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The effect of out-of-plane orientational and positional fluctuations are examined in the phase
behavior of hard spherocylinders confined between two parallel walls. The stability of isotropic,
nematic and solid phases are studied for aspect ratios (κ = 1 +L/σ, where σ and L are the diameter
and length of the cylinder) of 8, 10, and 16, while the width of the slit-like pore, H, is set in
the quasi-two-dimensional regime, σ < H ≤ 2σ. Using replica exchange Monte Carlo (REMC)
simulations and Onsager theory we provide evidence for the stabilisation of the nematic order with
increasing pore width. The minimum surface density necessary to exhibit nematic order remains
nearly the same with increasing H while the upper bound of nematic order is postponed to higher
densities in detriment of the single-layer-solid phase. We prove that a drying-out effect takes place
in the pore as the density increases linearly from the wall to the middle of the pore in the ideal gas
limit. This behavior is kept for the isotropic phase and partially in the nematic one, while a wetting
behavior is observed at the walls mostly for the solid phases. For κ = 8, we have also observed a
compressibility signal of a transition between an isotropic fluid and a cluster-like fluid. This cluster
phase is destabilized by increasing H. Finally, we build a master diagram, where the drying-wetting,
solid-solid, and close packing density curves are independent from κ.

I. INTRODUCTION

The rich phase behavior of hard body fluids depends
very strongly on the shape of the particles [1] and the con-
fining dimension [2, 3]. It is now well understood that the
anisotropic shape of particles is responsible for the forma-
tion of mesophases such as the the nematic, smectic, and
columnar. Similarly, confinement gives rise to very rich
phase behavior. For example, depending on the interac-
tion between the confining walls and the particles, several
phenomena may arise such the wetting, evaporation, layer-
ing, and different types of anchoring [4–8]. Probably, the
most important consequences of strong confinement are re-
lated to the fact that the nature of orientational ordering
of anisotropic particles is quite different in two and three
dimensions. The three-dimensional (3D) nematic phase is
accompanied by long range orientational order, while the
two-dimensional (2D) one is quasi-long ranged and the ori-
entational correlation decays algebraically. In addition to
this, in case of particles with sufficiently large anisotropy,
the 3D isotropic-nematic (I-N) phase transition is usually
first order, while the 2D nematic transforms continuously
to the isotropic phase through the Kosterlitz-Thouless
disclination unbinding mechanism with decreasing den-
sity [9, 10]. The strange nature of 2D nematic phase was
explored with several simulation studies [11–17] and even
with experiments [18, 19]. Note that similar differences
are present in the properties of 2D and 3D solid phases,
too [20–23].
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The simplest way to investigate the crossover between
2D and 3D phase behavior of hard body fluids is to confine
the particles between two parallel hard plates, where set-
ting the wall-to-wall distance (pore width) from infinity to
the shortest dimension of the particle allows to interpolate
between 3D and 2D bulk properties. That is, by tuning
the pore width it is possible to examine the expected
intermediate behavior between 2D and 3D orientational
and positional ordering of rod-like particles. It is also
possible to do experiments with hard ellipsoids (or sphero-
cylinders), where the confined hard ellipsoids corresponds
to the 2D bulk system of hard ellipses in the case of most
extreme confinement [24]. Comparing the strictly 2D and
3D I-N phase transitions, it is observed that the mini-
mum shape anisotropy required to stabilize the nematic
ordering is very different. In the case of hard ellipsoids,
confinement stabilizes slightly the nematic order, which is
neither 2D nor 3D nematic, because the aspect ratio (the
ratio of the lengths of major and minor axes) must exceed
2.8 in 3D bulk [25, 26], while the minimal aspect ratio is
only 2.4 in 2D bulk [27]. This slight stabilization effect of
hard flat walls on the nematic ordering of the ellipsoids
was confirmed by Monte Carlo simulations [28, 29]. The
opposite trend happens in the case of hard spherocylin-
ders, i. e. confinement destabilizes the nematic ordering,
since the minimal aspect ratio κ (the total length divided
by the diameter) is 4.8 in 3D [30, 31], while it is around
8 in 2D. A possible explanation for this behavior is that
the cylindrical part of the particle behaves as a hard rect-
angle in 2D confinement, which is known to favor the
formation of clusters and, depending on the shape of the
particle tip, even the formation of a tetratic phase is fea-
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sible when the anisotropy is moderate [32–34]. The effect
of central and terminal shape parts of rod-like particles
was examined in a quasi-2D granular system, where the
monolayer of hard rods was vibrated vertically [35]. It
was found that the cylindrical shape of the central part
of the particles is responsible for the tetratic correlation,
while rounded or tapered tips favor nematic order [35].
Monte Carlo simulation studies also confirm these find-
ings, given that the tetratic phase was found in the system
of weakly anisotropic hard rectangles [36, 37], while only
short ranged tetratic correlations were observed in the
case of hard discorectangles [32]. Therefore, it is logical to
consider the tetratic correlation in strictly confined hard
spherocylinders (hard discorectangles) as a key factor for
the destabilisation of the nematic phase.

It must be also taken into account that the properties
of 2D and 3D nematic phases are qualitatively different.
This can be seen in the system of hard spherocylinders
placed in a slit-like pore, where the hard flat surfaces
induce a planar adsorption and a surface phase transition
between orientationally disordered and ordered surface
layers (2D I-N ordering) with increasing density in the
pore. This surface induced 2D I-N transition is not related
to the capillary I-N transition of 3D nematisation, because
the 3D I-N transition terminates at a critical density
larger than the 2D I-N transition density [38–40]. Monte
Carlo simulations found that the 3D nematisation can
be strengthen with narrowing pores in such an extent
that the capillary isotropic phase vanishes at pore widths
smaller than about the double of the rod length so that
only the surface induced nematic phase survives in very
narrow pores [41]. The 2D I-N transition was studied
for the fluid of very long hard spherocylinders, which are
placed between two planar hard walls [41–43]. It was
found that the effect of adding out-of-plane positional
and orientational freedom destabilizes the 2D nematic
ordering, which means that more and more particles are
needed to form the 2D nematic phase with increasing
wall-to-wall distance in the pore [44]. This is due to the
fact that the out-of-plane orientation freedom decreases
the effective in-plane shape anisotropy of the particles,
while the positional out-of-plane ordering increases the
available room for particles. From a 2D point of view, the
confined rods can be considered as a polydisperse mixture
of 2D hard discorectangles, where the polydispersity takes
place both in length, due to the increase of orientational
freedom, and diameter, due to the increase of out-of-plane
positional freedom. The effect of polydispersity can be
stronger for shorter rods, where the nature of 2D I-N
transition changes from continuous to first order [45].

In this work, we study the phase behavior of hard
spherocylinders which are placed between two parallel
walls using replica exchange Monte Carlo simulations and
Onsager theory. The length, L, and the diameter, σ, of
the cylindrical part of the particle is chosen such that
the aspect ratio, k = 1 + L/σ, is fixed to 8, 10, and 16.
The wall-to-wall distance, H, is restricted to stay between
σ and 2σ, σ < H < 2σ, which makes the system be in

the quasi-2D region, where two independent fluid layers
cannot evolve in the slit. This means that layers adsorbed
on opposite walls directly interact with each other. We
pay special attention to the adsorption properties, the
cluster formation, and the stability of the ordered phases.
We show that almost the same number of particles per
unit area, ρ, is enough for the formation of nematic or-
der with H = σ and H = 2σ, even though the available
volume for the particles is double for H = 2σ. In addi-
tion to this, wetting of the walls occurs at lower ρ values
with increasing the pore width H, whereas the opposite
tendency can be seen for the single-layer-solid (SLS) for-
mation curve. All these results are summarized in a phase
diagram, which share similar features for all studied κ
values. Indeed, the wetting lines, the maximal packing
density lines, and the two-layer-solid (TLS) formation
lines approximately collapse to define master curves.

II. SIMULATION DETAILS

We have performed replica exchange Monte Carlo
(REMC) simulations of confined hard spherocylinders.
This technique was developed to enhance sampling from
equilibrium, specially in the cases where the free energy
landscape is uneven [46, 47]. It is based on the definition of
an extended ensemble, Qext =

∏
iQi, Qi being a partition

function of ensemble i. In our case, we make use of an ex-
pansion of the isobaric ensemble, Qext =

∏
iQ(N,Pi, T ),

where N , T , and Pi are the number of particles, temper-
ature, and the three dimensional pressure of ensemble i,
respectively [48]. Here, N and T are fixed for all ensem-
bles defining Qext. This expansion is useful to deal with
systems of hard particles [49–51].

As mentioned, spherocylinders are hard particles made
up of two hemispheres of diameter σ connected by cylin-
ders of length L. For these particles, the aspect ratio is
then given by κ = L/σ+1. The overlapping algorithm for
spherocylinders consists on a simple method, where the
distance between the nearest points of two line-segments
with length L must be larger than σ [52]. In addition,
the overlapping of spherocylinders with walls is simply
achieved by comparing the distances between the center
of the spheres at each end of the particle and the corre-
sponding wall, which cannot be less than the hemisphere
radius, σ/2. Our system is then built by placing N sphe-
rocylinders between two parallel hard walls separated a
distance H and perpendicular to the z axis. We build
two different starting arrangements. On the one hand, we
consider Nr different loose initial configurations, where
particles positions and orientations are taken at random
while avoiding overlaps. On the other hand, we also build
Nr identical compact initial configurations, where par-
ticles are packed parallel to the walls in order to yield
the densest packing, see the Supplemental Material (SM).
That is, by stacking side-by-side particles alternating the
z-position to get in contact with each wall while forming
columns, which are then assembled by making the hemi-
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spheres of the one column enter into the holes of the next
one. In the first case, the system evolves by increasing
density, whereas in the second case the system of replicas
follows an expansion.

We have applied periodic boundary conditions only in
the x and y axes, given that the z axis is bounded by the
walls. We have also employed Verlet lists to gain efficiency.
The values of βPi follow a geometric progression, with
a minimum pressure of βPmin = 0.02σ−3 and a maxi-
mum pressure of βPmax = 2.0σ−3, with β = (kBT )−1.
Each of the Nr replicas performs the sampling of the
isobaric ensemble at a fixed Pi value, where conventional
displacement, rotation, and volume change trials are car-
ried out. This is implemented in Graphic Processing
Units (GPUs), being each replica handled by a single
core, allowing for the definition of a large number of
replicas. Next, information is gathered by the CPU
where replica swaps are tried with acceptance probabil-
ity min{1, exp [(βPi − βPj)(Vi − Vj)]}, where Pi, Pj , Vi,
and Vj are the pressures and volumes of replicas i and
j, respectively. We allow swap trials of replicas sampling
from ensembles i and j with |i − j| ≥ 1, in such a way
that we obtain an average acceptance around 30%. This
is done as explained in detail elsewhere [53].

In all cases we run the simulations long enough to en-
sure the system or replicas reaches a stationary state,
presumably equilibrium. After achieving this condition,
we perform several averages over the system of replicas,
including probability density functions and structural
properties. For most runs we have defined a relatively
large number of replicas, Nr = 230, and N = 128, 160 and
144 for κ = 8, 10 and 16, respectively. Note that this tech-
nique takes advantage of density fluctuations that increase
with decreasing the system size. Consequently, it does not
provide an efficient way to study long-range correlations
among particles, but yields a detailed equation of state,
βP (ρ), and isothermal compressibility, χ(ρ). However, in
a few cases we have performed runs with Nr = 80 and
N ' 1400 to observe quasi-long range correlations.

III. RESULTS

In the case of H → σ, the confined system of sphe-
rocylinders by parallel plates should produce the same
results as discorectangles. This last case is studied in
reference [32] for several κ values and in particular for
κ = 16. We consider this case as a reference to check
the correctness of our implementation. For this purpose,
we perform simulations with κ = 16 and H = σ, by
compressing loose random configurations and expanding
tightly packed structures. The comparison of our out-
comes with those given in reference [32] is shown in panel
a) of Fig. 1, where the 2D pressure, βPH, is plotted
against the 2D number density, ρ = NH/V . Note that
each of our curves is constituted by 230 points, and this is
why we employ lines to represent them. Compression and
expansion runs yield the same stationary curves, which

a)

b)

c)

FIG. 1. a) 2D pressure, βPH, b) isothermal compressibility,
χ, and c) nematic order parameter, SN , as a function of the 2D
number density, ρ, for H = σ and κ = 16. Symbols in panel a)
are data from Bates and Frenkel [32] for H = σ. Black and red
lines correspond to compression and decompression runs. The
snapshots show typical configurations of the isotropic fluid,
nematic fluid, and solid, as increasing density.

in addition coincide with the data reported by Bates
and Frenkel [32]. Hence, we can safely conclude that
our implementation is correct. In addition, the isother-
mal compressibility, as obtained from density fluctuations
through χ = N(〈ρ2〉 − 〈ρ〉2)/〈ρ〉2, also produce identical
curves for compression and expansion runs. The same
occurs for the nematic order parameter

SN =
〈√√√√( 1

N

N∑
i=1

cos(2φi)
)2

+
(

1
N

N∑
i=1

sin(2φi)
)2〉

, (1)

where φi is the angle between an arbitrary fixed axis on
the xy plane and the projection of the axis of the ith par-
ticle on this plane. Notwithstanding, we have observed
marked differences of this parameter when comparing
runs starting from loose random configurations and com-
pact ordered structures during a long equilibration time,
despite the fact that βP (ρ) and χ(ρ) were nearly the same
at much shorter times. The same was observed for the
tetratic order parameter, ST , which is defined by replacing
2φ by 4φ in Eq. (1) (not shown). For 0.038 < ρ < 0.045,
the former starting condition produces some configura-
tions with lower SN and higher ST values than the second
one, which yields arrangements where all particles are
clearly aligned with a well defined director. The fact
of having different configurations during long simulation
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a)

b)

c)

FIG. 2. a) 2D pressure, βPH, b) isothermal compressibility,
χ, and c) nematic (black) and layer (red) order parameters,
SN and SL, as a function of the 2D number density, ρ, for
H = 1.8σ and κ = 16. Vertical dashed lines are located at
the different χ(ρ) maxima. The snapshots corresponds to the
densities signaled by the arrows.

times signals that equilibrium is hard to achieve. Indeed,
the compression curve for SN and ST were observed to
evolve very slowly with REMC cycles, approaching the
expansion one. From here on, we only show expansion
curves, which are observed to produce equilibrium with a
smaller computing effort.

The isothermal compressibility curve, χ(ρ), shown in
the panel b) of Fig. 1 shows two peaks. The first one is
linked to a sudden increase of the nematic order param-
eter, SN , which is a signature of the I-N transition. In
addition, SN > ST for all ρ values. Snapshots correspond-
ing to the isotropic and nematic fluids are depicted at the
left of Fig. 1. Furthermore, this first χ peak, located at
ρIN = 0.021± 0.001, is closely preceded by the inflection
point of SN (ρ). We observe that the density distribu-
tion is always unimodal for all pressure values around
this point signaling a high order transition (not shown),
which is consistent with a Kosterlitz-Thouless disclina-
tion unbinding mechanism [9] and agrees with strictly 2D
results [32]. Orientational correlations in the 2D nematic
phase decays algebraically, and so SN also diminishes with
increasing the system size. Nonetheless, we expect the
shape of curve SN (ρ) to hold with increasing N and so,
the location of its inflexion point should remain invariant
for finite systems. The second peak of χ corresponds to
the nematic-solid transition reported in the phase diagram
given elsewhere [32] and occurs at ρNS = 0.041 ± 0.001.
As can be seen, it also coincides with a smaller increase
of SN (ρ), where the particles further align to form the
solid-like structure. Here, the appearance of columns and
rows is observed. Recall that in two dimensions there are
no true crystals, given that thermal fluctuations destroys
long range order [54]. According to the unimodal density
distributions we have obtained, although stronger than

FIG. 3. Positional distribution function, f(z), as obtained
for κ = 16 and H = 2σ for pressures in the range 0.02σ−3 <
βP < 2.0σ−3. Green, blue, and red curves correspond to
the isotropic, nematic, and solid phases, respectively. The
black curve corresponds to the ideal gas exact solution. The
broader blue curve corresponds to SL ∼ 0. The insets show
lateral snapshots of some representative configurations, which
correspond to the profiles of isotropic, nematic, and solid
phases.

the I-N transition, the nematic-solid transition is not first
order.

For the same κ = 16, fixing H to 1.8σ produces the
results shown in Fig. 2. It is observed a somewhat uneven
but smooth increasing βPH as a function of ρ, which
translates into a χ(ρ) showing the three maxima signaled
by the vertical dashed lines. With increasing pressure, the
first one corresponds to the I-N transition, the second one
to the nematic-solid transition, and the third one, a very
wide peak occurring at much larger ρ values, is related
to a layering process. Note that the isotropic-nematic
location, ρIN, is close to the inflexion point of SN (ρ),
which is practically the same as for the case H ≈ σ. In
addition, ρNS is increased a bit and it continues to match
a small increase of SN (ρ). In Fig. 2 c) we show, together
with SN , the layering order parameter which is given by

SL =
6
(∫ (σ−H)5/12

(σ−H)/2 (ρ(z)−ρ̄)dz +
∫ (H−σ)/2

(H−σ)5/12(ρ(z)−ρ̄)dz
)

5(H − σ)ρ̄ ,

(2)
where ρ(z) is the 2D number density profile and ρ̄ =∫ (H−σ)/2

(σ−H)/2 ρ(z)dz/(H − σ).
Note that SL is negative if the particles are located in

the middle of the pore, while it is positive if the particles
are adsorbed on the walls. Interestingly, SL is zero for flat
density profiles. Therefore we can distinguish the drying-
out and wetting phenomena at the walls with the help of
this parameter. The possible values of SL are restricted
into the interval of [−1/5, 1]. Thus, negative values point
out to drying and positive values to a wetting situation.
The SL(ρ) curve shown in Fig. 2 c) turns positive above
ρNS, so that wetting of the walls starts well inside the
solid region. Hence, isotropic and nematic phases are
drying of the walls for H = 1.8σ. Furthermore, the
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b)
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d)

FIG. 4. a) 2D pressure, βPH, b) isothermal compressibility,
χ, c) nematic order parameter, SN , and d) layering order
parameter, SL, as a function of the 2D number density, ρ,
for σ ≤ H ≤ 2σ and κ = 16. Different curves correspond to
different H values, as labeled.

increasing rate of SL(ρ) is small, which yields a not so
well defined inflexion point. This point seems to coincide
with the χ(ρ) maxima and we take it as the transition
between a SLS and a TLS. The three snapshots inserted
in Fig. 2 corresponds to the dry SLS (SLSd), wet SLS
(SLSw), and wet TLS (TLSw), from top to bottom. This
last structure shows neighboring particles belonging to
the same column alternating positions in the z direction,
which leads to a much larger packing density (see the SM
for a comparison between the snapshots of 1LSw and the
2LSw for N =1400).

As mentioned above, a simple criteria for discriminat-
ing wetting from drying could be given in terms of SL.
Its definition relies on the density profile of the particles
centres, ρ(z), or equivalently, on the positional distri-
bution function defined as f(z) = ρ(z)/ρ, which fulfills∫H/2

−H/2 f(z)dz = 1. This positional distribution function
is shown in Fig. 3 for κ = 16 and H = 2σ. In this plot we
employ different colors to distinguish among the curves
belonging to different phases. We also insert as a black
line the f(z) corresponding to the ideal gas limit. In this
case, the exact calculation yields

f(z) =


2

H−σ
− 4|z|

(H−σ)2 if σ−H
2 ≤ z ≤ H−σ

2 ,

0 otherwise,
(3)

for H < κσ. This expression is derived in the first section
of the SM. We can observe that this limiting formula
agrees perfectly with our simulation results for ρ < 0.02.
At these densities a drying-out effect takes place because
the particles move away from the walls and accumulate
in the middle of the pore. This drying-out effect is due to
the fact that the density is low enough and the particles
can maximize the number of microstates with the gain
coming from the orientational freedom when they are
located in the middle of the pore. A significant departure
from the ideal gas limit is observed for the nematic phase,
where the midplane maximum diminishes its height and
small peaks emerge close to the walls. For a large enough
pressure, the profile looks like the highlighted blue curve,
which corresponds to SL ∼ 0 and has the peaks at the
walls with a similar height than that at the midplane.
Thus, this curve can be considered as a dividing line
between the drying and wetting phenomena of the walls
for H = 1.8σ. Conversely, the particles wet the walls in
the solid phase. For a low pressure solid, wetting is not
strong enough to produce a couple of well defined layers
at the walls because several particles are still located close
to the midplane. For a large enough pressure particles
are totally excluded from the midplane and peaks at the
walls are fully developed. In between these two cases,
peaks at the walls continuously grow with increasing
pressure, while the depletion at the middle of the pore
becomes stronger. This yields a smooth grow of SL(ρ),
which signals a broad solid-solid transition. This is due to
the fact that the SLS-TLS transition imply not only the
formation of two layers but also their arrangement to yield
a structure where particles alternate their z positions.

Our results deviate substantially from previous simula-
tion results, which were performed in much wider pores.
It was observed that the particles wet the walls and a thin
nematic film forms in the vicinity of the walls at such den-
sities, where the middle of the pore is still isotropic [41, 42].
The change of the equation of state, the compressibility,
and the order parameter curves with increasing H can be
seen in Fig. 4. At low ρ values, all curves collapse and
produce the first peak of χ(ρ) with practically the same
ρIN. As mentioned, this peak is correlated to a sudden
increase of SN . It should be noted that for the same
2D number density ρ and for increasing H, SN slightly
decreases. This is a result of the gain in possible polar
angle values, which decreases the 2D shape anisotropy
(the effective kappa in the xy plane). The nematic-solid
transition, the one observed at ρ ∼ 0.04, shifts to the
right with increasing H. The main consequence of these
results is that the out-of-plane orientational and posi-
tional freedom can support the formation of 2D nematic
ordering. Thus, the density range for the nematic phase
widens. It is surprising that practically the same amount
of particles is enough to induce nematic ordering when
we double the pore width and the available room for the
particles. At even larger densities, the curves for low and
high H behave very differently. For H < 1.6σ the shape
of βP (ρ) is nearly kept, strongly contrasting with cases
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a)

b)

c)

d)

FIG. 5. a) 2D pressure, βPH, b) isothermal compressibility,
χ, c) nematic (blue) and tetratic (red) order parameters, SN

and ST , and d) derivative of χ(ρ), χ̇(ρ), as a function of the
2D number density, ρ, for H = σ and κ = 8. The snapshots
corresponds to the densities signaled by the arrows.

having H > 1.6σ, where the systems yield much larger
densities. This increase in density is accompanied with a
wide peak of χ(ρ), as discussed for H = 1.8σ, which in
turn is linked to an increase of SL, indicating that the
particles start locating close to the walls. Note that the
density at which wetting commences, ρW, shifts to the
left with increasing H. Nonetheless, except for H = 2σ,
wetting always starts once the solid phase is formed. Note
also that for H > 1.8σ the location of the χ(ρ) peak
signaling the solid formation is not clear. Hence, in this
case we have performed simulations with N ' 1400 and
Nr = 80 to determine, from the decayment of the radial
distribution peaks, the transition density. We have fol-
lowed the same procedure for all κ values to determine all
fluid-solid transitions occurring above the wetting line.

For H ' σ, decreasing κ leads to the disappearance
of the nematic fluid phase. According to Bates and
Frenkel [32] this happens close to κ = 8. In this case, we
observe SN curves reaching values close to 0.5 and some
snapshots where a clear director can be defined, as shown
by the top right snapshot of Fig. 5. Nonetheless, at the
inflexion point of SN (ρ), neither the χ(ρ) curve nor its
derivative, χ̇(ρ), show any sign of an I-N transition. In
addition, in this case we have also performed simulations
with N ≈ 1400 showing much lower SN values and a fast
decay of orientational correlations, confirming the absence
of a nematic fluid. So, κ = 8 seems to be just below the
κ limit for obtaining a nematic fluid phase. Note also
that the nematic phase is frustrated by the appearance of
clusters forming a mosaic-like arrangement, which makes
SN (ρ) to decrease while ST (ρ) increases up to the point

a)

b)

c)

d)

FIG. 6. a) 2D pressure, βPH, b) isothermal compressibility,
χ, c) nematic (solid lines) and the difference between the
nematic and the tetratic order parameters (dashed lines),
SN and SN −ST , and d) layering order parameter, SL, as
a function of the 2D number density, ρ, for σ ≤ H ≤ 2σ.
All data correspond to κ = 8. Different curves correspond
to different H values, as labeled. Snapshots show typical
configurations for H = 2σ and the densities pointed out by
the arrows.

of yielding ST (ρ) > SN (ρ). Recall that these clusters
appear even by starting from tight compact parallel con-
figurations and so, one can safely expect them to belong
to equilibrium. Furthermore, the appearance of these
clusters is accompanied by a tiny peak of χ(ρ), probably
more noticeable by the zero value of χ̇(ρ), suggesting the
existence of an isotropic to tetratic transition, as the one
formed by hard rectangles [37], although in this last case
SN (ρ) remains close to zero for all ρ. We should mention
that Bates and Frenkel described this phase as globally
isotropic, with strong local positional and orientational
correlations between particles [32]. They have indeed
ruled out the existence of a tetratic phase for κ = 6 and
ρ = 0.125 by studying the decay of the orientational order
with distance for systems with N = 1000. We have con-
firmed this with our N ≈ 1400 simulations for κ = 8 and
H ' σ. So, in view of these results, it is difficult to name
this phase otherwise than globally isotropic with strong
tetratic correlations. Nonetheless, given the existence of
this tiny χ peak, which persists with increasing H up to
H = 1.7σ as shown in Fig. 6 b), let us call it cluster phase.
It should also be mentioned that tetratic correlations are
also found for similar systems [35, 55], where particle tips
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FIG. 7. 2D pressure, βPH, and nematic order parameter, SN ,
as a function of the 2D number density, ρ. Full lines correspond
to Onsager outcomes and dashed lines to simulations. Black
and red correspond to H = 1.1σ and 2.0σ, respectively. The
top panel correspond to κ = 16 and the bottom one to κ = 10,
as labeled.

are shown to have an important impact on the presence of
the tetratic order. We speculate that there exist a system
with κ & 8 which forms a nematic phase at H = 2σ and
produces clusters at H = σ.

Results for κ = 8 and σ ≤ H ≤ 2σ are shown in Fig. 6.
As for all κ, the curves collapse for low ρ values, as the
system approaches the ideal gas limit, and they shift to the
right with increasing H for large ρ values. In addition, the
χ peak signaling the isotropic-cluster transition shifts to
the right and decreases its height, vanishing at H = 1.8σ.
This is accompanied by a smoothing of the SN (ρ) drop as
well as the disappearance of the well of the difference of
the nematic and tetratic curves, SN (ρ)−ST (ρ). Indeed,
SN (ρ)−ST (ρ) turns always positive for H > 1.8σ. In
other words, cluster formation is hindered by increasing
the pore width. This process ends at H = 2σ, where
the drop of SN (ρ) disappears and clusters are not longer
observed. Finally, the other features observed for the fluid-
solid and layering transitions already shown for κ = 16
are kept. In the SM we present the κ = 10 case, which

/

FIG. 8. General phase diagram of hard spherocylinders
confined by two walls. ρ∗ = ρ/ρcp, where ρcp is the 2D close
packing density for H = σ. Inaccessible densities are shown
by the hatched area. Blue, green, and red lines correspond
to κ = 8, 10, and 16, respectively. Solid squares, circles, and
diamonds correspond to SLS-TLS transition, nematic-solid
transition, and I-N transition, respectively. Open diamonds
correspond to a probable clustering transition for κ = 8. Tri-
angles correspond to wetting line, i. e. the density location
at which SL = 0. This line divides the diagram into wetting
and drying regions, which are colored with bluish and reddish
tones, respectively. Labels I, N, SLS, and TLS correspond
to isotropic, nematic, single-layer-solid, and two-layer-solid,
respectively. The final letter in the labels, w and d, make
reference to wetting and drying, respectively. Blue labels Iw
and Id correspond only to the κ = 8 case.

shows an I-N transition while producing some cluster-like
configurations.

The outcomes of the Onsager theory are compared
to data from simulations in Fig. 8 for κ = 16 and 10.
The implementation of the Onsager theory is given in
in section II of the SM. It is observed that the general
trends of the equation of states, βP (ρ)H, and the nematic
parameter curves, SN (ρ), are qualitatively captured by
the theory. In addition, for increasing H it captures the
shift of βP (ρ)H toward smaller values, and for increasing
κ the shift of SN (ρ) to reach lower densities. Also, the
theory predicts the independence of the I-N transition
from H, which is practically confirmed by simulations. It
seems that the theory improves the prediction of ρIN for
increasing κ.
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Finally, we build a general phase diagram that depicts
ρ∗ = ρ/ρcp as a function of H, ρcp being the close packing
density for H = σ. The original phase diagrams as a
function of ρ and η are given in the SM. This general
phase diagram is given in Fig. 8. We hatch the region of
inaccessible densities and include the I-N transitions, the
nematic-solid transitions, and the SLS-TLS transitions.
Note that the maximal packing density curves obtained
for the different κ values collapse to define a master curve,
and this fact allows us to define a common inaccessible
region. The same happens with the obtained wetting
lines, which collapse to define a single curve. This let us
define the same wetting and drying areas for all κ values.
These are colored with pale red for drying and light cyan
for wetting. A similar collapse is also observed for the
two layer solid formation curves. As a consequence of the
wetting and drying regions, we add an extra letter to the
phases labeled in Fig. 8. For instance, the Nd and Nw
labels for κ = 10 and 16 stand for drying and wetting
nematic. No transition is observed between Nd and Nw
as only a simple change in SL(ρ) occurs with increasing
density. Similarly, we can identify an isotropic drying (Id)
and an isotropic wetting (Iw) phase for κ = 8. The SLS
phase can also be drying or wetting. In the case of low H,
the drying is preferred because the particles are located
mainly in the center of pore to increase the orientational
entropy. Note that the wetting region vanishes completely
as H approaches σ. The SLSw appears at lower densities
than the TLS, which is always wetting. Hence, we observe
the following phase sequence with increasing density for
H = 1.6σ and κ = 10 or 16: 1) isotropic, 2) nematic, 3)
SLSd, 4) SLSw and 5) TLSw. It is worth noting that the
SLS density range decreases its size with increasing H,
vanishing at H = 2σ. At this point, the nematic phase
changes directly into a TLS.

Conversely to the close packing, wetting, and solid-solid
transition curves, the I-N and the nematic-solid transitions
shift toward lower densities with increasing κ. In other
words, increasing κ produces a relative easiness to form
ordered phases. We can see in the master diagram that
the density range of the nematic widens at the expenses
of the SLS with increasing pore width, while the density
range of the isotropic phase is nearly constant, in good
agreement with theoretical predictions (see Eq. (18) of
SM). This means that the same number of particles per
unit of area is needed to yield a nematic phase, irrespective
of H. This is a quite unexpected result given the obvious
increase of accessible volume with H. Finally, the kink in
the compressibilty we have obtained for κ = 8, associated
a possible isotropic-cluster transition, disappears for H >
1.7σ. We have observed that increasing H disfavors the
tetratic correlations.

IV. CONCLUSIONS

We have built the phase diagram of strongly confined
spherocylinders with anisotropy 8, 10, and 16 in slit-

like pores. We have constrained the particles to the
pore width range σ < H < 2σ. For this purpose, we
have performed replica exchange Monte Carlo simulations,
exact calculations in the ideal gas limit, and bifurcation
analysis of the Onsager-theory. The stability regions of the
isotropic, nematic, and solid phases have been determined
to see the effect of varying the shape anisotropy and the
pore width. In addition, the upper bound of the solid
phase is bordered with the maximimal density of the close
packed solid structure.

The three different phase diagrams corresponding to the
different particle’s shape anisotropies, κ, share very similar
features (see the last section of the SM). This allows to
build a general phase diagram where some curves seems to
be independent of κ. In particular, the maximal accessible
packing density, the lines splitting the drying and wetting
regions, and the transitions toward a TLS, are very close
to define a master curve. Conversely, the I-N and the
nematic-SLS transitions are clearly κ dependent.

Our results also show that the isotropic-nematic curves
do not depend on H, i. e. the same number of particles
is needed to induce nematic ordering at H = σ and
H = 2σ. This is against the naive linear expectation
that doubling the pore width should be accompanied
with doubling the number of particles to get the a similar
behavior. Moreover, the out-of-plane orientational and
positional fluctuations are believed to work against the
orientational ordering as the 2D projected area of the
hard spherocylinder is less anisotropic. Conversely to
the I-N density dependence with H, the nematic-solid
transition is postponed to higher densities as positional
and orientational fluctuations are favored. Therefore,
the stability region of the nematic ordering is enhanced
by widening the pore. This behavior contrasts with the
Monte Carlo results reported for L = 320σ, where the
I-N transition density increases with the pore width for
H > 2σ (note that the σ < H < 2σ region was not
examined [44]).

Another important aspect of our work focuses on the
drying or wetting behavior of the particles at the walls.
In the ideal gas limit, we show that the local density
increases linearly from the wall to the middle of the pore.
This behavior results in a drying-out effect at the walls
in the isotropic phase, whereas wetting of the walls is
observed mostly for the solid phase. The nematic phase
also exhibits a drying-out effect except close to H = 2σ,
where wetting emerges at the walls.

Finally, we have observed for κ = 8 a compressibility
signal, compatible with a weak higher order phase tran-
sition between an isotropic fluid and a cluster-like fluid,
neither of them showing quasi-long range orientational
order of any type. This cluster phase is destabilized by
increasing H. We speculate the same destabilization may
appear when considering particles with different degree
of sharpening of their tips.

We would like to emphasize that our results show that
the experimental detection of 2D nematic ordering can be
easier in wider pores because the system can be less dense
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and the cluster formation is not entropically favored. It
is also feasible that the same stabilization of the nematic
phase by widening the pore could occur for particles
without rounded ends, such as cylinders.
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[14] H. Schlacken, H. J. Mögel, and P. Schiller, Molec. Phys.

93, 777 (1998).
[15] M. D. Khandkar and M. Barma, Phys. Rev. E , 051717

(2005).
[16] Y. Mart́ınez-Ratón, E. Velasco, and L. Mederos, J. Chem.

Phys. 122, 064903 (2005).
[17] R. Vink, Eur. Phys. J. B 72, 225 (2009).
[18] K. Slyusarenko, D. Constantin, and P. Davidson, J. Chem.

Phys. 140, 104904 (2014).
[19] A. Czogalla, D. Kauert, R. Seidel, P. Schwille, and

E. Petrov, Nano Lett. 15, 649 (2015).
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