considered for non-negative and non-zero functions.
To prove (3.3), for y ∈M arbitrarily fixed, let u ∈W 1,p

g (Bg(y, ρ))\{0} be non-negative. By Lemma
2.1/(ii) it turns out that ∫

Bg(y,ρ)
|∇gu|p dvg ≥

C(d)

dω
1
d
d

∫
Be(0,ρ̃y)

|∇u∗|p dx, (3.4)

where u∗ : Be(0, ρ̃y)→ [0,∞) denotes the Euclidean rearrangement of u; in particular, we have

Volg(Bg(y, ρ)) = Vole(Be(0, ρ̃y)) = ωd · ρ̃dy, (3.5)

and
sup

x∈Bg(y,ρ)

|u(x)| = sup
x∈Be(0,ρ̃y)

|u∗(x)| = u∗(0). (3.6)

On the other hand, by the Bishop-Gromov theorem (see (2.3)) together with (3.5), one can see that
ρ ≤ ρ̃y. Thus Be(0, ρ) ⊆ Be(0, ρ̃y), and W 1,p(Be(0, ρ̃y)) ⊆W 1,p(Be(0, ρ)). Accordingly,

S(y, ρ)−1 = inf
u∈W 1,p(Bg(y,ρ))

(∫
Bg(y,ρ)

|∇gu|pdvg +

∫
Bg(y,ρ)

|u|pdvg

) 1
p

sup
x∈Bg(y,ρ)

|u(x)|

≥C(d)

dω
1
d
d

inf
u∗∈W 1,p(Be(0,ρ̃y))

(∫
Be(0,ρ̃y)

|∇u∗|pdx+

∫
Be(0,ρ̃y)

|u∗|pdx

) 1
p

sup
x∈Be(0,ρ̃y)

|u∗(x)|
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≥ C(d)

dω
1
d
d

inf
u∗∈W 1,p(Be(0,ρ))

‖u∗‖W 1,p(Be(0,ρ))

u∗(0)
=
C(d)

dω
1
d
d

inf
u∗∈W 1,p(Be(0,ρ))

‖u∗‖W 1,p(Be(0,ρ))

sup
x∈Be(0,ρ)

|u∗(x)|
> 0.

Since the latter value does not depend on y ∈M , we conclude the proof of (3.3).
Now, let {un}n ⊂W 1,p

G (M) be a bounded sequence and ρ > 0 be an arbitrarily fixed number. Then,
up to a subsequence, un ⇀ u in W 1,p

G (M). Since G is a subgroup of Isomg(M), for every ξ1, ξ2 ∈ G,
by a change of variables, one has

‖un − u‖W 1,p
g (Bg(ξ1y,ρ))

= ‖un − u‖W 1,p
g (Bg(ξ2y,ρ))

.

Therefore, on account of the definition of m(y, ρ) (see (1.1)), we have that

‖un − u‖W 1,p
g (Bg(y,ρ))

≤
‖un − u‖W 1,p

g (M)

m(y, ρ)
.

By using Lemma 2.2 and the latter inequality, we obtain

‖un − u‖C0(Bg(y,ρ))
≤ S(y, ρ)

m(y, ρ)
‖un − u‖W 1,p

g (M)
≤ S(y, ρ)

m(y, ρ)

(
sup
n
‖un‖W 1,p

g (M)
+ ‖u‖

W 1,p
g (M)

)
.

According to (ii) and relation (3.3) we have that

lim
dg(x0,y)→∞

S(y, ρ)

m(y, ρ)
= 0,

thus for every ε > 0 there exists Rε > 0 such that

sup
dg(x0,y)≥Rε

‖un − u‖C0(Bg(y,ρ)) ≤
ε

2
for every n ∈ N. (3.7)

On the other hand, un ⇀ u in W 1,p
G (M), thus by the Rellich–Kondrachov-type result (see Lemma 2.2)

it follows that un → u in C0
(
B(y,Rε)

)
, hence there exists nε ∈ N such that

‖un − u‖C0(B(y,Rε)) < ε for all n ≥ nε. (3.8)

Inequalities (3.7) and (3.8) yield that un → u in L∞(M), which concludes the proof. �

Remark 3.1. (a) The quantity m(y, ρ) can be easily estimated on non-positively curved space forms.
Indeed, for instance, if d = 2 and G = O(2), x0 = 0, then for ρ > 0 enough small, one hasm(y, ρ) ∼ π|y|

ρ

as |y| → ∞ in the Euclidean case R2, and m(y, ρ) ∼ π
ρ
|y|

1−|y|2 as |y| → 1 in the Poincaré ball model
H2
−1 = {y ∈ R2 : |y| < 1} (with constant sectional curvature −1).
(b) Relation (3.2) can be viewed as a comparison of the maximal number of mutually disjoint

geodesic balls with radius ρ on (M, g) and the Euclidean space, respectively. In fact, m̃(t, ρ) is related
to the particular inner product given by gx0 , which is equivalent to the usual Euclidean metric. This
comparison result can be efficiently applied for every Hadamard manifold. In particular, in the usual
Euclidean space Rd, a simple covering argument shows that

m̃(t, ρ) = ω
(
V −1

cap(2ρ/t)
)

as t→∞, 1

where Vcap(r) denotes the area of the spherical cap of radius r > 0 on the unit (d − 1)-dimensional
sphere. For instance, when d = 3, we have m̃(t, ρ) = ω

(
sin−2(ρ/t)

)
as t→∞.

4. Proof of Theorem 1.2

(i)⇒ (ii) Let us assume by contradiction that (EC)G fails, i.e. there exist K ∈ N and a sequence
{xn}n ⊂M such that

m(xn, ρ) ≤ K for every n ∈ N and dg(x0, xn)→∞ as n→∞.
We are going to prove that xn ∈ O4(K+1)ρ for every n ∈ N, which will imply in particular that O4(K+1)ρ

is unbounded, contrary to our assumption. We recall that Ot = {x ∈M : diamOxG ≤ t}, t > 0.
In order to prove the claim, it suffices to show that diamOxnG ≤ 4(K + 1)ρ for every n ∈ N. To do

this, let n ∈ N be fixed and kn := m(xn, ρ) ≤ K. By the definition ofm(xn, ρ), there exist ξi := ξni ∈ G,

1f(t) = ω(g(t)) as t→∞ if there exist c, δ > 0 such that |f(t)| ≥ c|g(t)| for every t > δ.
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i ∈ {1, ..., kn}, such that Bg(ξixn, ρ)∩Bg(ξjxn, ρ) = ∅, ∀ i 6= j, i, j ∈ {1, ..., kn}, and the number kn ∈ N
is maximal with this property.

On one hand, if we pick an arbitrary element ξ ∈ G, it follows that there exists i ∈ {1, ..., kn} such
that dg(ξxn, ξixn) < 2ρ. If this is not the case, i.e., dg(ξxn, ξixn) ≥ 2ρ for every i ∈ {1, ..., kn}, it
follows that Bg(ξxn, ρ)∩Bg(ξixn, ρ) = ∅,∀i ∈ {1, ..., kn}, i.e., one can find one more element ξkn+1 ∈ G
with the disjointness property, i.e., Bg(ξixn, ρ) ∩ Bg(ξjxn, ρ) = ∅,∀ i 6= j, i, j ∈ {1, ..., kn + 1}, which
contradicts the maximality of kn = m(xn, ρ). Accordingly,

diamOxnG ≤ 4ρ+ diam{ξixn : i ∈ {1, ..., kn}}.

We claim that {ξixn : i ∈ {1, ..., kn}} ⊂ Bg(ξ1xn, 2knρ); clearly, we may put any element ξi ∈ G,
i ∈ {1, ..., kn} instead of ξ1 ∈ G in the right hand side of the above inclusion. We observe that for
kn = 1 the claim trivially holds. Thus, let kn ≥ 2. Assume the contrary, i.e., there exists i0 ∈ {2, ..., kn}
such that ξi0xn /∈ Bg(ξ1xn, 2knρ), that is

dg(ξi0xn, ξ1xn) ≥ 2knρ.

We now fix a geodesic segment γ̃ : [0, 1] 7→ OxnG joining the points ξ1xn ∈ OxnG and ξi0xn ∈ O
xn
G ; this can

be done due to the fact thatOxnG is a complete connected submanifold of (M, g) (as a closed submanifold
of the the complete Riemannian manifold (M, g)), see do Carmo [14, Corollary 2.10, p. 149]). Since
dg(γ̃(0), γ̃(1)) = dg(ξ1xn, ξi0xn) ≥ 2knρ, by a continuity reason, we may fix 0 < t1 < ... < tkn−1 < 1
such that

dg(ξ1xn, γ̃(tj)) = 2jρ for every j ∈ {1, ..., kn − 1}.

This particular choice clearly shows that Bg(γ̃(tj), ρ) are situated in some concentric annuli with the
same width; more precisely,

Bg(γ̃(tj), ρ) ⊂ Bg(ξ1xn, (2j + 1)ρ) \Bg(ξ1xn, (2j − 1)ρ), j ∈ {1, ..., kn − 1}.

Beside of the latter property, by dg(ξi0xn, ξ1xn) ≥ 2knρ we also have that

Bg(γ̃(1), ρ) ∩Bg(ξ1xn, (2kn − 1)ρ) = ∅.

Combining all these constructions, it follows that the balls

Bg(γ̃(0), ρ) = Bg(ξ1xn, ρ), Bg(γ̃(t1), ρ)..., Bg(γ̃(tkn−1), ρ) and Bg(γ̃(1), ρ) = Bg(ξi0xn, ρ)

are mutually disjoint sets, whose centers belong to Imγ̃ ⊂ OxnG . Since the number of these balls is
kn + 1, this contradicts again the maximality of kn = m(xn, ρ).

Accordingly,

diamOxnG ≤ 4ρ+ 4knρ ≤ 4(K + 1)ρ,

which concludes the proof.
(ii)⇒ (iii) We shall focus first on the Morrey-case (M), i.e., we assume that p > d and q =∞; then

we discuss the cases (S) and (MT).
Similarly to (3.3), we are going to prove that for every fixed ρ > 0 one has

inf
y∈M

S(y, ρ)−1 > 0, (4.1)

where S(y, ρ) is the embedding constant in W 1,p
g (Bg(y, ρ)) ↪→ C0(Bg(y, ρ)), see Lemma 2.2.

We have that for any ε > 0 there exists rH > 0 depending only on ε, d,K and i0, which satisfies the
following property: for any y ∈M there exists a harmonic coordinate chart ϕ : Bg(y, rH)→ Rd, such
that ϕ(y) = 0, and the components (gjl) of g in this chart satisfy

1

1 + ε
δjl ≤ gjl ≤ (1 + ε)δjl (4.2)

as bilinear forms. Fix ρ < rH , then it is obvious that

Be

(
0,

ρ√
1 + ε

)
⊆ Ωy := ϕ (Bg(y, ρ)) ⊆ Be(0,

√
1 + ερ) ⊂ Rd. (4.3)
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On the other hand, combining (2.10) with (4.3), we have that

S(y, ρ)−1 = inf
u∈W 1,p

g (Bg(y,ρ))

(∫
Bg(y,ρ)

(|∇gu|p + |u|p)dvg

) 1
p

sup
x∈Bg(y,ρ)

|u(x)|

≥ (1 + ε)
− d+p

2p inf
u∈W 1,p

g (Bg(y,ρ))

(∫
Ωy

(|∇(u ◦ ϕ−1)|p + |u ◦ ϕ−1|p)dx

) 1
p

sup
x∈Ωy

|u ◦ ϕ−1(x)|

≥ (1 + ε)
− d+p

2p inf
f∈W 1,p(Ωy)

‖f‖W 1,p(Ωy)

‖f‖C0(Ωy)

.

Let f∗ : Ω∗y → [0,∞) be the symmetric decreasing rearrangement of the function f (see Lieb and Loss
[31, Section 3.3]), thus Vole(Ωy) = Vole(Ω

∗
y) and

inf
f∈W 1,p(Ωy)

‖f‖W 1,p(Ωy)

‖f‖C0(Ωy)

≥ inf
f∗∈W 1,p(Ω∗y)

‖f∗‖W 1,p(Ω∗y)

‖f∗‖C0(Ω∗y)

= inf
f∗∈W 1,p(Ω∗y)

‖f∗‖W 1,p(Ω∗y)

f∗(0)
.

Since Be
(

0, ρ√
1+ε

)
⊆ Ω∗y ⊆ Be(0,

√
1 + ερ) ⊂ Rd, we have that

W 1,p

(
Be

(
0,

ρ√
1 + ε

))
⊇W 1,p(Ω∗y) ⊇W 1,p(Be(0,

√
1 + ερ)).

Hence

inf
f∗∈W 1,p(Ω∗y)

‖f∗‖W 1,p(Ω∗y)

f∗(0)
≥ inf

f∗∈W 1,p
(
Be

(
0, ρ√

1+ε

))
‖f∗‖

W 1,p
(
Be

(
0, ρ√

1+ε

))
‖f∗‖

C0

(
Be

(
0, ρ√

1+ε

)) > 0,

meaning that inf
y∈M

S(y, ρ)−1 > 0, which concludes the proof of (4.1).

Now, let {un}n ⊂W 1,p
G (M) be a bounded sequence and ρ > 0 be an arbitrarily fixed number. Then,

up to a subsequence, un ⇀ u in W 1,p
G (M). By using Lemma 2.2, we obtain

‖un − u‖C0(Bg(y,ρ))
≤ S(y, ρ)

m(y, ρ)
‖un − u‖W 1,p

g (M)
≤ S(y, ρ)

m(y, ρ)

(
sup
n
‖un‖W 1,p

g (M)
+ ‖u‖

W 1,p
g (M)

)
.

Due to the validity of (EC)G and relation (4.1) we have that

lim
dg(x0,y)→∞

S(y, ρ)

m(y, ρ)
= 0,

thus for every ε > 0 there exists Rε > 0 such that

sup
dg(x0,y)≥Rε

‖un − u‖C0(Bg(y,ρ)) ≤
ε

2
for every n ∈ N. (4.4)

Since un ⇀ u in W 1,p
G (M), by the Rellich–Kondrachov-type result (see Lemma 2.2) it follows that

un → u in C0
(
B(y,Rε)

)
, hence there exists nε ∈ N such that

‖un − u‖C0(B(y,Rε)) < ε for all n ≥ nε. (4.5)

Inequalities (4.4) and (4.5) yield that un → u in L∞(M), ending the proof in the admissible case (M).
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Let us fix an arbitrary d-admissible pair (p, q) from (S) or (MT). A suitable modification of the
above argument, based on Lemma 2.1/(i), implies that

S(y, ρ)−1 := inf
u∈W 1,p

g (Bg(y,ρ))

(∫
Bg(y,ρ)

(|∇gu|p + |u|p)dvg

) 1
p

(∫
Bg(y,ρ)

|u|qdvg

) 1
q

> 0.

The latter inequality together with the validity of (EC)G implies that

lim
dg(x0,y)→∞

S(y, ρ)

m(y, ρ)
= 0.

The rest is analogous as before, by using the Rellich–Kondrachov compactness resultW 1,p(Bg(y,R)) ↪→
Lq(Bg(y,R)) for any R > 0 fixed.

(iii)⇒ (iv) Trivial.
(iv)⇒ (i) We follow the argument presented in Skrzypczak and Tintarev [42, Theorem 4.3] (see also

Tintarev [44, Theorem 7.10.12]); in fact, the admissible case (S) is exactly the one proved in Tintarev
[44]. Since the case (MT) can be similarly discussed as (S), we restrict our proof to the remaining
admissible case (M).

Suppose that G is not coercive, thus there exists R > 0 and a discrete sequence of xn ∈M , such that
OxnG ⊂ Bg(xn, R) and dg(x0, xn) → ∞ as n → ∞. Let r ∈ (0, inj(M,g)) and let us replace {xn}n with
a renumbered subsequence such that distance between any two terms in the sequence will be greater
than 2(R+ r). We define a sequence of functions {fn}n by

fn(x) =

∫
G

(r − dg(ξx, xn))+ dξ,

where the Haar measure of G is normalized to the value 1, and u+ = max{0, u}. It is easy to see that
fn ∈ W 1,p

G (M) for every n ∈ N and any fixed p ∈ (1,∞); indeed, since the support of fn is a subset
of Bg(ξ−1xn, r), by an elementary computation (with (2.1) in hand) and the volume-estimate (2.4), it
follows that

‖fn‖W 1,p
g (M)

≤ C(p, r, d),

where C(p, r, d) > 0 does not independent on n. On one hand, since the supports of the functions fn
are disjoint sets, we have that

‖fl − fn‖L∞(M) = ‖fl‖L∞(M) + ‖fn‖L∞(M) ≥ 2 inf
n
‖fn‖L∞(M), l 6= n.

On the other hand,

Volg(Bg(xn, R+ r))‖fn‖L∞(M) ≥
∫
M
fn(x) dvg =

∫
M

∫
G

(r − dg(ξx, xn))+ dξ dvg(x)

=

∫
G

∫
M

(r − dg(ξx, xn))+ dvg(x) dξ

x:=ξ−1y
=

∫
G

∫
M

(r − dg(y, xn))+ dvg(y) dξ

=

∫
M

(r − dg(y, xn))+ dvg(y)

≥ r

2
Volg

(
Bg

(
xn,

r

2

))
.

Since (M, g) is a Riemannian manifold with bounded geometry, then Volg is doubling on (M, g), thus

‖fn‖L∞(M) ≥ C̃(r,R, d),

where C̃(r,R, d) > 0 does not independent on n. Thus, {fn}n is not a Cauchy sequence in L∞(M), a
contradiction. �

The following theorem is related to the results obtained in Hebey and Vaugon [23]:
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Theorem 4.1. Let (M, g) be a d-dimensional complete non-compact Riemannian manifold with Ricci
curvature bounded from below having positive injectivity radius, and let G be a compact connected
subgroup of Isomg(M) such that Fix(G) = {x0} for some x0 ∈M and ρ > 0 be small enough. Assume
that there exists κ = κ(G, d) > 0 such that for every y ∈M with dg(x0, y) ≥ 1, one has

Hl(OyG) ≥ κ · dg(x0, y), (H)

where l = l(y) = dimOyG ≥ 1. Then the embedding W 1,p
G (M) ↪→ L∞(M) is compact for every p > d.

Proof. Let y ∈ M be arbitrarily fixed such that dg(x0, y) ≥ 1, and consider the elements ξi ∈ G,
i = 1, . . . ,m(y, ρ) which appear in the definition of m(y, ρ) in (1.1). Let also l = l(y) = dimOyG.
Notice that by the connectedness of G, we have l ≥ 1. We claim that

Hl(OyG) ≤ m(y, ρ) sup
i
Hl(Bg(ξiy, kρ) ∩ OyG), (4.6)

for every k > 2 (independent of y). To see this, it is sufficient to prove that

OyG ⊆
⋃
i

(
Bg(ξiy, kρ) ∩ OyG

)
.

Let us fix x ∈ OyG arbitrarily. First, if x ∈
⋃
i

(
Bg(ξiy, ρ) ∩ OyG

)
, we have nothing to prove. If

x /∈
⋃
i

(
Bg(ξiy, ρ) ∩ OyG

)
, then there exists i0 ∈ {1, . . . ,m(y, ρ)} such that

dg
(
x, ∂

(
Bg(ξi0y, ρ) ∩ OyG

))
< ρ.

Indeed, if the contrary holds, then Bg(x, ρ) ∩Bg(ξiy, ρ) = ∅, i = 1, . . . ,m(y, ρ), thus Bg(x, ρ) is a new
ball in the definition of m(y, ρ), contradicting the maximality of m(y, ρ). Therefore, dg(x, ξi0y) < 2ρ,
which means that x ∈ Bg(ξi0y, kρ) ∩ OyG for every k > 2, which proves (4.6).

We also notice that since Fix(G) = {x0}, one has that OyG ⊂ ∂Bg(x0, dg(x0, y)). Indeed, if x = ξy ∈
OyG then dg(x0, x) = dg(x0, ξy) = dg(ξx0, ξy) = dg(x0, y). Thus OyG is an l-dimensional submanifold
of ∂B(x0, dg(x0, y)), l ≤ d − 1. Therefore, a slight modification of Gallot, Hulin, and Lafontaine [20,
Theorem 3.98] gives that for every i = 1, . . . ,m(y, ρ),

Hl(Bg(ξiy, kρ) ∩ OyG) ≤ klωlρl(1 + o(ρ)) as ρ→ 0,

whenever k > 2 is kept small (e.g. k = 3). To see this, we explore that expξiy : TξiyM →M is a local
diffeomorphism at 0 ∈ TξiyM with d(expξiy)0 = id, while for small ρ > 0 one has exp−1

ξiy
(Bg(ξiy, kρ) ∩

OyG) = Be(0, kρ) ∩ exp−1
ξiy

(OyG), and 0 < Hl(exp−1
ξiy

(OyG)) <∞.
Now, if we fix ρ ∈ (0, 1) from the usual range (see Gallot, Hulin, and Lafontaine [20]), it follows by

(4.6) that
Hl(OyG) ≤ m(y, ρ)kl+1ωlρ

l.

Hypothesis (H) and the latter estimate imply that κ · dg(x0, y) ≤ m(y, ρ)kl+1ωlρ
l. By using this

inequality, one can obtain an l = l(y)-independent estimate, namely

κ · dg(x0, y) ≤ m(y, ρ)kdωd−1ρ.

Letting dg(x0, y)→∞ immediately implies that m(y, ρ)→∞. The rest of the proof is similar to the
last part of the proof of Theorem 1.2. �

In the sequel, we provide two examples where hypothesis (H) holds.

Example 4.1. Let Sym(d,R) be the set of symmetric d × d matrices with real values, P(d,R) ⊂
Sym(d,R) be the cone of symmetric positive definite matrices, and P(d,R)1 be the subspace of matrices
in P(d,R) with determinant one. The set P(d,R) is endowed with the scalar product

〈U, V 〉X = Tr(X−1V X−1U) for all X ∈ P(d,R), U, V ∈ TX(P(d,R)) ' Sym(d,R),

where Tr(Y ) denotes the trace of Y ∈ Sym(d,R). One can prove that (P(d,R)1, 〈·, ·〉) is a Riemannian
manifold (with non-constant sectional curvature). On the other hand, since the scalar curvature of the
Riemannian manifold (P(d,R)1, 〈·, ·〉) is constant, S = −1

8d(d− 1)(d+ 2), see Andai [2] and Moakher
and Zéraï [33], it follows that its Ricci curvature is bounded from below.

The special linear group SL(d) leaves P(d,R)1 invariant and acts transitively on it. Moreover, for
every σ ∈ SL(d), the map [σ] : P(d,R)1 → P(d,R)1 defined by [σ](X) = σXσt, is an isometry, where
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σt denotes the transpose of σ. If G = SO(d), we can prove that FixP(d,R)1
(G) = {Id}, where Id is the

identity matrix; for more details, see Kristály [27]. On the other hand, the metric function on P(d,R)

is given by dP (X,Y ) =

√
Tr
(

ln2
(
X−

1
2Y X−

1
2

))
, see Kristály [26].

For simplicity, fix d = 2, and consider the following positive-definite symmetric matrix

X =

(
a b
b c

)
, a, c > 0, and ac− b2 = 1.

Thus

OXG =

{
Xξ : ξ =

(
cos θ sin θ
− sin θ cos θ

)
, θ ∈ [0, 2π]

}
.

One can see that

H1
(
OXG
)

= 2π‖X‖F = 2π
√
a2 + 2b2 + c2 and dP (I2, X) =

√
Tr
(
ln2 (X)

)
=

√
ln2(λ1) + ln2(λ2),

where λ1, λ2 are the positive eigenvalues of the matrix X. Since
√
a2 + 2b2 + c2 =

√
λ2

1 + λ2
2, by using

a Bernoulli-type inequality, it turns out that H1
(
OXG
)
≥ κdP (I2, X), with κ := π, which proves the

validity of (H).

Example 4.2. Let G = O(d1) × · · · × O(dk) with di ≥ 2, i = 1, . . . , k, and d1 + · · · + dk = d. Let
y = (y1, . . . , yk) ∈ Rd1 × · · · ×Rdk . It is clear that OyG = Sd1−1

|y1| × · · · × S
dk−1
|yk| , where S

α−1
r denotes the

sphere with radius r > 0 in Rα. Let I(y) = {i ∈ {1, . . . , k} : |yi| 6= 0}. Then l = l(y) =
∑
i∈I(y)

(di − 1)

and

Hl(OyG) =
∑
i∈I(y)

Hdi−1(Sdi−1
1 )|yi|di−1 ≥ 2π

∑
i∈I(y)

|yi|di−1 = 2π
k∑
i=1

|yi|di−1.

Now, let |y1|+ · · ·+ |yk| = c ≥ 1. By the scaling yi := czi, one has |z1|+ · · ·+ |zk| = 1 and
k∑
i=1

|yi|di−1 ≥ c
k∑
i=1

|zi|di−1.

Note that the continuous function (z1, . . . , zk) 7→
k∑
i=1

|zi|di−1 attains its minimum on the simplex

|z1|+ · · ·+ |zk| = 1, and this minimum is strictly positive, say mG > 0 (otherwise, if mG = 0, we would
have all variables equal to zero, which is a contradiction). Summing up, it follows that

Hl(OyG) ≥ 2πcmG = 2πmG(|y1|+ · · ·+ |yk|) ≥ 2πmG|y|,

thus G satisfies the assumption in (H).

5. Sobolev-type embeddings on Randers spaces

5.1. Elements from Finsler geometry. Let M be a smooth, d-dimensional manifold and TM =⋃
x∈M TxM its tangent bundle. Throughout this subsection, the function F : TM → [0,∞) is given

by the Randers metric
F (x, y) =

√
gx(y, y) + βx(y), (x, y) ∈ TM, (5.1)

where g is a Riemannian metric on M , βx is a 1-form on M , and we assume that

‖β‖g(x) =
√
g∗x(βx, βx) < 1, ∀x ∈M.

Here, the co-metric g∗x can be identified by the inverse of the symmetric, positive definite matrix gx.
The pair (M,F ) is called a Randers space, which is a typical Finsler manifold, i.e. the following
properties hold:

(a) F ∈ C∞(TM \ {0});
(b) F (x, ty) = tF (x, y) for all t ≥ 0 and (x, y) ∈ TM ;
(c) h(x,y) = [hij(x, y)] :=

[
1
2F

2(x, y)
]
yiyj

is positive definite for all (x, y) ∈ TM \ {0},
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see Bao, Chern, and Shen [4]. Clearly, the Randers metric F is symmetric, i.e. F (x,−y) = F (x, y) for
every (x, y) ∈ TM, if and only if β = 0 (which means that (M,F ) = (M, g) is the original Riemannian
manifold).

Let σ : [0, r] → M be a piecewise C∞ curve. The value LF (σ) =

∫ r

0
F (σ(t), σ̇(t)) dt denotes

the integral length of σ. For x1, x2 ∈ M , denote by Λ(x1, x2) the set of all piecewise C∞ curves
σ : [0, r]→M such that σ(0) = x1 and σ(r) = x2. Define the distance function dF : M ×M → [0,∞)
by

dF (x1, x2) = inf
σ∈Λ(x1,x2)

LF (σ). (5.2)

One clearly has that dF (x1, x2) = 0 if and only if x1 = x2, and that dF verifies the triangle inequality.
The Hausdorff volume form dVF on the Randers space (M,F ) is given by

dVF (x) =
(
1− ‖β‖2g(x)

) d+1
2 dvg, (5.3)

where dvg denotes the canonical Riemannian volume form induced by g on M .
For every (x, α) ∈ T ∗M , the polar transform (or, co-metric) of F from (5.1) is

F ∗(x, α) = sup
y∈TxM\{0}

α(y)

F (x, y)
=

√
g∗2x (α, β) + (1− ‖β‖2g(x))‖α‖2g(x)− g∗x(α, β)

1− ‖β‖2g(x)
. (5.4)

Let u : M → R be a differentiable function in the distributional sense. The gradient of u is defined
by

∇Fu(x) = J∗(x,Du(x)), (5.5)
where Du(x) ∈ T ∗xM denotes the (distributional) derivative of u at x ∈ M and J∗ is the Legendre
transform given by

J∗(x, y) :=
∂

∂y

(
1

2
F ∗2(x, y)

)
.

In local coordinates, one has

Du(x) =
n∑
i=1

∂u

∂xi
(x)dxi, (5.6)

∇Fu(x) =

n∑
i,j=1

h∗ij(x,Du(x))
∂u

∂xi
(x)

∂

∂xj
.

In general, note that u 7→ ∇Fu is not linear. If x0 ∈ M is fixed, then due to Ohta and Sturm [34],
one has

F ∗(x,DdF (x0, x)) = F (x,∇FdF (x0, x)) = DdF (x0, x)(∇FdF (x0, x)) = 1 for a.e. x ∈M. (5.7)

Let X be a vector field on M . In a local coordinate system (xi) the divergence is defined by
div(X) = 1

σF
∂
∂xi

(σFX
i), where

σF (x) =
ωd

Vol({y = (yi) : F (x, yi ∂
∂xi

) < 1})
.

The Finsler p-Laplace operator is defined by

∆F,pu = div(F ∗p−2(Du) ·∇Fu),

while the Green theorem reads as: for every v ∈ C∞0 (M),∫
M
v∆F,pudVF (x) = −

∫
M
F ∗p−2(Du)Dv(∇Fu) dVF (x), (5.8)

see Ohta and Sturm [34] and Shen [39] for p = 2. Note that in general ∆F,p(−u) 6= −∆F,pu. When
(M,F ) = (M, g), the Finsler-Laplace operator is the usual Laplace-Beltrami operator,

We introduce the Sobolev space associated with (M,F ), namely let

W 1,p
F (M) =

{
u ∈W 1,p

loc (M) :

∫
M
F ∗p(x,Du(x))dVF (x) < +∞

}
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be the closure of C∞(M) with respect to the (asymmetric) norm

‖u‖
W 1,p
F (M)

=

(∫
M
F ∗p(x,Du(x)) dVF (x) +

∫
M
|u(x)|p dVF (x)

) 1
p

.

We notice that the reversibility constant associated with F (see (5.1)) is given by

rF = sup
x∈M

rF (x) where rF (x) = sup
y∈TxM\{0}

F (x, y)

F (x,−y)
=

1 + ‖β‖g(x)

1− ‖β‖g(x)
, (5.9)

see Rademacher [35] and Zhao and Yuan [47]. Note that rF ≥ 1 (possibly, rF = +∞), and rF = 1 if
and only if (M,F ) is Riemannian. Analogously, the uniformity constant of F is defined by the number

lF = inf
x∈M

lF (x) where lF (x) = inf
y,v,w∈TxM\{0}

h(x,v)(y, y)

h(x,w)(y, y)
=

(
1− ‖β‖g(x)

1 + ‖β‖g(x)

)2

, (5.10)

and measures how far F and F ∗ are from Riemannian structures, see Egloff [17]. Note that lF ∈ [0, 1],
and lF = 1 if and only if (M,F ) is Riemannian, i.e. β = 0.

5.2. Embedding results on Randers spaces: the influence of reversibility.

Proof of Theorem 1.3. Let (M,F ) be a d-dimensional Randers space with

F (x, y) =
√
gx(y, y) + βx(y), (x, y) ∈ TM,

where g is a Riemannian metric such that (M, g) is either a Hadamard manifold or a Riemannian
manifold with bounded geometry. Let

a := sup
x∈M
‖β‖g(x) < 1.

In this case, the volume form on (M,F ) is given by (5.3), one has that

(1− a2)
d+1

2 dvg ≤ dVF (x) ≤ dvg. (5.11)

Next, by using the definition of the polar transform of F , see (5.4), we get that

F ∗(x, α) ≤

√
‖α‖2g(x) · ‖β‖2g(x) + (1− ‖β‖2g(x))‖α‖2g(x) + ‖α‖g(x) · ‖β‖g(x)

1− ‖β‖2g(x)

=
‖α‖g(x)(1 + ‖β‖g(x))

1− ‖β‖2g(x)
=

‖α‖g(x)

1− ‖β‖g(x)
≤ ‖α‖g(x)

1− a
. (5.12)

On the other hand,

F ∗(x, α) =
‖α‖2g(x)√

g∗2x (α, β) + (1− ‖β‖2g(x))‖α‖2g(x) + g∗x(α, β)

≥
‖α‖2g(x)√

‖α‖2g(x) · ‖β‖2g(x) + (1− ‖β‖2g(x))‖α‖2g(x) + ‖α‖g(x) · ‖β‖g(x)

=
‖α‖g(x)

1 + ‖β‖g(x)
≥ ‖α‖g(x)

1 + a
. (5.13)

Combining (5.11), (5.12) and (5.13), one gets that

(1− a2)
d+1

2

(1 + a)p
‖u‖p

W 1,p
g (M)

≤ ‖u‖p
W 1,p
F (M)

≤ 1

(1− a)p
‖u‖p

W 1,p
g (M)

. (5.14)

Thus, by the continuous embedding on the Riemannian manifold, we have that

‖u‖p
W 1,p
F (M)

≥ (1− a2)
d+1

2

(1 + a)p
C‖u‖Lq(M),

where (p, q) is any d-admissible pair.
For the compact embedding, let G be a compact connected subgroup of IsomF (M), such that

mF (y, ρ)→∞ as dF (x0, y)→∞ for some x0 ∈ M . According to Deng [12, Proposition 7.1], G is a
closed subgroup of the isometry group of the Riemannian manifold (M, g).
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On the other hand, since (1−a)dg(x0, y) ≤ dF (x0, y) ≤ (1 +a)dg(x0, y), we have that if mF (y, ρ)→
∞ as dF (x0, y)→∞, then m

(
y, ρ

(1+a)

)
→∞ as dg(x0, y)→∞.

Now let {un}n be a bounded sequence in W 1,p
F,G(M). From (5.14), it follows that {un}n is bounded

in W 1,p
G (M), thus by Theorems 1.1 & 1.2 (condition (EC)G implies the compact embedding), there

exists a subsequence {unk}k which converges strongly to a function u in Lq(M), where (p, q) is any
d-admissible pair. This concludes the proof. �

We emphasize that Theorem 1.3 is sharp in the following sense: if we consider the d-dimensional
Finslerian Funk model (Bd(1), F ), which is a non-compact Finsler manifold of Randers-type having
constant flag curvature −1

4 , then we can construct a function u ∈W 1,p
F (Bd(1)) such that ‖u‖Lq(Bd(1)) =

+∞, in other words, W 1,p
F (Bd(1))HH↪→Lq(Bd(1)), for any (p, q) d-admissible pair. As it turns out,

(Bd(1), F ) is a non-reversible Finsler manifold with sup
x∈M
‖β‖g(x) = 1, i.e. rF = ∞, see Kristály and

Rudas [30]. Therefore, the continuous embeddings of Sobolev spaces do not necessarily hold on Randers
spaces having infinite reversibility constant. Details are provided in the next example.

Example 5.1. Let d ≥ 2, (p, q) be a d-admissible pair, and Bd(1) = {x ∈ Rd : |x| < 1} be the
d-dimensional Euclidean open unit ball. Consider the Funk metric F : Bd(1)× Rd → R defined by

F (x, y) =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2
+
〈x, y〉

1− |x|2
.

The pair (Bd(1), F ) is the Finslerian Funk model, see Cheng and Shen [9, Example 2.1.2], and Shen
[39, Example 1.3.4]. According to Shen [39], we have that dF (0, x) = − ln(1− |x|), x ∈ Bd(1).

Now, consider the function u : Bd(1) → R defined by u(x) =
|x|

(1− |x|)
1
t

= e
dF (0,x)

t

(
1− e−dF (0,x)

)
,

where t is a parameter. A direct calculation yields that

Du(x) =
1

t
e
dF (0,x)

t

[
1 + (t− 1)e−dF (0,x)

]
DdF (0, x).

By applying (5.7), we have that F ∗(x,DdF (0, x)) = 1 for a.e. x ∈ Bd(1), thus

‖u‖p
W 1,p
F (Bd(1))

=

(
1

t

)p ∫
Bd(1)

e
p·dF (0,x)

t

[
1 + (t− 1)e−dF (0,x)

]p
dVF (x)

+

∫
Bd(1)

e
p·dF (0,x)

t

(
1− e−dF (0,x)

)p
dVF (x).

Therefore, since dVF (x) = dx, we have that

‖u‖p
W 1,p
F (Bd(1))

= ωd−1

(
1

t

)p ∫ 1

0

(t− (t− 1)s)p

(1− s)
p
t

sd−1ds + ωd−1

∫ 1

0

sp

(1− s)
p
t

· sd−1ds

≤ ωd−1

∫ 1

0
sd−1(1− s)−

p
t ds + ωd−1

∫ 1

0
sp+d−1(1− s)−

p
t ds

= ωd−1

[
B
(
d, 1− p

t

)
+ B

(
p+ d, 1− p

t

)]
.

where B denotes the Euler-Beta function.
(S) & (MT) cases: Notice that

‖u‖q
Lq(Bd(1))

= ωd−1B
(
q + d, 1− q

t

)
.

Thus, if we choose t := p+q
2 , it turns out that ‖u‖

W 1,p
F (Bd(1))

< ∞ whereas ‖u‖Lq(Bd(1)) = +∞, i.e.

u ∈W 1,p
F (Bd(1)) \ Lq(Bd(1)).

(M) case: Let t := p2

d > 1, and since p > d, it follows that ‖u‖
W 1,p
F (Bd(1))

<∞. On the other hand,

it is clear that ‖u‖L∞(Bd(1)) = +∞. In particular, it follows that u ∈W 1,p
F (Bd(1)) \ L∞(Bd(1)).
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5.3. Application: Multiple solutions for an elliptic PDE on Randers spaces. In order to
prove Theorem 1.4, we recall an abstract tool, which is the following critical point result of Bonanno
[7] (which is actually a refinement of a general principle of Ricceri [37, 36]):

Theorem 5.1 ([7], Theorem 2.1). Let X be a separable and reflexive real Banach space, and let
Φ, J : X → R be two continuously Gâteaux differentiable functionals, such that Φ(u) ≥ 0 for every
u ∈ X. Assume that there exist u0, u1 ∈ X and ρ > 0 such that

(1) Φ(u0) = J(u0) = 0,
(2) ρ < Φ(u1),

(3) sup
Φ(u)<ρ

J(u) < ρ
J(u1)

Φ(u1)
.

Further, put

a = ζρ

(
ρ
J(u1)

Φ(u1)
− sup

Φ(u)<ρ
J(u)

)−1

, where ζ > 1,

and assume that the functional Φ−λJ is sequentially weakly lower semicontinuous, satisfies the Palais-
Smale condition and

(4) lim
‖u‖→∞

(Φ(u)− λJ(u)) = +∞, for all λ ∈ [0, a].

Then there exists an open interval Λ ⊂ [0, a] and a number µ > 0 such that for each λ ∈ Λ, the equation
Φ′(u)− λJ ′(u) = 0 admits at least three solutions in X having norm less than µ.

For every λ > 0 we define the energy functional associated with problem (Pλ) as

Eλ : W 1,p
F (M)→ R, Eλ(u) = Φ0(u)− λJ0(u),

where

Φ0(u) =
1

p

∫
M
F ∗p(x,Du(x)) dVF (x) and J0(u) =

∫
M
α(x)H(u(x)) dVF (x).

Since (M,F ) is a Randers space with a := sup
x∈M
‖β‖g(x) < 1, the reversibility constant rF is finite,

thus W 1,p
F (M) is a separable and reflexive Banach space, see Farkas, Kristály, and Varga [18].

Having in our mind Theorem 1.3, we restrict the energy functional to the space W 1,p
F,G(M). For

simplicity, in the following we denote

Eλ = Eλ|W 1,p
F,G(M)

, Φ = Φ0|W 1,p
F,G(M)

, and J = J0|W 1,p
F,G(M)

.

In the sequel we prove that the energy functional Eλ is G-invariant. Note that the G-invariance of
the energy functional is an important tool in proving our theorem.

Lemma 5.1. Let G be a compact connected subgroup of IsomF (M) with FixM (G) = {x0} for some
x0 ∈M . Then Eλ is G-invariant, i.e., for every ξ ∈ G and u ∈W 1,p

F (M) one has Eλ(ξu) = Eλ(u).

Proof. First we focus on the G-invariance of the functional Φ0. Since ξ ∈ G, we have that (see Deng
and Hou [13])

F (ξx, dξx(X)) = F (x,X), ∀x ∈M,X ∈ TxM. (5.15)

Since (ξu)(x) = u(ξ−1x), by the chain rule, one has

Φ0(ξu) =

∫
M
F ∗p(x,D(ξu)(x)) dVF (x)

=

∫
M
F ∗p(x,D(u(ξ−1x))) dVF (x)

=

∫
M
F ∗p(x,D(u(ξ−1x))dξ−1

x ) dVF (x) ( change of var. ξ−1x = y)

=

∫
M
F ∗p(ξy,D(u(y))dξ−1

ξy dVF (ξy). (5.16)



20 CSABA FARKAS, ALEXANDRU KRISTÁLY, AND ÁGNES MESTER

Since ξ ∈ G, dVF (ξy) = dVF (y). On the other hand, by the definition of the polar transform (5.4) and
relation (5.15), we have

F ∗(ξy,D(u(y))dξ−1
ξy ) = sup

w∈TξyM\{0}

D(u(y))dξ−1
ξy (w)

F (ξy, w)
(w := dξy(z), z ∈ TyM)

= sup
z∈TyM\{0}

Du(y)dξ−1
ξy (dξy(z))

F (ξy, dξy(z))
= sup

z∈TyM\{0}

Du(y)(z)

F (y, z)

= F ∗(y,Du(y)). (5.17)

Combining (5.16) and (5.17), we get the desired G-invariance of the functional Φ0.
Since ξ ∈ G and α ∈ L1(M) ∩ L∞(M) is a non-zero, non-negative function which depends on

dF (x0, ·) and FixM (G) = {x0}, it turns out that for every u ∈ W 1,p
F (M), we have J0(ξu) = J0(u),

which concludes the proof. �

The principle of symmetric criticality of Palais (see Kristály, Rădulescu and Varga [29, Theorem
1.50]) and Lemma 5.1 imply that the critical points of Eλ = Eλ|W 1,p

F,G(M)
are also critical points of the

original functional Eλ. Therefore, it is enough to find critical points of Eλ.

Lemma 5.2. For every λ ≥ 0, the functional Eλ is coercive and bounded below.

Proof. Using a McKean-type inequality (see for instance Yin and He [46, Theorem 0.6]), we have that

λ1,g := inf
u∈W 1,p

g (M)

∫
M
|∇gu|pdvg∫
M
|u|p dvg

≥
(

(d− 1)κ

p

)p
,

therefore, ∫
M
|∇gu|pdvg ≥

(d− 1)pκp

pp + (d− 1)pκp
‖u‖p

W 1,p
g (M)

, u ∈W 1,p
g (M).

Using (5.11), (5.13), and denoting c(d, a, p, κ) := (1−a2)(d+1)/2

(1+a)p · (d−1)pκp

pp+(d−1)pκp we obtain that∫
M
F ∗p(x,Du(x)) dVF (x) ≥ c(d, a, p, κ)‖u‖p

W 1,p
g (M)

, u ∈W 1,p
g (M). (5.18)

From (A2), for every u ∈W 1,p
g (M) it follows that

Eλ(u) ≥ c(d, a, p, κ)

p
‖u‖p

W 1,p
g (M)

− λC‖α‖L1(M)

(
c∞‖u‖W 1,p

g (M)
+ cw∞‖u‖wW 1,p

g (M)

)
.

Since w < p, the claim clearly follows. �

Lemma 5.3. For every λ ≥ 0, Eλ satisfies the Palais–Smale condition on W 1,p
F,G(M).

Proof. Let {uk}k be a sequence inW 1,p
F,G(M) such that {Eλ(uk)}k is bounded and ‖E ′λ(uk)‖∗ → 0. Since

Eλ is coercive, the sequence {uk}k is bounded in W 1,p
F,G(M). Therefore, up to a subsequence, uk ⇀ u

weakly in W 1,p
F,G(M) for some u ∈ W 1,p

F,G(M). Hence, due to Theorem 1.3 and Theorem 1.1, it follows
that uk → u strongly in L∞(M). In particular, we have that

E ′λ(u)(u− uk)→ 0 and E ′λ(uk)(u− uk)→ 0 as k →∞. (5.19)

On the one hand, it is easy to verify that∫
M

(Du(x)−Duk(x))(∇Fu(x)F ∗p−2(x,Du(x))−∇Fuk(x)F ∗p−2(x,Duk(x))) dVF (x)

= E ′λ(u)(u− uk)− E ′λ(uk)(u− uk) + λ

∫
M
α(x)[h(uk)− h(u)](uk(x)− u(x)) dVF (x).

On the other hand, we have∣∣∣∣∫
M
α(x)[h(uk)− h(u)](uk(x)− u(x)) dVF (x)

∣∣∣∣ ≤
≤ 2‖α‖L1(M) ·max{|h(s)| : |s| ≤ ‖u‖L∞(M) + 1}‖uk − u‖L∞(M). (5.20)
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The mean value theorem implies that for all x ∈M ,

(Du(x)−Duk(x))(∇Fu(x)F ∗p−2(x,Du(x))−∇Fuk(x)F ∗p−2(x,Duk(x))) ≥ lFF ∗p(x,Du(x)−Duk(x)),

where lF is the uniformity constant associated to F (see (5.10)). Since (M,F ) is a Randers space with
a := sup

x∈M
‖β‖g(x) < 1, it follows that lF > 0, thus uk → u in W 1,p

F,G(M), which proves the claim. �

Lemma 5.4. For every λ ≥ 0 the functional Eλ is sequentially weakly lower semicontinuous.

Proof. As a norm-type function, Φ is sequentially weakly lower semicontinuous, therefore it suffices to
prove that J is sequentially weakly continuous. To this end, consider a sequence {un}n in W 1,p

F,G(M)

which converges weakly to u ∈W 1,p
F,G(M), and suppose that

J(un)��→J(un) as n→∞.

Thus, there exist ε > 0 and a subsequence of {un}n, denoted again by {un}n, such that un → u in
L∞(M) and

0 < ε ≤ |J(un)− J(u)|, for every n ∈ N.
Thus, by the mean value theorem (see also (5.20)), there exists θn ∈ (0, 1) such that

0 < ε ≤
∣∣∣〈J ′(u+ θn(un − u)), un − u〉W 1,p

F

∣∣∣
≤
∫
M
α(x)|h(u+ θn(un − u))| · |un − u|dVF (x)

≤ ‖α‖L1(M) max{|h(s)| : |s| ≤ ‖u‖L∞(M) + 1} · ‖un − u‖L∞(M).

Note that the last term tends to 0, which provides a contradiction. �

Proof of Theorem 1.4. Let s0 > 0 be given by condition (A1). We recall that sup
R>0

essinf
dF (x0,x)≤R

α(x) > 0,

thus we choose an R > 0 such that αR := essinf
dF (x0,x)≤R

α(x) > 0. For r < R
1− a
1 + a

, we define the following

function

us0,R,r =


0, x ∈M \BF (x0, R)
s0
R−r (R− dF (x0, x)), x ∈ BF (x0, R) \BF (x0, r)

s0, x ∈ BF (x0, r)

Recall that rF > 0 is the reversibility constant on (M,F ), see (5.9), i.e. by the eikonal identity (5.7)
we have that 1

rF
≤ F ∗(x,−DdF (x0, x)) ≤ rF . Therefore,(

s0

R− r

)p 1

rpF
(VolF (BF (x0, R))−VolF (BF (x0, r))) ≤

∫
M
F ∗p(x,Dus0,R,r(x)) dVF (x)

≤
(

s0

R− r

)p
rpFVolF (BF (x0, R)).

By 0 ≤ us0,R,r ≤ s0 and hypothesis (A1) we have that

J(us0,R,r) =

∫
M
α(x)H(us0,R,r(x)) dVF (x) =

∫
BF (x0,R)

α(x)H(us0,R,r(x)) dVF (x)

≥ H(s0)αRVolF (BF (x0, r)) > 0.

On the other hand, by (A3), we may fix s1 ∈ (0, 1] and C1 > 0 such that

H(s) ≤ C1|s|q, |s| < s1.

By (A2) we have that

|H(s)| ≤ C(1 + |s|w−1)|s| ≤ C 1 + sw−1
1

sq−1
1

|s|q, |s| ≥ s1.

Choosing C2 = max

{
C1, C

1+sw−1
1

sq−1
1

}
, we get that

H(s) ≤ C2|s|q, s ∈ R.
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Therefore,

J(u) =

∫
M
α(x)H(u(x)) dVF (x) ≤ C2‖α‖L1(M)c

q
∞‖u‖

q

W 1,p
g (M)

. (5.21)

We claim that

lim sup
ρ→0

sup

{
J(u) :

∫
M
F ∗p(x,Du(x)) dVF (x) ≤ pρ

}
ρ

≤ 0. (5.22)

To prove the previous claim, first observe that by (5.18) we have that

sup

{
J(u) :

∫
M
F ∗p(x,Du(x)) dVF (x) ≤ pρ

}
ρ

≤
sup

{
J(u) : c(d, a, p, κ)‖u‖p

W 1,p
g (M)

≤ pρ
}

ρ
.

On account of (5.21), we have that

sup

{
J(u) : c(d, a, p, κ)‖u‖p

W 1,p
g (M)

≤ pρ
}

ρ
≤
C2‖α‖L1(M)c

q
∞
(

pρ
c(d,a,p,κ)

) q
p

ρ
→ 0 when ρ→ 0,

since q > p, which proves the claim.
By (5.22), we may chose ρ0 > 0 such that

ρ0 < c(d, a, p, κ)‖us0,R,r‖
p

W 1,p
g (M)

≤
∫
M
F ∗p(x,Dus0,R,r(x)) dVF (x),

and

sup

{
J(u) :

∫
M
F ∗p(x,Du(x)) dVF (x) ≤ pρ0

}
ρ0

<
J(us0,R,r)

Φ(us0,R,r)
.

In Theorem 5.1 we choose u1 = us0,R,r and u0 = 0, and observe that the hypotheses (1) and (2) are
satisfied. We define

a =
1 + ρ0

J(us0,R,r)

Φ(us0,R,r)
− sup{J(u):Φ(u)≤ρ0}

ρ0

.

Taking into account Lemmas 5.2, 5.3 and 5.4, all the assumptions of Theorem 5.1 are verified. Thus
there exists an open interval Λ ⊂ [0, a] and a number µ > 0 such that for each λ ∈ Λ, the equation
E ′λ(u) = Φ′(u)− λJ ′(u) admits at least three solutions in W 1,p

F,G(M) having W 1,p
F (M)-norms less than

µ. This concludes the proof. �
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