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Abstract: In the present paper we deal with a quasilinear elliptic equation involving
a critical Sobolev exponent on non-compact Finsler manifolds, i.e. on Randers spaces.
Under very general assumptions on the perturbation we prove the existence of a non-
trivial solution. The approach is based on the direct methods of calculus of variations.
One of the key step is to prove that the energy functional associated with the problem
is weakly lower semicontinuous on small balls of the Sobolev space, which is provided
by a general inequality. At the end, we prove Hardy-type inequalities on Finsler
manifolds as an application of this inequality.
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1. Introduction and main result

Since the pioneering work of Brezis and Nirenberg ([BN83]) a lot of attention has been
paid to the following problem:{

−∆pu = |u|p∗−2u+ λ|u|q−2u, in Ω ⊂ Rd,
u = 0, on ∂Ω

(P)

where Ω is a bounded domain of Rd, and p∗ =
pd

d− p
is the critical Sobolev exponent.

In [BN83] the authors studied the case p = 2 and they proved that if λ1(Ω) is the
first eigenvalue for −∆ with Dirichlet boundary conditions, then, if N ≥ 4 for every
λ ∈ (0, λ1(Ω)) there exists a positive solution, if N = 3 and Ω is a ball, then, a solution
exists if and only if λ ∈ (λ1(Ω)

4
, λ1(Ω)). The proof is based on a local Palais Smale

condition and, accordingly, on the construction of minimax levels for the energy functional
associated with the problem (P) in suitable intervals.

1



2 CSABA FARKAS

Zou in [Zou12] proved that when

d ≥ d(p) := [p2]− [[p2]− p2],

then, problem (P) has a positive solution if and only if λ ∈ (0, λ1) (λ1 being the first
eigenvalue for −∆p with Dirichlet boundary conditions). When d < d(p), and Ω is a
ball, then (P) has no solution if λ ≥ λ1, has a solution for λ ∈ (λ∗, λ1), no solution for
λ ∈ (0, λ∗) (for convenient 0 < λ∗ ≤ λ∗ < λ1).

In the literature most of the papers dealing with critical elliptic equations, prove a local
Palais–Smale condition, which relies on the well known concentration compactness prin-
ciple, see P.L. Lions in [Lio82], which is one of the most powerful tools in the case of lack
of compactness. In this connection we mention the result of Chabrowski ([Cha95]) where
the author applies concentration compactness principle to a non-homogeneous problem
with non-constant coefficients.

Recently in [FF15] the authors proposed an alternative method to the problem{
−∆pu = |u|p∗−2u+ g(u), in Ω
u = 0, on ∂Ω

(P)

where Ω is a bounded domain, by employing the direct methods of calculus of variations.
Indeed, they proved that the energy functional E associated with the problem is locally
sequentially weakly lower semicontinuous, and with direct, simple arguments they prove
that E has a local minimum, which is a weak solution of the problem (P). Later, the
idea of this paper was successfully applied in different context, see [MMB17, MBV20].

In the light of the above papers, the aim of the present manuscript is to study critical
elliptic equation on the d-dimensional non-compact Finsler manifolds, i.e. we consider
the following problem{

−∆p,Fu+ |u|p−2u = λ|u|p∗−2u+ µα(x)h(u), in M,

u ∈ W 1,p
F (M)

(Pλ,µ)

where M is a d-dimensional Randers space endowed with the Finsler metric defined as

F (x, y) =
√
gx(y, y) + βx(y), (x, y) ∈ TM, (1.1)

where g is a Riemannian metric and βx is a 1-form on M . ∆p,F is the Finsler p-Laplace

operator, h : R → R is a continuous function, and p∗ =
pd

d− p
is the critical Sobolev

exponent.
It is not difficult to see that the above equation is closely related to the well-known

Yamabe problem; that is, for any smooth compact Riemannian manifold (M, g) of dimen-
sion d ≥ 3, there exists a conformal metric g̃ to g with constant scalar curvature, see
Hebey [Heb99]. This problem can be transposed into an elliptic equation which involves
the critical Sobolev exponent,

−∆gu+ c(d)Rgu = Ku2∗−1, on M, (1.2)

where ∆g is is the Laplace-Beltrami operator associated with g, Rg is the scalar curvature

of g, c(d) =
d− 2

4(d− 1)
, and K is a constant satisfying K = c(d)Rg̃, where Rg̃ is the scalar

curvature of g̃. The literature of such elliptic equations related to Yamabe’s problem is
quite rich, see [Aub76, Aub82, DHR04] and reference therein.

Yau [Yau82] and later Kazdan [Kaz85] (see also [Aub01]) suggested the study of (1.2)
in a non-compact Riemannian manifold. In this case the situation changes dramatically,
see Jin [Jin88]; it is possible to exhibit examples of complete non-compact manifolds for
which the Yamabe problem does not have any solution. Thus as one expects, the curvature
plays a crucial role in the study of Yamabe problem, in this connection we mention the
work of Aviles and McOwen [AM88] the authors have established some existence result



CRITICAL ELLIPTIC EQUATIONS ON NON-COMPACT FINSLER MANIFOLDS 3

for the Yamabe equation in the case of non-compact complete Riemannian manifold with
non-positive scalar curvature.

In the case of non-compact Finsler manifolds the study of critical elliptic equation is
much more delicate. First, it turns out that if M is a non-compact Finsler-Hadamard
manifold with infinite reversibility constant, then the Sobolev space W 1,2

F (M) is not nec-
essary a vector space see Farkas, Kristály, Varga [FKV15]. On the other hand by Farkas,
Kristály, Mester [FKM20], on non-compact Finsler manifolds the continuous Morrey-type
embedding do not necessarily hold, thus one can expect similar pathological phenomena
in the case of the embedding W 1,p

F (M) ↪→ Lq(M), q ∈ (p, p∗).
Thus beside the aforementioned issues, the main obstacle in dealing with existence and

multiplicity results for quasilinear problems with critical nonlinearity is represented the
weakly lower semicontinuity of the energy functional associated with the problem (Pλ,µ).
Thus

Eλ,µ(u) =
1

p

∫
M

(F ∗p(x,Du) + |u|p) dVF (x)− λ

p∗

∫
M

|u|p∗ dVF (x)− µ
∫
M

α(x)H(u) dVF (x),

is not sequentially weakly lower semicontinuous in W 1,p
F (M) and does not satisfy the well

known Palais Smale condition. However, Eλ,µ is of class C1 in W 1,p
F (M) and its critical

points turn out to be the weak solutions of problem (Pλ,µ).
In the sequel we state our main result, in order to do that, we need some notations

and assumptions. Let (M,F ) be a d-dimensional Randers space endowed with the Finsler
metric (1.1), such that (M, g) is a complete non-compact Riemannian manifold of bounded
geometry, i.e. with Ricci curvature bounded from below, i.e. Ric(M,g) ≥ k(d− 1), having
positive injectivity radius. For further use, let ‖β‖g(x) :=

√
g∗x(βx, βx) for every x ∈ M,

where g∗ is the co-metric of g.
Let h : R→ R be a continuous function.

(H): For each s ∈ R, put H(s) =

s∫
0

h(t) dt, and we further assume that:

(h1) there exist q ∈ (1, p) and c > 0 such that |h(t)| ≤ Ch
(
|t|q−1 + |t|p−1

)
, ∀t ∈ R;

(h2) lim inf
s→0

H(s)

|s|p
= +∞.

On the function α we assume that:
(α): α : [0,+∞) → R be a non-increasing, non-negative continuous function which

depends on dF (x0, ·), for x0 ∈M , i.e. α(x) = α0(dF (x0, x)) and assume that

α0(s) sinh

(
k

s

1− a

)d−1

∼ 1

sγ
,

for some γ > 1, whenever s→∞.

Theorem 1.1. Let (M,F ) be a d-dimensional Randers space endowed with the Finsler
metric (1.1) such that sup

x∈M
‖β‖g(x) < 1 and (M, g) is a complete non-compact Riemann-

ian manifold of bounded geometry. Let G be a coercive, compact connected subgroup of
IsomF (M) such that FixM(G) = {x0} for some x0 ∈ M . Let h : R → R be a continuous
function verifying (H), and let α : [0,+∞)→ R be a continuous function which satisfies
assumption (α). Then for every µ > 0, there exists λ∗ > 0 such that for every λ < λ∗ the
problem (Pλ,µ) has a non-zero G-invariant weak solution.

The organization of the paper is the following. After presenting some preliminary
results in Riemannian geometry, In Section 2 we present some preliminary results and
notions from Riemann and Finsler geometry, while Section 3 is devoted to the proof of
Theorem 1.1. At the end, in Section 4, we shall present some concluding remarks.
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2. Mathematical background

2.1. Elements from Riemannian geometry. Let (M, g) be a homogeneous complete
non-compact Riemannian manifold with dimM = d. Let TxM be the tangent space at x ∈
M , TM =

⋃
x∈M

TxM be the tangent bundle, and dg : M ×M → [0,+∞) be the distance

function associated to the Riemannian metric g. Let Bg(x, ρ) = {y ∈M : dg(x, y) < ρ} be
the open metric ball with center x and radius ρ > 0. If dvg is the canonical volume element

on (M, g), the volume of a bounded open set Ω ⊂ M is Volg(Ω) =

∫
Ω

dvg = Hd(Ω). If

dσg denotes the (d− 1)−dimensional Riemannian measure induced on ∂Ω by g, then

Areag(∂Ω) =

∫
∂Ω

dσg = Hd−1(∂Ω)

stands for the area of ∂Ω with respect to the metric g.
For every p > 1, the norm of Lp(M) is given by

‖u‖Lp(M) =

(∫
M

|u|p dvg

)1/p

.

Let u : M → R be a function of class C1. If (xi) denotes the local coordinate system on
a coordinate neighbourhood of x ∈ M , and the local components of the differential of u
are denoted by ui = ∂u

∂xi
, then the local components of the gradient ∇gu are ui = gijuj.

Here, gij are the local components of g−1 = (gij)
−1. In particular, for every x0 ∈ M one

has the eikonal equation
|∇gdg(x0, ·)| = 1 a.e. on M. (2.1)

When no confusion arises, if X, Y ∈ TxM , we simply write |X| and 〈X, Y 〉 instead of
the norm |X|x and inner product gx(X, Y ) = 〈X, Y 〉x, respectively.

The Lp(M) norm of ∇gu : M → TM is given by

‖∇gu‖Lp(M) =

(∫
M

|∇gu|pdvg
) 1

p

.

The space W 1,p
g (M) is the completion of C∞0 (M) with respect to the norm

‖u‖p
W 1,p
g (M)

= ‖u‖pLp(M) + ‖∇gu‖pLp(M).

2.2. Elements from Finsler geometry. LetM be a connected n-dimensional C∞ man-
ifold and TM =

⋃
x∈M TxM is its tangent bundle, the pair (M,F ) is a Finsler manifold if

the continuous function F : TM → [0,∞) satisfies the conditions:
• F ∈ C∞(TM \ {0});
• F (x, ty) = tF (x, y) for all t ≥ 0 and (x, y) ∈ TM ;
• gij(x, y) :=

[
1
2
F 2(x, y)

]
yiyj

is positive definite for all (x, y) ∈ TM \ {0}.
If F (x, ty) = |t|F (x, y) for all t ∈ R and (x, y) ∈ TM, we say that the Finsler manifold
(M,F ) is reversible. Clearly, the Randers metric F is symmetric, i.e. F (x,−y) = F (x, y)
for every (x, y) ∈ TM, if and only if β = 0 (which means that (M,F ) = (M, g) is the
original Riemannian manifold).

Let π∗TM be the pull-back bundle of the tangent bundle TM generated by the natural
projection π : TM \ {0} → M, see Bao, Chern and Shen [BCS00, p. 28]. The vectors
of the pull-back bundle π∗TM are denoted by (v;w) with (x, y) = v ∈ TM \ {0} and
w ∈ TxM. For simplicity, let ∂i|v = (v; ∂/∂xi|x) be the natural local basis for π∗TM ,
where v ∈ TxM. One can introduce on π∗TM the fundamental tensor g by

gv := g(∂i|v, ∂j|v) = gij(x, y) (2.2)

where v = yi(∂/∂xi)|x.
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Let u, v ∈ TxM be two non-collinear vectors and S = span{u, v} ⊂ TxM . By means of
the curvature tensor R, the flag curvature of the flag {S, v} is defined by

K(S; v) =
gv(R(U, V )V, U)

gv(V, V )gv(U,U)− gv(U, V )2
, (2.3)

where U = (v;u), V = (v; v) ∈ π∗TM. If (M,F ) is Riemannian, the flag curvature reduces
to the well known sectional curvature. If K(S; v) ≤ 0 for every choice of U and V , we
say that (M,F ) has non-positive flag curvature, and we denote by K ≤ 0. (M,F ) is a
Finsler-Hadamard manifold if it is simply connected, forward complete with K ≤ 0.

Let {ei}i=1,...,n be a basis for TxM and gvij = gv(ei, ej). The mean distortion ζ : TM \

{0} → (0,∞) is defined by ζ(v) =

√
det(gvij)

σF
. The mean covariation S : TM \ {0} → R is

defined by

S(x, v) =
d

dt
(ln ζ(σ̇v(t)))

∣∣
t=0
,

where σv is the geodesic such that σv(0) = x and σ̇v(0) = v. We say that (M,F ) has
vanishing mean covariation if S(x, v) = 0 for every (x, v) ∈ TM , and we denote by S = 0.

Let σ : [0, r] → M be a piecewise C∞ curve. The value LF (σ) =

∫ r

0

F (σ(t), σ̇(t)) dt

denotes the integral length of σ. For x1, x2 ∈M , denote by Λ(x1, x2) the set of all piecewise
C∞ curves σ : [0, r]→M such that σ(0) = x1 and σ(r) = x2. Define the distance function
dF : M ×M → [0,∞) by

dF (x1, x2) = inf
σ∈Λ(x1,x2)

LF (σ). (2.4)

One clearly has that dF (x1, x2) = 0 if and only if x1 = x2, and that dF verifies the triangle
inequality.

The Hausdorff volume form dVF on the Randers space (M,F ) is given by

dVF (x) =
(
1− ‖β‖2

g(x)
) d+1

2 dvg, (2.5)

where dvg denotes the canonical Riemannian volume form induced by g on M .
For every (x, α) ∈ T ∗M , the polar transform (or, co-metric) of F from (1.1) is

F ∗(x, α) = sup
y∈TxM\{0}

α(y)

F (x, y)
=

√
g∗2x (α, β) + (1− ‖β‖2

g(x))‖α‖2
g(x)− g∗x(α, β)

1− ‖β‖2
g(x)

. (2.6)

Let u : M → R be a differentiable function in the distributional sense. The gradient of
u is defined by

∇Fu(x) = J∗(x,Du(x)), (2.7)

where Du(x) ∈ T ∗xM denotes the (distributional) derivative of u at x ∈ M and J∗ is the
Legendre transform given by

J∗(x, y) :=
∂

∂y

(
1

2
F ∗2(x, y)

)
.

In local coordinates, one has

Du(x) =
n∑
i=1

∂u

∂xi
(x)dxi, ∇Fu(x) =

n∑
i,j=1

h∗ij(x,Du(x))
∂u

∂xi
(x)

∂

∂xj
. (2.8)

In general, note that u 7→ ∇Fu is not linear. If x0 ∈ M is fixed, then due to [OS09],
for a.e. x ∈M one has

F ∗(x,DdF (x0, x)) = F (x,∇FdF (x0, x)) = DdF (x0, x)(∇FdF (x0, x)) = 1 (2.9)
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Let p > 1. The norm of Lp(M) is given by

‖u‖p =

(∫
M

|u|p dVF (x)

)1/p

.

Let X be a vector field on M . In a local coordinate system (xi) the divergence is defined
by div(X) = 1

σF

∂
∂xi

(σFX
i), where

σF (x) =
ωd

Vol({y = (yi) : F (x, yi ∂
∂xi

) < 1})
.

The Finsler p-Laplace operator is defined by

∆F,pu = div(F ∗p−2(Du) ·∇Fu),

while the Green theorem reads as: for every v ∈ C∞0 (M),∫
M

v∆F,pu dVF (x) = −
∫
M

F ∗p−2(Du)Dv(∇Fu) dVF (x), (2.10)

see [OS09] and [She01] for p = 2. Note that in general ∆F,p(−u) 6= −∆F,pu. When
(M,F ) = (M, g), the Finsler-Laplace operator is the usual Laplace-Beltrami operator,

We introduce the Sobolev space associated with (M,F ), namely let

W 1,p
F (M) =

{
u ∈ W 1,p

loc (M) :

∫
M

F ∗p(x,Du(x))dVF (x) < +∞
}

be the closure of C∞(M) with respect to the (asymmetric) norm

‖u‖F =

(∫
M

F ∗p(x,Du(x)) dVF (x) +

∫
M

|u(x)|p dVF (x)

) 1
p

.

We notice that the reversibility constant associated with F (see (1.1) is given by

rF = sup
x∈M

rF (x) where rF (x) = sup
y∈TxM\{0}

F (x, y)

F (x,−y)
=

1 + ‖β‖g(x)

1− ‖β‖g(x)
, (2.11)

see [Rad04, ZY13]. Note that rF ≥ 1 (possibly, rF = +∞), and rF = 1 if and only
if (M,F ) is Riemannian. Analogously, the uniformity constant of F is defined by the
number

lF = inf
x∈M

lF (x) where lF (x) = inf
y,v,w∈TxM\{0}

g(x,v)(y, y)

g(x,w)(y, y)
=

(
1− ‖β‖g(x)

1 + ‖β‖g(x)

)2

, (2.12)

and measures how far F and F ∗ are from Riemannian structures, see [Egl97]. Note that
lF ∈ [0, 1], and lF = 1 if and only if (M,F ) is Riemannian, i.e. β = 0. The definition of
lF in turn shows that

F ∗2(x, tξ + (1− t)β) ≤ tF ∗2(x, ξ) + (1− t)F ∗2(x, β)− lF t(1− t)F ∗2(x, β − ξ) (2.13)

for all x ∈M , ξ, β ∈ T ∗xM and t ∈ [0, 1].

3. Proof of the main result

In this section we prove Theorem 1.1. First we deal with the lower semicontinuity of
the energy functional

Eλ,µ(u) = Fµ(u)− λK (u),

where
Fµ(u) =

1

p

∫
M

(
F ∗

p

(x,Du(x)) + |u|p
)

dVF (x)− µ

p∗

∫
M

|u|p∗ dVF (x),

and
K (u) =

∫
M

α(x)H(u(x)) dVF (x).
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First we prove the Finslerian version of the following inequality (see Lemma 3.1): if p ≥ 2
then for a, b ∈ RN , we have that (see [Lin90, Lemma 4.2]):

|b|p ≥ |a|p + p〈|a|p−2a, b− a〉+ 21−p|a− b|p (3.1)
Note that, Lemma 3.1 is indispensable for the lower semicontinuity of Fµ, see Proposition
3.1.

Lemma 3.1. Let (M,F ) be a Finsler manifold, then we have the following inequality:

p(β − ξ)
(
F ∗p−2(x, ξ)J∗(x, ξ)

)
+

l
p
2
F

2p−1
F ∗

p

(x, β − ξ) + F ∗
p

(x, ξ) ≤ F ∗p(x, β), ∀ξ, β ∈ T ∗xM.

Proof. From (2.13) with the choice t =
1

2
, one has that

F ∗2
(
x,
ξ + β

2

)
≤ F ∗2(x, ξ) + F ∗2(x, β)

2
− lF

4
F ∗2(x, β − ξ). (3.2)

Now, it is clear that if p ≥ 2, then p 7→ (ap + bp)
1
p is non-increasing, moreover by Hölder

inequality , one has that

(ap + bp)
1
p ≤ 2

1
p
− 1

2
(
a2 + b2

) 1
2 ≤

(
a2 + b2

) 1
2 .

Thus, applying this inequality, one has that

F ∗p
(
x,
ξ + β

2

)
+
l
p
2
F

2p
F ∗

p

(x, β − ξ) ≤ 2
1
p
− 1

2 ·
(
F ∗2

(
x,
ξ + β

2

)
+
lF
4
F ∗2(x, β − ξ)

) p
2

.

(3.2)
≤
(
F ∗2(x, ξ) + F ∗2(x, β)

2

) p
2

.

On the other hand, by convexity we have that(
F ∗2(x, ξ) + F ∗2(x, β)

2

) p
2

≤ 1

2
F ∗p(x, ξ) +

1

2
F ∗p(x, β).

On the other hand, by convexity

F ∗
p

(
x,
ξ + β

2

)
≥ F ∗p(x, ξ) +

p

2
(β − ξ)

(
F ∗p−2(x, ξ)J∗(x, ξ)

)
,

thus

F ∗p
(
x,
ξ + β

2

)
+
l
p
2
F

2p
F ∗

p

(x, β−ξ) ≥ F ∗p(x, ξ)+
p

2
(β−ξ)

(
F ∗p−2(x, ξ)J∗(x, ξ)

)
+
l
p
2
F

2p
F ∗

p

(x, β−ξ).

Putting toghether, one has that

p

2
(β − ξ)

(
F ∗p−2(x, ξ)J∗(x, ξ)

)
+
l
p
2
F

2p
F ∗

p

(x, β − ξ) +
1

2
F ∗

p

(x, ξ) ≤ 1

2
F ∗

p

(x, β),

or for every ξ, β ∈ T ∗xM the following inequality hold true

p(β − ξ)
(
F ∗p−2(x, ξ)J∗(x, ξ)

)
+

l
p
2
F

2p−1
F ∗

p

(x, β − ξ) + F ∗
p

(x, ξ) ≤ F ∗p(x, β), (3.3)

which proves the Lemma. �

Remark 3.1. In the case of Minkowski spaces the inequality (3.3) reads as

F ∗p(β) ≥ F ∗p(ξ) + pF ∗p−1(ξ)〈∇F ∗(ξ), β − ξ〉+
l
p
2
F

2p−1
F ∗p(β − ξ),

where
lF = min

{〈
∇
(
F 2

2

)
(x)y, y

〉
: F (x) = F (y) = 1

}
.
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It is worth to mention that this result generalizes the lower semicontinuity of functionals
involving critical Sobolev exponent in both Euclidean and Riemannian cases.

Proposition 3.1. For every µ > 0 and for every 0 < ρ < ρ∗ ≡

(
1

µ

p∗

p

l
p
2
F

2p−1κp
∗

p∗

) 1
p∗−p

,

the restriction of Fµ to Bρ := {u ∈ W 1,p
F (M) : ‖u‖F ≤ ρ} is sequentially weakly lower

semicontinuous.

Proof. Let un ⇀ u in W 1,p
F (M), thus we have that

1

p

∫
M

F ∗p(x,Dun(x)) dVF (x)− 1

p

∫
M

F ∗p(x,Du(x)) dVF (x) ≥

≥ p

∫
M

(Dun(x)−Du(x))
(
F ∗p−2(x,Du(x))J∗(x,Du(x))

)
dVF (x)

+
l
p
2
F

2p−1

∫
M

F ∗
p

(x,Dun(x)−Du(x)) dVF (x).

On the other hand, by (3.1)∫
M

|un|p dVF (x)−
∫
M

|u|p dVF (x) ≥ p

∫
M

|u|p−2u(un − u) dVF (x) +
1

2p−1

∫
M

|un − u|p dVF (x)

≥ p

∫
M

|u|p−2u(un − u) dVF (x) +
l
p
2
F

2p−1

∫
M

|un − u|p dVF (x).

Summing up

‖un‖pF − ‖u‖
p
F ≥p

∫
M

(Dun(x)−Du(x))
(
F ∗p−2(x,Du(x))J∗(x,Du(x))

)
dVF (x)+

+ p

∫
M

|u|p−2u(un − u) dVF (x) +
l
p
2
F

2p−1
‖un − u‖pF .

By the well know Brezis-Lieb Lemma one has

lim inf
n→∞

(∫
M

|un|p
∗

dVF (x)−
∫
M

|u|p∗ dVF (x)

)
= lim inf

n→∞

∫
M

|un − u|p
∗

dVF (x).

Putting all together, we have that

lim inf
n→∞

(Fµ(un)−Fµ(u)) ≥ lim inf
n→∞

(
1

p
· l

p
2
F

2p−1
‖un − u‖pF −

µ

p∗

∫
M

|un − u|p
∗

dVF (x)

)

≥ lim inf
n→∞

‖un − u‖pF

(
1

p
· l

p
2
F

2p−1
− µ

p∗
κp

∗

p∗ρ
p∗−p

)
≥ 0,

which concludes the proof. �

Before we prove the main result, we have to prove the lower semicontinuity of the
functional K . It turns out that, for proving such essential property one needs compact
embedding of the Sobolev space to the Lebesgue space, therefore in the sequel we focus
on the (compact) embedding W 1,p

F (M) ↪→ Lq(M).
Even in Rd it is well known that the compactness of the embedding W 1,p(Rd) ↪→

Lq(Rd) need not hold, see [AF03]. On the other hand, it was proved by Berestycki–Lions
(see [BL80] and [Lio82], and also [Str77, Wil96]) that if p ≤ d then the embedding
W 1,p

rad(Rd) ↪→ Lq(Rd) is compact whenever p < q < p∗, where W 1,p
rad(Rd) stands for the

subspace of radially symmetric functions of W 1,p(Rd).
The Berestycki–Lions-type theorem has been established on Riemannian manifolds by

[HV97], see also [Heb99, Theorems 9.5 & 9.6]. More precisely, if G is a compact subgroup
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of the group of global isometries of the complete Riemannian manifold (M, g) then (under
some additional assumptions on the geometry of (M, g) and some assumptions on the
orbits under the action of G), the embeddingW 1,p

G (M) ↪→ Lq(M) turns out to be compact,
where W 1,p

G (M) denotes the set of G-invariant functions of the Sobolev space W 1,p(M).
Such compactness results have been extended to non-compact metric measure spaces as
well, see [G1́8], and generalized to Lebesgue–Sobolev spaces W 1,p(·)

G (M) in the setting of
complete Riemannian manifolds, see [GGP16].

Recently, in [ST13] the authors proved that, if (M, g) is a d-dimensional homogeneous
Hadamard manifold and G is a compact connected subgroup of the group of global isome-
tries of (M, g) such that FixM(G) is a singleton, then the subspace of the G-invariant
functions ofW 1,p

g (M) is compactly embedded into Lq(M) whenever p ≤ d and p < q < p∗.
For further use we use the following definition

Definition 3.1. We say that a continuous action of a group G on a complete Riemannian
manifold M is coercive if for every t > 0, the set

Ot = {x ∈M : diamGx < t}
is bounded.

It was also pointed out that, see [ST13, Tin20], the condition of a single fixed point is
restrictive, because on manifolds where Sobolev embeddings hold, one has a necessary and
sufficient condition in terms of coercivity condition on the group G. According to this,
for proving a compact emnedding result for Sobolev spaces defined on Randers spaces, we
use the following result, see [ST20, Tin20]:

Theorem 3.1 (Theorem 7.10.12, [Tin20]). Let G be a compact, connected group of isome-
tries of a d-dimensional non-compact connected Riemannian manifold M of bounded ge-
ometry. Let 1 < p < d and p < q < p∗. Then the subspace W 1,p

G (M) is compactly
embedded into Lq(M) if and only if G is coercive.

Remark 3.2. Based on [FKM20], one could expect an alternative proof of the aforemen-
tioned embedding. Indeed, if we assume that there exists κ = κ(G, d) > 0 such that for
every y ∈M with dg(x0, y) ≥ 1, one has

Hl(OyG) ≥ κ · dg(x0, y),

where l = l(y) = dimOyG ≥ 1, where OyG = {τ(x) : τ ∈ G}, then W 1,p
G (M) is compactly

embedded into Lq(M). For the proof, see [FKM20, Theorem 4.1] and [G1́8].

As before, W 1,p
F,G(M) will stand for the subspace of G-invariant functions of W 1,p

F (M),
where G is a subgroup of IsomF (M), such that G is coercive. In this case we have the
following result:

Theorem 3.2. Let (M,F ) be a d-dimensional Randers space endowed with the Finsler
metric (1.1), such that (M, g) is a d-dimensional non-compact connected Riemannian
manifold M of bounded geometry, and let G be a coercive compact connected subgroup
of IsomF (M). If 1 < p < d, q ∈ (p, p∗) and sup

x∈M
‖β‖g(x) < 1, then the embedding

W 1,p
F (M) ↪→ Lq(M) is continuous, while the embedding W 1,p

F,G(M) ↪→ Lq(M) is compact.

Proof. The volume form on (M,F ) is given by (2.5), thus one has that

(1− a2)
d+1
2 dvg ≤ dVF (x) ≤ dvg. (3.4)

Next, by using the definition of the polar transform of F , see (2.6), we get that

F ∗(x, ξ) ≤

√
‖ξ‖2

g(x) · ‖β‖2
g(x) + (1− ‖β‖2

g(x))‖ξ‖2
g(x) + ‖ξ‖g(x) · ‖β‖g(x)

1− ‖β‖2
g(x)
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=
‖ξ‖g(x)(1 + ‖β‖g(x))

1− ‖β‖2
g(x)

=
‖ξ‖g(x)

1− ‖β‖g(x)
≤ ‖ξ‖g(x)

1− a
. (3.5)

On the other hand,

F ∗(x, ξ) =
‖ξ‖2

g(x)√
g∗2x (ξ, β) + (1− ‖β‖2

g(x))‖ξ‖2
g(x) + g∗x(ξ, β)

≥
‖ξ‖2

g(x)√
‖ξ‖2

g(x) · ‖β‖2
g(x) + (1− ‖β‖2

g(x))‖ξ‖2
g(x) + ‖ξ‖g(x) · ‖β‖g(x)

=
‖ξ‖g(x)

1 + ‖β‖g(x)
≥ ‖ξ‖g(x)

1 + a
. (3.6)

Combining (3.4), (3.5) and (3.6), one gets that

(1− a2)
d+1
2

(1 + a)p
‖u‖p

W 1,p
g (M)

≤ ‖u‖pF ≤
1

(1− a)p
‖u‖p

W 1,p
g (M)

. (3.7)

Thus, by the continuous embedding on the Riemannian manifold, we have that

‖u‖pF ≥
(1− a2)

d+1
2

(1 + a)p
κpq‖u‖qq.

For the compact embedding, let G be a compact connected subgroup of IsomF (M).
According to [Den12, Proposition 7.1], G is a closed subgroup of the isometry group of
the Riemannian manifold (M, g). Now let {un} be a bounded sequence inW 1,p

F,G(M). From
(3.7), it follows that {un} is bounded in W 1,p

G (M), thus by Theorem 3.1, there exists a
subsequence {unk} which converges strongly to a function u in Lq(M), thus based on (3.4)
the proof is complete. �

Example 3.1 (see [FKM20]). Let d ≥ 2, and p be a fixed number, p < q < p∗, and let
Bd(1) = {x ∈ Rd : |x| < 1} be the d−dimensional unit ball, d ≥ 2. Consider the function
F : Bd(1)× Rd → R defined by

F (x, y) =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2
+
〈x, y〉

1− |x|2
.

The pair (Bd(1), F ) is the usual Finslerian Funk model, see [CS12] and [She01]. We have
that dF (0, x) = − ln(1 − |x|), x ∈ Bd(1). Now, let t = p+q

2
, and consider the function

u : Bd(1)→ R defined by u(x) =
|x|

(1− |x|) 1
t

= e
dF (0,x)

t

(
1− e−dF (0,x)

)
. It is clear that

Du(x) =
1

t
e
dF (0,x)

t

[
1 + (t− 1)e−dF (0,x)

]
DdF (0, x).

Thus, by F ∗(x,DdF (0, x)) = 1 and dVF (x) = dx, we have that

‖u‖p
W 1,p
F

≤ ωd−1B
(
p+ d, 1− p

t

)[
1 + 2p−1

(
1− 1

t

)p]
+ ωd−12p−1B

(
d, 1− p

t

)
, (3.8)

where B(x, y) is the Euler-Beta function. On the other hand, the Lq norm of the function
u is given by ‖u‖qLq = ωd−1B

(
q + d, 1− q

t

)
. Therefore, it is clear that ‖u‖W 1,p

F
<∞, and

‖u‖Lq = +∞, therefore W 1,p
F (Bd(1))HH↪→Lq(Bd(1)).

From the assumption (α) on can easily observe that α ∈ L∞(M). On the other hand,
by the layer cake representation it follows that∫
M

α(x) dVF (x) =

∫
M

α0(dF (x0, x)) dVF (x)
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=

∫ ∞
0

VolF ({x ∈M : α0(dF (x0, x)) > t}) dt [chang. of var. t = α0(z)]

=

∫ 0

∞
VolF (BF (x0, z))α

′
0(z) dz =

∫ ∞
0

VolF (BF (x0, z))(−α0(z)) dz.

Since, (M,F ) is a Randers space, and a := supx ‖β‖g(x) < 1 one can observe that

(1− a)dg(x, y) ≤ dF (x, y) ≤ (1 + a)dg(x, y),

thus
Bg

(
x0,

z

1 + a

)
⊆ BF (x0, z) ⊆ Bg

(
x0,

z

1− a

)
. (3.9)

On account of this inclusion and the Bishop-Gromov inequality (see [Cha06]) and from
the assumption (α), one can see that∫ ∞

0

VolF (BF (x0, z))(−α′0(z)) dz ≤
∫ ∞

0

Volg

(
Bg

(
x0,

z

1− a

))
(−α′0(z)) dz

=

∫ ∞
0

Areag

(
Bg

(
x0,

z

1− a

))
α0(z) dz

≤ c

∫ ∞
0

sinh

(
k

z

1− a

)d−1

α0(z) dz < +∞,

thus α ∈ L1(M).
In the sequel we prove that the energy is G-invariant

Lemma 3.2. Let G be a compact connected subgroup of IsomF (M) with FixM(G) = {x0}
for some x0 ∈ M . Then Eλ,µ is G-invariant, i.e., for every τ ∈ G and u ∈ W 1,p

F (M) one
has Eλ,µ(τu) = Eλ,µ(u).

Proof. The proof is based on [FKM20, Lemma 5.1]. First we focus on the G-invariance

of the functional u 7→
∫
M

F ∗p(x,Du(x)) dVF (x). Since τ ∈ G, we have that (see [DH02])

F (ξ(x), dτx(X)) = F (x,X), ∀x ∈M,X ∈ TxM. (3.10)

Since (τu)(x) = u(τ−1(x)), by the chain rule, one has∫
M

F ∗p(x,D(τu)(x)) dVF (x) =

∫
M

F ∗p(x,D(u(τ−1(x)))) dVF (x)

=

∫
M

F ∗p(x,D(u(τ−1(x)))dτ−1
x ) dVF (x) (τ−1(x) = y)

=

∫
M

F ∗p(τ(y), D(u(y))dτ−1
τ(y) dVF (τ(y)). (3.11)

Since τ ∈ G, dVF (τ(y)) = dVF (y). On the other hand, by the definition of the polar
transform (2.6) and relation (3.10), we have

F ∗(τ(y), D(u(y))dτ−1
τ(y)) = sup

σ∈Tτ(y)M\{0}

D(u(y))dτ−1
τ(y)(σ)

F (τ(y), σ)
(σ := dτy(z), z ∈ TyM)

= sup
z∈TyM\{0}

Du(y)dτ−1
τ(y)(dτy(z))

F (τ(y), dτy(z))

= sup
z∈TyM\{0}

Du(y)(z)

F (y, z)
= F ∗(y,Du(y)). (3.12)

Combining (3.11) and (3.12), we get the desired G-invariance of the functional u 7→∫
M

F ∗p(x,Du(x)) dVF (x).
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Since τ ∈ G and α ∈ L1(M) ∩ L∞(M) is a non-zero, non-negative function which
depends on dF (x0, ·) and FixM(G) = {x0}, it turns out that for every u ∈ W 1,p

F (M), we
have K (τu) = K (u). Indeed

K (τu) =

∫
M

α(x)H(τu) dVF (x) =

∫
M

α0(dF (x0, x))H(u(τ−1(x))) dVF (x)

=

∫
M

α0(dF (x0, τ(x)))H(u(x)) dVF (x)

=

∫
M

α0(dF (x0, x)H(u(x)) dVF (x) = K (u),

which concludes the proof. �

For further use, we restrict the energy functional to the space W 1,p
F,G(M). For simplicity,

in the following we denote

Eλ,µ = Eλ,µ|W 1,p
F,G(M), and KG = K |W 1,p

F,G(M).

The principle of symmetric criticality of Palais (see Kristály, Rădulescu and Varga
[KRV10, Theorem 1.50]) and Lemma 3.2 imply that the critical points of Eλ,µ = Eλ,µ|W 1,p

F,G(M)

are also critical points of the original functional Eλ.

Lemma 3.3. The functional KG : W 1,p
F,G(M) → R is weakly lower semicontinuous on

W 1,p
F,G(M).

Proof. Consider {un} a sequence in W 1,p
F,G(M) which converges weakly to u ∈ W 1,p

F,G(M),
and suppose that

KG(un)��→KG(un), as n→∞.
Thus, there exist ε > 0 and a subsequence of {un}, denoted again by {un}, such that

0 < ε ≤ |KG(un)−KG(u)|, for every n ∈ N.

Thus, by the mean value theorem, there exists θn ∈ (0, 1) such that

ε ≤ |KG(un)−KG(u)| ≤
∫
M

α(x)|H(un(x))−H(u(x))| dVF (x)

≤
∫
M

α(x)|h(u+ θn(un − u))| · |un − u| dVF (x)

≤
∫
M

α(x)|un − u|
(
c1|u+ θn(un − u)|r−1 + c2|u+ θn(un − u)|q−1

)
dVF (x)

≤
∫
M

α(x)
(
c1|un|r−1|un − u|+ c2|un|q−1|un − u|

)
) dVF (x). (3.13)

For further use, let a, b > 0 be two real numbers, such that
p <

a

a− r + 1
< p∗, or

p∗(r − 1)

p∗ − 1
< a <

p(r − 1)

p− 1
,

p <
b

b− q + 1
< p∗, or

p∗(q − 1)

p∗ − 1
< b <

p(q − 1)

p− 1
.

In this case, by Hölder inequality we have that

c1

∫
M

α(x)|un|r−1|un − u| dVF (x) ≤ c1‖α‖∞‖un − u‖ a
a−r+1

‖un‖r−1
a ,

and

c2

∫
M

α(x)|un|q−1|un − u| dVF (x) ≤ c2‖α‖∞‖un − u‖ b
b−q+1
‖un‖q−1

b .
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Combining the above two inequalities with Theorem 3.2, we get that∫
M

α(x)|H(un(x))−H(u(x))| dVF (x)→ 0,

which is a contradiction in the light of (3.13), which concludes the proof of the lemma. �

According to Lemma 3.1 and Lemma 3.3 the functional Eλ,µ is weakly lower semicon-
tinuous on small ball of the Sobolev spaceW 1,p

F,G(M). Now, we are in the position to prove
our main result.

Proof of Theorem 1.1. For any r > 0 denote

Br = {u ∈ W 1,p
F,G : ‖u‖F ≤ r},

and define Jµ,λ : W 1,p
F,G → R, by

Jµ,λ(u) =
µ

p∗

∫
M

|u|p∗ dVF + λ

∫
M

α(x)H(u) dVF .

For any λ, µ, ρ > 0 define

ϕµ,λ(ρ) := inf
‖u‖<ρ

supBρ Jµ,λ −Jµ,λ(u)

ρp − ‖u‖pF
and ψµ,λ(ρ) := sup

Bρ

Jµ,λ. (3.14)

We claim that, under our assumptions, there exist λ, µ, ρ > 0 such that

ϕµ,λ(ρ) <
1

p
, (3.15)

that is, there exist λ, µ, ρ > 0 such that

inf
σ<ρ

ψµ,λ(ρ)− ψµ,λ(σ)

ρp − σp
<

1

p
.

Notice that by putting σ = ρ− ε, for some ε > 0

ψµ,λ(ρ)− ψµ,λ(σ)

ρp − σp
=

ψµ,λ(ρ)− ψµ,λ(ρ− ε)
ρp − (ρ− ε)p

=
ψµ,λ(ρ)− ψµ,λ(ρ− ε)

ε
·

− ε
ρ

ρp−1
[
(1− ε

ρ
)p − 1

] ,
so that (3.15) is fulfilled if there exist µ, ρ > 0 such that

lim sup
ε→0+

ψµ(ρ)− ψµ(ρ− ε)
ε

< ρp−1. (3.16)

ψµ,λ(ρ)− ψµ,λ(ρ− ε)
ε

≤ 1

ε
sup
‖v‖F≤1

∫
M

∣∣∣∣∣∣∣
ρv(x)∫

(ρ−ε)v(x)

µ|t|p∗−1 + λα(x)|h(t)|dt

∣∣∣∣∣∣∣ dVF

≤
κp

∗

p∗µ

p∗

∣∣∣∣ρp∗−(ρ− ε)p∗

ε

∣∣∣∣+ λc1

κqp∗‖α‖ p∗
p∗−q

q
·
∣∣∣∣ρq−(ρ− ε)q

ε

∣∣∣∣
+ λc2

κrp∗‖α‖ p∗
p∗−r

r

∣∣∣∣ρr−(ρ− ε)r

ε

∣∣∣∣ .
Thus

lim sup
ε→0

ψµ(ρ)− ψµ(ρ− ε)
ε

≤ µκp
∗

p∗ρ
p∗−1 +λc1κ

q
p∗‖α‖ p∗

p∗−q
ρq−1 +λc2κ

r
p∗‖α‖ p∗

p∗−r
ρr−1. (3.17)
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Let ρ0 > 0 such that

ρp−1
0 − µκp

∗

p∗ρ
p∗−1
0

c1κ
q
p∗‖α‖ p∗

p∗−q
ρq−1

0 + c2κrp∗‖α‖ p∗
p∗−r

ρr−1
0

= max
t>0

tp−1 − µκp
∗

p∗t
p∗−1

c1κ
q
p∗‖α‖ p∗

p∗−q
tq−1 + c2κrp∗‖α‖ p∗

p∗−r
tr−1

,

and consider ρµ := min{ρ0, ρ
∗}. Thus if

0 < λ < λ∗ :=
ρp−1
µ − µκp

∗

p∗ρ
p∗−1
µ

c1κ
q
p∗‖α‖ p∗

p∗−q
ρq−1
µ + c2κrp∗‖α‖ p∗

p∗−r
ρr−1
µ

,

therefore, based on (3.17) there exists (λ, ρ) such that

lim sup
ε→0

ψµ(ρ)− ψµ(ρ− ε)
ε

< ρp−1
µ ,

so that (3.15) is fulfilled.
Condition (3.15) implies the existence of u0 ∈ W 1,p

F,G with ‖u0‖F < ρµ such that

Eµ(u0) <
1

p
ρpµ −Jµ(u) (3.18)

for every u ∈ Bρµ . Since the energy Eλ,µ is sequentially weakly lower semicontinuous in
Bρµ , its restriction to the ball has a global minimum u∗. If ‖u∗‖ = ρµ, then, from (3.18)

Eλ,µ(u∗) =
1

p
ρpµ −Jµ(u∗) > Eλ,µ(u0),

a contradiction. It follows that u∗ is a local minimum for Eλ,µ with ‖u∗‖F < ρµ, hence in
particular, a weak solution of problem (Pλ,µ).

In the sequel we prove that u0 is not identically zero. In order to prove that our solution
is non-trivial, we show that there exists a function for which the energy is negative.

To this end, observe that from the assumption on the function α, it is clear that, there

exists R > 0 such that αR := essinf
dF (x0,x)≤R

α(x) > 0. Let ζ > 0 such that ζ < R
1− a
1 + a

. Now

we can define the following function:

uR,ζ =


0, x ∈M \BF (x0, R)

1
R−ζ (R− dF (x0, x)), x ∈ BF (x0, R) \BF (x0, ζ)

1, x ∈ BF (x0, ζ)

Due to (h2), it is clear that there exists a sequence θj, with θj → 0 as j → +∞, such
that

cθpj ≤ H(θj), ∀c > 0, (3.19)
and j large enough.

Consider the following function u1 := θjuR,ζ . In the sequel we are going to estimate
Eµ,λ(u1).

First of all, recall that rF > 0 is the reversibility constant on (M,F ), see (2.11), i.e. by

the eikonal identity (2.9) we have that
1

rF
≤ F ∗(x,−DdF (x0, x)) ≤ rF . Therefore,∫

M

F ∗p(x,Du1(x)) dVF (x) =

∫
M

F ∗p(x, θjDuR,ζ(x)) dVF (x)

= θpj

(
1

R− ζ

)p ∫
BF (x0,R)\BF (x0,ζ)

F ∗p(x,−DdF (x0, x)(x)) dVF (x)

≤ θpj

(
1

R− ζ

)p
rpFVolF (BF (x0, R)),
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and ∫
M

|u1|p dVF (x) = θpj

∫
M

|uR,ζ |p dVF (x) ≤ θpjVolF (BF (x0, R)).

On the other hand∫
M

|u1|p
∗

dVF (x) = θpj

∫
M

|uR,ζ |p
∗

dVF (x)θp
∗

j VolF (BF (x0, ζ)).

Finally, by (3.19) we have that∫
M

α(x)H(u1) dVF (x) ≥ cθpj

∫
BF (x0,ζ)

α(x) dVF (x) ≥ cθpjαRVolF (BF (x0, ζ)).

Putting all together, one has that

Eµ,λ(u1) ≤
(

1

p

(
1

R− ζ

)p
rpFVolF (BF (x0, R) +

1

p
VolF (BF (x0, R)))− cαRVolF (BF (x0, ζ))

)
θpj

−
θp

∗

j

p∗
VolF (BF (x0, ζ)).

By choosing c > 0 large enough, one can easily see that 0 is not a local minimizer of the
energy functional, and hence u0 6= 0. Which concludes the proof. �

4. Final remarks

4.1. Critical elliptic equations on Hadamard type Randers spaces. Through this
section, assume that (M,F ) is a d-dimensional Randers space endowed with the Finsler
metric (1.1) such that supx∈M ‖β‖g(x) < 1 and g is a Riemannian metric where (M, g) is a
Hadamard manifold. Let G be a coercive, compact connected subgroup of IsomF (M) such
that x0 ∈ FixM(G) for some x0 ∈ M . Let h : R → R be a continuous function verifying
(H), and let α ∈ L1(M)∩L∞(M)\{0} be a non-negative and radially symmetric function
w.t.r x0 ∈M , i.e. there exists α0 : [0,+∞)→ R such that α(x) = α0(dF (x0, x)), ∀x ∈M .
In this case a similar result as Theorem 1.1 can be obtained. Note that, such result is an
extension of [MBV20]. Note that if the sectional curvature of (M, g) is non/positive and
the compact connected group G of isometries fixes some point, then G is coercive if and
only if G has no other fixed point.

Moreover, if with sectional curvature of (M, g) bounded above by −k2, k > 0, for
example one can consider the following Funk-type metric (see [KR15]): let Bd(1) = {x ∈
Rd : |x| < 1} be the d−dimensional unit ball, d ≥ 2, and for every a ∈ [0, 1), the Funk-type
metric Fa : Bd(1)× Rn → R is defined by

Fa(x, y) =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2
+ a

〈x, y〉
1− |x|2

, x ∈ Bn(1), y ∈ TxBd(1) = Rd. (4.1)

In fact, for a = 0, the manifold (Bd(1), F0) reduces to the well known Riemannian Klein
model; with constant sectional curvature −1

4
.

Then for every µ > 0, there exists λ∗ > 0 such that for every λ < λ∗ the problem{
−∆p,Fu = λ|u|p∗−2u+ µα(x)h(u), in M,

u ∈ W 1,p
F (M)

has a non-zero G-invariant weak solution.
The proof of the above statement is similar to the proof of Theorem 1.1. The key point

is a McKean-type inequality (see for instance [YH14, Theorem 0.6]), we have that

λ1,g := inf
u∈W 1,p

g (M)

∫
M

|∇gu|p dvg∫
M

|u|p dvg

≥
(

(d− 1)k

p

)p
,
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therefore, ∫
M

|∇gu|p dvg ≥
(d− 1)pkp

pp + (d− 1)pkp
‖u‖p

W 1,p
g (M)

, u ∈ W 1,p
g (M).

Using (3.4), (3.6), denoting by Ck,p := (1−a2)(d+1)/2

(1+a)p
(d−1)pkp

pp+(d−1)pkp
, we obtain that for every u(

1

1− a

)p
‖u‖p

W 1,p
g (M)

≥
∫
M

F ∗p(x,Du(x)) dVF (x) ≥ Ck,p‖u‖pW 1,p
g (M)

.

4.2. Hardy inequalities on Finsler–Hadamard manifolds. One can notice that us-
ing the inequality described in Lemma 3.1, one can deduce a Hardy type inequality on
general Finsler manifolds. Such inequalities allows us to consider elliptic equations involv-
ing critical Sobolev exponent and a Hardy-type singularities, see [OSV20, BFP20, FP16].

Theorem 4.1. Let (M,F ) be an d-dimensional (d ≥ 3) Finsler–Hadamard manifold with
S = 0, and let x0 ∈M be fixed. If d+ a− p > 0, b+ p > 0 and p > 1 then ∀u ∈ C∞0 (M)∫

M

dF (x0, x)a|u|bF ∗p(x,−D|u|) dVF (x) ≥
(
a+ d− p
b+ p

)p ∫
M

|u|p+b

dp−αF (x0, x)
dVF (x). (4.2)

Proof. To prove this inequality, consider u ∈ C∞0 (M), and denote by γ = d+a−p
b+p

. We
consider the function v(x) = dF (x0, x)γu(x). Therefore, and one has

D(|u|)(x) = −γdF (x0, x)−γ−1|v|DdF (x0, x) + dF (x0, x)−γD(|v|)(x).

Applying the inequality (which is a consequence of Lemma 3.1)

p(β − ξ)
(
F ∗p−2(x, ξ)J∗(x, ξ)

)
+ F ∗p(x, ξ) ≤ F ∗p(x, β), ∀ξ, β ∈ T ∗xM. (4.3)

with the choices β = −D|u| and ξ = γdF (x0, x)−γ−1|v|DdF (x0, x), respectively, one can
deduce that

F ∗p(x,−D(|u|)(x)) ≥ F ∗p(x, γdF (x0, x)−γ−1|v(x)|DdF (x0, x))

−pγp−1dF (x0, x)−pγ−p+1|v|p−1D(|v|)(∇dF (x0, x)).

Multiplying the above inequality by daF (x0, x)|u|b and integrating it we obtain

∫
M

daF (x0, x)|u|bF ∗p(x,−D|u|) dVF (x) ≥
(
a+ d− p
b+ p

)p ∫
M

|u|p+b

dp−αF (x0, x)
dVF (x) +R0.

where

R0 = −pγp−1

∫
M

dF (x0, x)−pγ−p+1+a−bγ|v(x)|b+p−1D(|v|)(x)(∇dF (x0, x))dVF (x).

Since S = 0 and K ≤ 0, we have the Laplace-comparison principle (see [WX07])

dF (x0, x)∆dF (x0, x) ≥ d− 1 for a.e. x ∈M.

Consequently, by (2.10) and the latter estimate one has

R0 =− pγp−1

b+ p

∫
M

D(|v|b+p)(x)
(
dF (x0, x)−pγ−p+1+a−bγ∇dF (x0, x)

)
dVF (x)

=
pγp−1

b+ p

∫
M

|v(x)|b+pdiv
(
dF (x0, x)−pγ−p+1+a−bγ∇dF (x0, x)

)
dVF (x)

=
pγp−1

b+ p

∫
M

|v(x)|b+pdF (x0, x)−pγ−p+a−bγ (−d+ 1 + dF (x0, x)∆dF (x0, x)) dVF (x) ≥ 0,

which completes the proof of the inequality. Note that, one can prove that the constant(
a+ d− p
b+ p

)p
is optimal and never achieved, for the argument see [FKV15]. �
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Brézis and Vazquez first discovered improved version of the Hardy inequality (see
[BV97]). Later, lot of attention was paid for the improvements of Brézis Vazquez in-
equalities, see [WW03] or [ACR02]. In the sequel we shortly present a Wang-Willem type
inequality as an application of Lemma 3.1. For simplicity we focus on Minkowski spaces:

Theorem 4.2. Let F : Rd → [0,+∞) be a positively homogeneous Minkowski norm,
Ω ⊂ Rd be an open bounded domain, 0 ∈ Ω, and R > sup

x∈Ω
F ∗(−x). If d+ a− p > 0, then

for every u ∈ C∞0 (Ω) we have∫
Ω

F ∗a(−x)F p(∇|u|) dx ≥
(
d+ a− p

p

)p ∫
Ω

F ∗a−p(−x)|u|p dx

+
l
p
2
F

2p−1

(
p− 1

p

)p ∫
Ω

F ∗a−p(−x)
|u|p

ln
(

R
F ∗(−x)

)p dx,
Proof. As in the Proof of Theorem 4.1, let γ = d+a−p

p
, u ∈ C∞0 (Ω), and consider v =

F ∗γ(−x)u. Using Lemma 3.1, one can prove the following inequality (in a similar way as
above):∫

Ω

F ∗a(−x)F p(∇|u|) dx ≥ γp
∫

Ω

F ∗a−p(−x)|u|p dx+
l
p
2
F

2p−1

∫
Ω

F ∗a−pγ(−x)F p(∇|v|) dx.

Now, consider the following function w(x) = ln
(

R
F ∗(−x)

) 1−p
p
v(x). Then

∇|v| = p− 1

p
ln

(
R

F ∗(−x)

)− 1
p ∇F ∗(−x)

F ∗(−x)
|w|+ ln

(
R

F ∗(−x)

) p−1
p

∇|w|.

Now, applying inequality (4.3), we obtain

F p(∇|u|) ≥
(
p− 1

p

)p
ln

(
R

F ∗(−x)

)−1 |w|p

F ∗p(−x)

+ p

(
p− 1

p

)p−1 |w|p−1

F ∗p−1(−x)
〈∇(∇F ∗(−x)),∇|w|〉.

Thus,∫
Ω

F ∗a−pγ(−x)F p(∇|v|) dx ≥
(
p− 1

p

)p ∫
Ω

F ∗a−pγ(−x) ln

(
R

F ∗(−x)

)−1 |w|p

F ∗p(−x)
dx

−
(
p− 1

p

)p−1 ∫
Ω

F ∗−d(−x)〈x,∇|w|p〉 dx.

On the other hand, by [FK09, Theorem 3.1] we obtain

−
(
p− 1

p

)p−1 ∫
Ω

F ∗−d(−x)〈x,∇|w|p〉 dx =

(
p− 1

p

)p−1 ∫
Ω

|w|pdiv
(
F ∗−d(−x)x

)
dx

=

(
p− 1

p

)p−1 ∫
Ω

|w|p∆F (F ∗2−d(−x)) dx = 0.

Putting all together∫
Ω

F ∗a(−x)F p(∇|u|) dx ≥γp
∫

Ω

F ∗a−p(−x)|u|p dx

+
l
p
2
F

2p−1

(
p− 1

p

)p ∫
Ω

F ∗a−p(−x)
|u|p

ln
(

R
F ∗(−x)

)p dx.
�
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