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Abstract 

We examine the fluid phase behaviour of binary mixtures of hard superellipses using the scaled 

particle theory. The superellipse is a general two-dimensional convex object, which can be 

tuned between elliptical and rectangular shapes continuously at a given aspect ratio. We find 

that the shape of the particle affects strongly the stability of isotropic, nematic and tetratic 

phases in the mixture even if the side-lengths of both species are fixed. While the isotropic-

isotropic demixing transition can be ruled out using the scaled particle theory, the first order 

isotropic-nematic and the nematic-nematic demixing transition can be stabilized with strong 

fractionation between the components. It is observed that the demixing tendency is strongest 

in small rectangle-large ellipse mixtures. Interestingly, it is possible to stabilize the tetratic 

order at lower densities in the mixture of hard squares and rectangles where the long rectangles 

form nematic phase, while the squares stay in tetratic order. 
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Introduction 

With the rapid development of new colloidal and granular materials, the tailoring 

technique of the nano- and microparticles has created new shapes of particles (e.g. superballs, 

lenses, stars) which exhibit very interesting percolation, glass formation, jamming behaviour 

and phase transitions [1-3]. To understand the observed structures and phase behaviours, 

several geometrical properties (curvature, volume, contact distance, excluded volume,…) have 

to be determined since many macroscopic properties depends on the details of the shape and 

the size of the particles [4]. 

 One of the phase transitions of rod-like particles, where the shape really matters, is the 

nematic-smectic A phase transition. In the system of hard particles, which consists of cylinders 

or spherocylinders, it is observed that the smectic A phase is stable if the particles are at least 

moderately elongated [5-6], while the smectic A phase is totally absent in the system of hard 

ellipsoids [7]. To understand this strange behaviour it was useful to introduce new geometrical 

models for the particles, which interpolate between the cylindrical and ellipsoidal shapes. In 

this regard the superellipsoidal [8-9] and the sphero-ellipsoidal [10] shapes have served new 

information about the importance of the roundness of the central part and the end parts of the 

particles, respectively. The other example is the suspension of colloidal superballs, where the 

shape is between spherical and cubic, exhibits richer phase behaviour than those of spheres or 

cubes. In the suspension of superballs, new solid phases are observed including a solid-solid 

transition between a plastic and a rhombohedral crystal [11]. The monolayer of colloidal 

superballs behaves very similarly because a phase transition between a hexagonal rotator 

crystal phase and a rhombic crystal phase emerges [12]. To explain this solid-solid phase 

transition it is necessary to go beyond the two-dimensional (2D) hard-square model, because 

hard squares form only tetratic and square crystal phases [13-15]. Avendaño and Escobedo [16] 

have performed Monte Carlo simulations with a rounded hard-square model, which 

interpolates between squares and disks, to examine the effect of roundness on the stability of 

crystal phases. They showed that the roundness of the vertices is crucial in the formation of 

rotor crystal phase [16]. With changing the shape of the 2D particles the simulation studies and 

the vibration experiments revealed the existence of new phases such as the triatic phase of 

triangles, the tetratic phase of squares and the hexatic phase of hexagons, which are 

intermediate between fluid and solid phases [17-22]. Interestingly the system of hard pentagons 

does not form intermediate phases between the fluid and solid phases [23]. The common feature 
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of these intermediate and ordered phases is the lack of true long-range order, which is 

manifested in quasi-long-range bond orientational and translational orders. Therefore, the 

transition from a fluid to an intermediate phase is governed by defect-mediated Kosterlitz-

Thouless mechanism [24]. Depending on the shape of hard particles, the order of 2D phase 

transitions can be either first order or continuous. For example, both the fluid-tetratic and the 

tetratic-solid phase transitions are continuous in the system of hard squares [23], while the hard 

disks undergo a first-order fluid-hexatic and a continuous hexatic-solid phase transitions with 

compression [25]. 

 The phase behaviour of 2D hard body systems can be enriched by the stretching of 

spherical particles into one direction, which changes the particles to have ellipsoidal shape [26]. 

Confining them into a very narrow slit-like pore, it is possible to examine the ordering 

properties of a monolayer, which corresponds to the quasi-two-dimensional fluid of hard 

ellipses [27, 28]. Carbon nanotubes, viruses and DNA particles can be also confined into a 

narrow slit or can be absorbed on a surface, where they form a monolayer [29-31]. These 

systems can mimic the phase behaviour of 2D hard rectangles. A common feature of the ellipse 

and the rectangle systems is that a quasi-long-range orientiational order (nematic phase) 

emerges with increasing density if the particles are sufficiently elongated [32, 33]. The nature 

of the phase transition from the isotropic fluid phase to a nematic phase was shown to be 

continuous via a Kosterlitz-Thouless disclination unbinding type mechanism in the system of 

hard needles [34]. However, later studies revealed that the isotropic-nematic phase transition 

can be even first order [32, 35]. Therefore the order of the transitions strongly depends on the 

details of the particle-particle interactions [35-39]. The important difference in the nematic 

ordering of hard ellipses and rectangles is that the minimal shape anisotropy (the ratio of the 

lengths of major and minor axes) required to stabilize the nematic phase is only 2.4 for ellipse 

[40], while it must be more than 7 for rectangular shapes [33,41]. Interestingly the vibration 

experiment with granular hard rectangles detected almost the same threshold for the 

stabilization of the nematic ordering, namely there is no 2D nematic for shape anisotropies 

lower than 7.3 [42], but the isotropic fluid phase changes continuously to the tetratic phase. 

This indicates that the tetratic ordering can preempt the nematic one in the system of rectangles, 

while the tetratic ordering is completely missing in hard ellipse systems.                  

 To understand the differences occurring in the phase behaviours of hard disks and hard 

squares and in those of hard ellipses and hard rectangles it is necessary to define a hard body 

model which can be tuned between the two limiting shapes. In this regard, the hard superellipse 
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model is a good candidate as it interpolates between ellipse and rectangle shapes. If the lengths 

of both sides of the superellipse are equal, we get the 2D superball model, which interpolates 

between a disk and a square. Along this line the first milestone was the exact determination of 

the maximal packing arrangement and the corresponding maximal packing fraction of hard 

superdisks [43]. Later, the jamming properties [44] and the kinetics of randomly packed 

superdisks [45] were also examined. These studies were extended to the binary mixtures of 

hard superdisks to locate the jammed state [46]. Regarding the hard superellipses we are only 

aware of the contact point calculations [47] and the percolation threshold study of the 

overlapping superellipses [48]. To study the phase behaviour of hard superellipses, a fast and 

accurate overlap check between two superellipses has to be devised to perform the simulations, 

while the excluded distances and areas are the key quantities in the mean-field theories such as 

the Onsager-theory and the scaled particle theory. The determination of these quantities is not 

trivial even for the hard ellipses [49, 50]. The issues of the excluded area calculation for convex 

and concave 2D objects are considered in two recent publications [51, 52]. In our present study 

we show that the exclude area between two different superellipses having different sizes and 

shapes can be determined analytically. 

 It is a well-known fact that the phase behaviour of 2D mixtures is richer than that of 

one-component systems if the size and the shape of the components differ substantially [53]. It 

is found that very small amount of small disks can destabilize the hexatic phase of large disks 

and the transition becomes first order between the fluid and solid phases [54]. The 

destabilizations of the crystalline and the tetratic phases are predicted in size-polydisperse hard 

disk and in length-polydisperse hard rectangle systems [55, 56]. Strong fractionations are 

reported between the coexisting fluid and solid phases in 2D binary mixtures of big and small 

particles such as the squares and disks [57, 58]. It is very interesting that the mixing of squares 

and disks stabilizes the isotropic fluid with respect to the ordered phases, enhances the stability 

region of hexatic and tetratic phases and gives rise to fluid-solid and solid-solid demixing 

transitions [59]. It is also feasible that the mixing of particles with different shapes and sizes 

can induce demixing transitions even in the isotropic fluid phase [60]. In two dimensions the 

simplest binary mixture, which exhibits fluid-fluid demixing transitions is the nonadditive 

mixture of hard disks [61-67]. The positive nonadditivity is responsible for the fluid-fluid 

demixing transition, because it reduces the available room for both components upon mixing. 

It is showed that both the symmetric (the diameters of the components are the same) and the 

asymmetric hard disk mixtures can demix if the nonadditivity exceeds a minimum value [64, 
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68, 69]. The additive three-dimensional (3D) hard body mixtures can exhibit both isotropic-

isotropic and nematic-nematic demixing transitions if the constituting particles are rod-like [60, 

70-72]. Opposite to the 3D rod-rod mixtures, only nematic-nematic demixing transitions are 

found in binary mixtures of rod-like particles such as the rectangle-rectangle and ellipse-ellipse 

mixtures [73-76]. If the shapes of the particles are not very different in the disk-ellipse and 

ellipse-ellipse mixtures, the demixing transition and the segregation are not present, but both 

rotational and translational glass transitions may occur [77,78]. 

In this work we examine the effects of varying shapes and sizes on the phase behaviour 

of two-dimensional hard convex objects using the scaled particle theory. We choose the 

superellipse shape, which provides a bridge between the elliptical and rectangular shapes. This 

shape allows us to consider new mixtures such as the ellipse-rectangle, where the shape of the 

ellipse can be tuned into the direction of rectangle and vice versa for rectangle. We concentrate 

only on the stability of isotropic, nematic and tetratic ordering and search for possible phase 

transitions such as the isotropic-nematic, isotropic-tetratic and nematic-nematic ones. As the 

inputs of the theory are the areas of the particles and the excluded area between two particles, 

we calculate the area of the superellipse and derive an algorithm for the excluded area between 

two superellipses. To understand the shape dependence of the observed segregations (isotropic-

nematic fractionation, nematic-nematic demixing) we make a link between the superellipse 

mixture and the nonadditive mixture of hard disks, where the nonadditivity parameter is the 

driving force of the fluid-fluid demixing. We finish our study with presenting a possible 

stabilization method of the low density tetratic order with mixing hard squares with long 

rodlike particles. 

 

Model 

   In this work we examine the phase behaviour of some binary mixtures of hard 2D 

objects, where both the shape and size of the particles can be tuned easily. This 2D object is 

the hard superellipse with a semi-major axis length (a) and a semi-minor axis length (b). The 

equation of a superellipse depends also on the deformation parameter (n) as follows 

1

n n

x y

a b

   
    

   
                                                                                                                                                       (1) 
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where n ≥ 2 guaranties that the superellipse has a smooth curve and its tangent is well defined 

in its every point. For this reason, we deal only with this case in this paper. With increasing n, 

the shape of the particle can be tuned from the elliptical shape to the rectangular one. This 

opens the window to study a wider class of binary mixtures as the lengths and the shapes of 

both components can be varied independently. Using the diameter of the component one (2b1) 

as a unit of the length, we have the following five independent molecular parameters: I) the 

aspect ratio of component 1 (
1 1 1/k a b ), II) the aspect ratio of component 2 (

2 2 2/k a b ), III) 

the diameter ratio  2 1/d b b  and IV)-V) the exponents (n1 and n2). The binary mixtures, 

which cannot be studied with the simple ellipse shape, are the followings: the square-square, 

square-ellipse, ellipse-rectangle and rectangle-rectangle mixtures. Note that this list is even 

longer if we replace one of the components or both components with superellipses having 

intermediate values of n1 and n2, which are between 2 (ellipse-limit) and infinity (rectangle-

limit). It is also possible to study the binary mixture of hard superdisks if 
1 1a b  and 

2 2a b . 

Our experience is that we can get back the perfect rectangle shape and the area of the rectangle 

very accurately if n=100. For this reason n1 and n2 is always between 2 and 100 in this study. 

The components of a possible binary mixture is shown in Fig. 1, where the first component is 

an ellipse, while the second component is a superellipse. 

                            

Figure 1: The particles of a possible superellipse mixture: a standard ellipse with 
1 2n   (left) and a superellipse 

with 
2 4n   (right) are shown.  

 

Theory 

We focus on the isotropic, tetratic and nematic phases of the binary mixture using the 

scaled particle theory (SPT). In the SPT approach [73], the free energy density of the binary 

mixture can be written as 
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where 1/ Bk T   is the inverse temperature, A is the area of the surface, /i iN A   is the 

density of the component i ( 1,2i  ), 
iN  is the number of the particles of component i, 

21    is the total density, 
1 1 2 2a a     is the packing fraction, 

ia  is the area of a 

particle of component i and ij

excA  is the excluded area between a particle of component i and a 

particle of component j. In Eq. (2) we use the following short notations for the sake of brevity: 

     





2

0

ln dfff iii                                                                                                     (3) 

and 

       

 



2

0

2121

2

0

21 ddAffA ij
excji

ij
exc ,                                                                   (4) 

where if  is the orientational distribution function of the component i and 
i is the orientation 

of a particle of component i. In the isotropic phase it is trivial to show that
2

1
if , because 

  1

2

0

 



dfi .  It can be shown that Eq. (2) reproduces the free energy of hard disk mixtures 

coming from SPT [79, 80]. To do this we have to substitute the isotropic distributions 











2

1
if  and the excluded area between two disks   2

ji
ij
exc aaA    into Eq. (2).  In order 

to find the tetratic and nematic solutions for the orientational distribution functions, we need to 

minimize the free energy with respect to if . This procedure results in a coupled integral 

equations for if , which can be written down as 
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The low density solutions of Eqs. (5) are isotropic. To find the tetratic and nematic solutions 

of  Eqs. (5), we use nematic and tetratic trial functions for 1f  and 2f  as initial guesses, we do 

numerical integrations and use the iteration method. After having obtained the equilibrium 

distribution functions 1f  and 2f , we measure the extent of the orientational ordering of both 

components with 2D order parameters, which are defined as 

     
2

2

0

cos 2iS i f d


     ,                                                                                                        (6a) 

     
2

4

0

cos 4iS i f d


    ,                                                                                                        (6b) 

where  2S i  and  4S i  measure the nematic and tetratic ordering of the component i, 

respectively. Note that      
2

0

cosj iS i f j d


     is the general order parameter of 

component i, where 2,4,6,...j   etc. 

In order to get some information about the orientational ordering transition, we perform 

a bifurcation analysis, which gives the stability limit of the isotropic phase with respect to the 

ordered phases such as the nematic and tetratic phases [81-83]. In the case of the second order 

phase transition this analysis provides either the isotropic-nematic or the isotropic-tetratic 

transition density. To perform this analysis we use the Fourier expansion of the excluded area, 

which can be written as 

   ,

12 12

0

cosij ij k

exc

k

A A k 




                                                                                                                                   (7) 

where ,ij kA is the Fourier component of the expansion and 
12 1 2    . Using Eq. (7) the 

integrals in Eq. (5) can be written as 
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       
2

,

1 1

00

cosij ij k

exc j k

k

A f d A S j k

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



                                                                             (8) 

In the case of the nematic phase  2S j  starts to be nonzero first, while  4S j  is the first non-

vanishing term for the tetratic ordering. Therefore  2S j  and  4S j  terms are taken into 

account at the IN and IT bifurcations, respectively, while the other order parameter terms can 

be considered to be zero. Denoting the first non-vanishing order parameter as  lS j  we get 

that 

     

   







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cos
1

1
exp

2

1
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
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





j

l
lij

j

i

ljSA

f                                                                                          (9) 

As ( )lS j  goes to zero at the bifurcation, we can perform a Taylor-expansion in Eq. (9) as 

 exp 1    . In the final step we multiply both sides of Eq. (9) with  cos l  and integrate 

out the   dependence to arrive into a set of coupled equations for the order parameters. We 

obtain the following two equations  

   

   

12,11,

21

21, 22,

1 2

cc
1+ S 1 + S 2 0,

2 2

c c
S 1 1+ S 2 0,

2 2

ll

exc
l l

l l

exc exc
l l

AA

A A



 

  
  

   

   
    

   

                                                                                                (10) 

where 1/1c   . These equations can be written down as a product of a matrix and a vector, 

where the matrix elements are the prefactors of the order parameters, while the order 

parameters constitute the vector. To have a non-trivial solution of Eq. (10) the determinant of 

the matrix must be zero. This produces the following bifurcation equation  

11, 22, 2 12, 21,

1 2 1 21+ 1+ - 0
2 2 4

   l l l lc A c A c A A     
  

  
                                                                                     (11) 

We solve this equation numerically for a given molecular parameters (k1, k2, d, n1 and n2) and 

mole fractions ( /i ix N N ) to get the bifurcation density () and packing fraction () as 

.i ix    
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In the case of first-order phase transitions we need to know the chemical potentials of 

each components and the pressure of the system. These quantities come from the following 

equations: 

i

i

F

A




 
  
 


  ,                                                                                                                                                      (12) 

2

1

i i

i

F
P

A
 



   .                                                                                                                                                       (13) 

Applying the above equations we can determine the equation of the state of the system and 

study the stability of the isotropic, nematic and tetratic phases of the binary mixture. The 

coexisting densities of a phase transition can be calculated using 

1 1 2 2, and P P           , where the phases   and   are in equilibrium. 

In order to solve Eqs. (5) and (11) at a given density and composition, we need to know 

the molecular areas and the excluded areas of the superellipses. It can be proved that 

1
2 1

1

2
1 1

2

in ii i
i

i

i

na b
a

n

n



 
 

 

 
 
 

 
  
 

 is the area of a superellipse of the component i, where  is the 

Gamma function. In the ellipse-limit ( 2in  ) we can see that 
i i ia a b , while 4i i ia a b  is in 

the rectangle-limit (
in   ). The excluded area between a particle i with orientation 

i  and 

a particle j with orientation j , when the angle between the main axes of these two particles is 

ij i j    , can be written as follows 

       
0

( )

2 cos sin sin sin cos cos

ij

exc ij i j

j j

j ij j j ij i j ij j j ij i i j

j j

A a a

d r d r
r r rd

d d





          
 

 

    
           

        


   (14) 

where 

1

cos sin
i i i

n n n

i i

i

i i

r
a b

 



    
     
     

. Note that i  has a complicate dependence from j . 

Therefore we present the details of the excluded area calculation in the Appendix. As the 
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diameter of component one  12b  is taken to be the unit of the length, 2

14P b P   is the 

dimensionless pressure and 2

1/ (2 )exc excA A b  is the dimensionless excluded area. 

 

Results 

We start to show how the hard superellipse changes its shape from the ellipse to 

rectangle with increasing the deformation parameter (n). We can see in Fig. 2(a) that the 

 

Figure 2: Deformation parameter dependence of the shape and the excluded area of hard superellipses at 3k  . 

The following cases are shown: 2,4,6n   and 100. (a) The effect of varying deformation parameter (n) on the 

shape of the superellipse. (b) The excluded area between two hard superellipses with deformation parameters n1 

and n2 as a function of 
12 , where 

12  is the angle between the major axes of two particles. All possible 

combinations of n (2, 4, 6 and 100) are shown together. The lengths of the short (2a) and long (2b) axes of the 

superellipse are kept fixed. 

particle becomes more and more rectangular with increasing n. The case of 2n   corresponds 

to an ellipse, while 100n   almost to a rectangle. Practically, we find that the area of the 

rectangle is identical with that of a superellipse if 100n  . The excluded area between two 

hard superellipses for all possible combinations of n (2, 4, 6 and 100) is shown as a function of 

  

  

  

  

(a) 
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 angle in Fig. 2(b). With increasing n1 and n2 the excluded area is shifted to the direction of 

higher values and a local minimum arises at 
12 / 2   It is interesting that 

1 2 4n n   case is 

an intermediate shape between ellipse and rectangle as the local minimum just appears at 

12 / 2   We can also see that the ellipse shape is the best for nematic ordering as this shape 

provides the highest excluded area gain with parallel alignment.  

An interesting system to study is the binary mixture of short and long rods which 

exhibits strong demixing behaviour in three dimensions [84-86]. Fig. 3 shows together the 

phase diagrams of some binary mixtures of short and long superellipses for 
1 5k  , 

2 15k   

and 1d   in the reduced pressure-composition plane. The area ratio of long and short 

superellipses is located between 3/4≈2.36 (the case of short rectangle and long ellipse) and 

12/≈3.82 (the case of short ellipse and long rectangle), which means that all possible mixtures 

are moderately asymmetric in area. We can see first-order and second-order isotropic-nematic 

(I-N) phase transitions, fractionations, re-entrance phenomena and nematic-nematic (N-N) 

demixing transitions with or without lower critical points. As the phase diagram changes a lot 

with the deformation parameters (n1 and n2), the shape has big impact on the coexisting mole 

fractions at both low and high pressures. It can be seen clearly that the N-N demixing transition 

is the weakest and postponed to higher pressures in the case of the rectangle-rectangle mixture, 

while it becomes very stable if the long component is changed to be ellipse (see Fig. 3(a)). The 

I-N phase transition exhibits unusual behaviour as it changes from second-order to first-order 

with increasing pressure. The first-order I-N transition is very weakly fractionated for the short 

ellipse-long rectangle mixture, while it shows very big difference in the coexisting mole 

fractions for the short rectangle-long ellipse mixture. It can be also seen that the N-N demixing 

transition terminates in a lower critical point for rectangle-rectangle, ellipse-ellipse and ellipse-

rectangle mixture, while a second-order I-N transition bifurcates and a first-order N-N transition 

merges from a first-order I-N coexistence in the case of the rectangle-ellipse mixture. To get 

further insight into the behaviour of I-N and N-N transitions, we consider the short superellipse-

long ellipse mixture in Fig. 3(b), where the deformation parameter of the superellipse (n1) 

varies between 2 and 6. It can be seen that the increasing n1 widens the coexistence regions of 

both I-N and N-N transitions. Comparing with the results of the ellipse-ellipse mixture, we can 

observe that a critical endpoint and an upper N-N critical point emerge for 
1 4n  , while the 

lower N-N critical point occurs at a lower pressure. At 
1 6n   the lower and the upper N-N 

critical pressures are not present due to the stabilisation of the N-N demixing transition at low 
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pressures. The merge of upper and lower critical points takes place around 
1 5n  , which is not 

shown in this study. We can also observe strong re-entrant phenomena in Fig. 3, because an 

isotropic-nematic-isotropic-nematic phase sequence can take place with increasing pressure at 

some compositions. The reentrance of the isotropic phase with increasing pressure becomes 

more pronounced with growing n1 as the mole fraction gap of the I-N transition widens with 

n1. For example we can observe an isotropic phase which is in coexistence with a nematic one 

at intermediate pressures if 
10.45 0.82x   for 

1 6n  , while this phase sequence occurs only 

in the interval of 
10.73 0.83x   for n1=2. It is interesting that the reentrant feature of the 

isotropic phase was also observed in the lattice gas of 2D short and long hard rods [87]. 

Regarding the stability of the nematic ordering we show the pressure vs. composition curve at 

=0.8 for the ellipse-ellipse mixture in Fig. 3, which is dictated by the simulation results 

obtained for monodisperse hard ellipse [40] and hard discorectangle [33] systems, where the 

nematic-solid transitions are detected at ~0.8. In our binary mixture the different sizes and 

shapes of the components work against the crystallisation, i.e. demixed solid phases are 

expected to occur at higher packing fractions and pressures. We note the phase diagrams of 3D 

binary mixtures of hard rods are similar to those of hard superellipses with some important 

differences: 1) an isotropic-isotropic demixing is also present 2) the I-N transition is always  

  

Figure 3: The effect of varying shape on the phase diagram of the binary mixture of short and long rods. The 

aspect ratios of short and long rods and the diameter ratio are chosen as follows: k1=5, k2=15 and d =1. Figure (a) 

shows the phase diagrams of rectangle-rectangle, ellipse-ellipse, ellipse-rectangle and rectangle-ellipse mixtures, 

while Figure (b) presents the effect of varying deformation parameter of the short superellipses on the phase 

diagram of superellipse-ellipse mixture. The phase diagrams are presented in pressure-composition plane where 

x1 is the mole fraction of short rods. I and N denote the isotropic and nematic phases, respectively. The horizontal 

dashed line represents the I-N coexistence at the critical endpoint. The dashed-dotted line indicates the location 

of the high density region of the phase diagram, which is calculated for ellipse-ellipse mixture at =0.8. 
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first-order, 3) the re-entrant feature is weak and 4) the I-N fractionation is stronger in the 3D 

rod-rod mixtures [70-72, 76, 88-91]. 

In the following, our aim is to understand the results of Fig. 3 with the introduction of 

new quantities, which characterize the demixing tendency of the superellipse mixture. For this 

purpose it is worth mapping the binary mixture of hard superellipses into a nonadditive binary 

mixture of hard disks, where the nonaddivity parameter is responsible for the fluid-fluid 

demixing transition. In more details, the binary mixture of nonadditive hard disks is described 

with three parameters: 1 and 2  are the diameters of the components and  is the nonadditivity 

parameter effecting only the unlike contact distance, 12, via 

    


 


 1
2

21
12 .                                                                                                         (15) 

It was shown that  must be high enough (>0.2) to obtain fluid-fluid demixing transitions in 

the binary mixture of hard disks [69]. By equating the like ( 11 22,exc excA A ) and unlike ( 12

excA ) 

excluded areas of the nonadditive hard disk mixture and those of the hard superellipse mixtures, 

we can get the corresponding molecular parameters of the binary hard disk mixture (1, 2 and 

) in the perfectly ordered nematic (the particles are parallel) and isotropic phases. In this way 

we can derive that the nematic nonadditivity parameter is given by 
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where the like and unlike excluded areas are evaluated at parallel configurations. In the 

isotropic phase we can get the same type of formula, but the isotropically averaged excluded 

areas must be used in Eq. (16), i.e. 
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


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exc

I

AA

A

 ,                                                                                                (17) 

where ( ) 1/ 2if    has to be substituted into Eq. (4). One can show that N is still negative 

when the unlike excluded area equal with the geometric mean of the like excluded areas, i.e. 

12 11 22

exc exc excA A A , while it turns to be positive for the arithmetic mean ( 12 11 22( ) / 2exc exc excA A A  ). 
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This shows that the positive value of N corresponds to the situation when the mixing of the 

components is not favorable for at least one of the components because 12 11 22min( , )exc exc excA A A . 

With increasing N it may happen that the mixing reduces the available room for both 

components, which is not favourable for the mixture.  

Fig. 4 illustrates the demixing tendencies of the superellipse-superellipse mixtures in 

the isotropic and nematic phases including those systems, which are discussed in Fig. 3. It can 

be seen that the isotropic demixing tendency is very weak for the mixtures as I is negative or 

just slightly higher than zero. Opposite to this, the parallel nematic ordering has positive N, 

which indicates that the components of the mixture do not like to be mixed together as the 

unlike excluded area reduces the available room for the particle in a higher extent than the like 

terms. In agreement with Fig. 3 we can see that the highest values of I and N belong to the 

rectangle-ellipse mixture, which has the widest I-N and N-N coexistence regions. Fig. 4 explains 

also why the weak I-N transition is accompanied by a relatively strong N-N demixing transition 

in the ellipse-rectangle mixture (see Fig. 3). Namely, I is the smallest, while N is almost the 

largest for the ellipse-rectangle mixture in comparison with the other mixtures. The weakest N-

N demixing is observed in the rectangle-rectangle mixture for which N is the lowest. These 

results show that N informs us about the N-N demixing tendency, while I is relevant for the 

I-N transition. To find wide coexistence regions in the I-N and N-N transitions, we observe that 

both I and N should be high enough. Therefore stronger I-N and N-N transitions can be 

observed for the systems with d in the interval of 0.25 1d  , because both nonadditivity  

 

Figure 4: Isotropic and nematic nonadditivity parameters (I in (a) and N in (b)) versus diameter ratio (d) of 

some binary mixtures of hard superellipses with 
1 5k   and 

2 15k  . The inset enlarges a small part of I - d 

curves in (a). The color key is the same in (a) and (b).  
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parameters are higher than  values of the case of 1d  . We observe that the coexistence 

regions are narrower for 1d  . 

Our search for finding the highest values of the nonadditivity parameters has resulted 

in a binary mixture, where the components are the disks and needles. In this regard Fig. 5 

demonstrates that lowering k1 results in higher values for both N and I if the second 

component is almost needle. We find that the highest value of I is   046.01122/2   

in the disk-needle mixture, which is not high enough to induce the isotropic-isotropic (I-I) 

demixing transition. However, the high values of I and N give rise to very strong 

fractionations (wide coexistence gap) occurring between the coexisting isotropic and nematic 

phases. To observe the I-I demixing, we believe that much higher values of I should be 

required, which is not possible to achieve with the present superellipse model. Therefore we 

are quite sure that the I-I demixing transition cannot be found in binary superellipse systems 

using the scaled particle theory.  

 

Figure 5: Isotropic and nematic nonadditivity parameters (I in (a) and N in (b)) versus diameter ratio (d) of 

some binary mixtures of superellipses, where k2=100 and k1=1, 5 and 10. Both 
1n   and 

2n  are chosen to be two 

(ellipse-ellipse mixture).  

 

As a demonstration we show the phase diagrams of two systems, which belong to Fig. 

5. One is chosen to have high N value (Fig. 6(a)), while the other has almost maximal I  value 

(Fig. 6(b)). The first system is weakly, while the second one is extremely asymmetric as the 

area ratio of the long and short ellipses is 0.8 in Fig. 6(a) (where k1=5, k2=100 and d =0.2) and 

0.05 in Fig. 6(b) (where k1=5, k2=100 and d =0.05).   We can see that N has effect even on the 

I-N transition, too, because I is very low for the system of Fig. 6(a). Its effect manifests in the 
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very strong fractionation between the coexisting isotropic and nematic phases. The effect of I 

is weaker even if it is positive for the system of Fig. 6 (b). The relatively high value of I is not 

accompanied even by the first-order I-N transition, because N value is low in this system. Even 

the N-N demixing curve is postponed to the direction of very high pressures in this case. Note 

that the solid phase cannot be stable in Fig. 6, because  is far from the close packing value 

even at the highest examined pressures.    

 

Figure 6: Phase diagrams of binary mixtures of hard ellipses (
1 2 2n n  ) where 

1 25, 100k k  . The 

following cases are considered: (a) 0.2d  . and (b) 0.05d  . The phase diagram is presented in pressure-

composition plane. I and N denote the isotropic and nematic phases, respectively. The dashed-dotted line indicates 

the location of = 0.6 values, which separates the high and low density regions.  

We also consider the possibility of the tetratic ordering in the binary mixture of hard 

superellipses. The tetratic phase is characterized by 
2 0S   and 

4 0S  . This is different from 

the nematic phase, where 
2 0S  . This means that the orientational distribution function is 

periodic by /2 in the case of the tetratic phase, while the nematic has the period of . It has 

been observed that the tetratic phase can be stable in the fluid of weakly anisotropic hard 

rectangles  1k  , including the hard squares, too [14]. However, the tetratic phase can be 

stable only in very dense systems, where the packing fraction is more than about 0.75 [17, 18, 

23]. To find the tetratic ordering at lower packing fractions we mix the hard squares with long 

superellipses. The orientationally ordered phase must be nematic for the long particles, but it 

remains tetratic for the squares due to symmetry reasons. We show the phase diagram of some 

mixtures of squares and superellipses in Fig. 7. These mixtures are very asymmetric as the area 

ratio of the superellipse and the square is between 10 and 40. In all cases the effect of adding 

hard squares to the sea of rod-like particles destabilizes the I-N transition by shifting the I-N 
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transition to the direction of higher pressures. This is not surprising as the squares do not form 

nematic phase, but they have isotropic-tetratic phase transition at 86.0  and 6.53P . The 

destabilization effect of the squares on the I-N curves seems to be weak up to 
1 0.7x   for all 

cases, while it becomes very strong for 
1 0.9x  . This indicates that the squares can stay in the 

tetratic order in a wide range of the composition. The other interesting feature of Fig. 7 is that 

the N-N demixing transition occurs in the square rich region of the composition (
1 0.5x  ). This 

means that the squares induces a depletion attraction between the nematically ordered 

superellipses. This transition can be considered as a “vapour-liquid” transition of oriented 

superellipses in the sea of hard squares. It is also interesting that the N-N transition terminates 

in a lower critical pressure, the second-order I-N transition terminates in a critical endpoint and 

the first-order I-N transition emerges at pressures higher than the largest pressure of the N-N 

demixing. The N-N and I-N transitions seem to be stable because the pressure is very high at 

any composition for =0.8. The system which has the widest stability region of the nematic 

phase is the square-rectangle mixture, because the region of the N-N demixing is located at  

 

Figure 7: The effect of deformation parameter (n2) on the phase diagram of square-superellipse mixture. The first 

component is always hard square (k1=1), while the second one is superellipse (k2=10). The diameter ratio (d) is 

chosen to be 2. The phase diagram is presented in pressure-composition plane, where x1 denotes the mole fraction 

of hard squares. I and N denote the isotropic and nematic phases, respectively. The horizontal dashed line 

represents the I-N coexistence at the critical endpoint. The dashed-dotted line indicates the location of = 0.8 

values for the square-rectangle mixture. 

higher pressures than the N-N regions of other two cases. The extent of the tetratic ordering of 

the hard squares surrounded by the nematically ordered long rectangles is presented in Fig. 8 
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at some pressures, where the tetratic order parameter of the squares and the corresponding 

packing fraction are shown as a function of the mole fraction of the squares (x1) up to the I-N 

bifurcation point. We can see that the long rods acts as an external orienting field on the squares 

by forcing them to be parallel or perpendicular to the nematic director. However, the strength 

of the orienting field increases slowly with the pressure as S4 does not exceed 0.2 even at 

* 0.5P   (Fig. 8 (a)). We can also see that the packing fraction of the isotropic-tetratic 

transition of hard squares ( 86.0IT ) is always larger than the corresponding packing 

fraction of the mixture at the pressures shown in Figure 8 (b). This indicates that the tetratic 

ordering can be stabilized at lower packing fractions in the mixture of squares and rectangles. 

This tetratic ordering is weak, but it can exist at low packing fractions (even at 0.4  ).  

 

Figure 8: Tetratic ordering of hard squares in the mixture of hard squares and hard rectangles. Tetratic order 

parameter (a) and packing fraction (b) as a function of composition at some pressures, where the rectangles form 

nematic phase. The molecular properties of the mixture: 
1 1k  , 

2 10k  , 2d   and 
1 2 100n n  . 

Finally we have examined the effect of varying diameter ratio on the nonadditivity 

parameters. At the above examined case presented in Figs. 7 and 8, both I and N are low, 

which is the reason of having weak first-order N-N demixing and second-order I-N transitions 

in the mixture. Fig. 9 suggests that the N-N demixing and the I-N transition become stronger 

with lowering d, which shrinks the stability region of the nematic phase. With increasing d the 

demixing tendency weakens, which makes a wider room for the nematic phase. However, the 

squares becomes even smaller with respect to the rectangles, so the tetratic ordering also 

weakens. Therefore the stabilization of the tetratic phase at low packing fractions is feasible in 

such square-rectangle mixtures, where the rectangles are long enough to form the nematic 

phase at low packing fractions and the squares are not very small with respect to the rectangles. 

Fig. 9 confirms the observed trends with changing the shape of the rods in Fig. 7, too, because 
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N is largest for the square-ellipse mixture, which has the strongest N-N demixing transition 

and high pressure first-order I-N transition with strong segregation. We can also see that the 

lowest N-N demixing tendency (N) belongs to the square-rectangle mixture for all values of 

d. This proves that the square-rectangle mixture is the best system for the observation of tetratic 

order at any value of d.  We have also examined the aspect ratio (k2) dependence of N. In 

general N becomes larger with increasing k2, i.e. the N-N critical pressure decreases and the 

nematic-nematic demixing becomes stronger. However, this does not shrinks the stability 

region of the nematic phase, because the I-N transition pressure is also shifted to lower values 

with increasing k2. For example, we have observed very weak tetratic ordering of the squares 

in the nematic host with k2=100 even at ≈0.07. This result is very promosing to detect tetratic 

ordering at very low densities in colloidal and vibrated granular mixtures.    

 

Figure 9: Isotropic and nematic nonadditivity parameters (I in (a) and N in (b)) versus diameter ratio (d) of 

some binary mixtures of hard squares and superellipses with k1=1, k2=10 and n1=100. The deformation parameter 

of the second component changes between ellipse and rectangle shapes as follows: n2=2 (green), 4 (blue) and 100 

(black).  

 

Conclusion 

 We have presented the results of the scaled particle theory for binary mixtures of hard 

superellipses, where the particles are staying in a plane. Using superellipse shape it is managed 

to interpolate between ellipse and rectangle shapes with changing the deformation parameters 

(n1 and n2). This model helped us to examine the effects of size and shape disparities on the 

stability of isotropic and orientationally ordered (nematic and tetratic) phases. We have found 

first- and second-order I-N and first-order N-N phase transitions with strong fractionation 
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between the coexisting phases. In addition to these transitions, a weak tetratic ordering of hard 

squares can be observed in the nematic host of long particles.  

 The observed phase diagrams are very sensitive to the shape of the constituting 

particles, i.e. a small change in the shape may result in a big change in the phase diagram. For 

example tuning the shape of the particles between the limiting rectangle and ellipse shapes, the 

I-N and N-N transition properties of the mixture of short and long particles change dramatically 

even if the aspect ratios and the diameter ratio are kept fixed. The I-N and N-N coexistence 

regions become very wide in short rectangle-long ellipse mixture, while the I-N transition is 

only weakly fractionated and the N-N transition is postponed to the direction of higher pressures 

in short ellipse-long rectangle mixture. As the N-N demixing and the I-N fractionation are 

related to the unlike (ellipse-rectangle) interactions, our results show that the unlike excluded 

area has big impact on the phase behavior of the binary mixture of short and long particles. 

With changing only deformation parameter of the short particles (n1) from 2 to 6 we can find 

three different types of phase diagrams: 1) weakly fractionated I-N transition and N-N demixing 

with lower critical point, 2) fractionated I-N transition and N-N demixing with both lower and 

upper critical points and 3) strongly fractionated I-N transition and N-N demixing without 

critical points. To explain the observed trends we mapped the binary mixture of superellipses 

into a binary mixture of nonadditive hard disks to obtain effective isotropic and nematic 

nonadditivity parameters I and N. Using these parameters we can explain the observed trends 

in the change of the phase diagrams. To induce fractionation between the coexisting phases N 

must be positive, while I can be even negative. Our conclusion is that higher N and I give 

rise to stronger segregation between the components. However the predictive power of these 

nonadditivity parameters proved to be limited because N should depend on the degree of the 

nematic ordering, too. In the present form N can be useful to predict demixing transition at 

very high pressure, where the nematic order is very strong. To find such binary mixtures where 

the I-N transition is always second-order or both first- and second-order I-N transitions are 

present, we think that the full phase diagram calculation is inevitable. With tracking the critical 

endpoint and the upper and lower critical points it is possible to construct global phase diagram 

of binary mixtures of 2D hard bodies.  

 We have also looked for the possibility of a demixing transition, where the coexisting 

phases are isotropic. To do this we have searched for the maximum of I using a simplex 

algorithm. The maximum is located in the system of needle-disk mixture, where 
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  1122/2 I . This value proved to be too small to induce the I-I demixing transition. 

However this value is enough high to produce very strong fractionation between the coexisting 

isotropic and nematic phases. These results are consistent with the prediction of [63], where 

the possibility of I-I demixing is excluded. In 3D rod-rod mixtures, where I-I demixing can be 

stable [60], I is two order of magnitude larger than the maximal value of I obtained for 2D 

needle-disk mixture. To our best knowledge, there are no experimental and simulation studies 

predicting I-I demixing transition in 2D hard body mixtures.  

Regarding the reliability of the SPT, our results for demixing and ordering behaviour 

of hard superellipses are consistent with the results obtained for both thermal and athermal 2D 

binary mixtures using simulation and experimental methods. The size and shape differences 

are shown to induce attractive (depletion) forces between the large components of the binary 

mixture. As a result the segregation is observed in several 2D athermal and thermal binary 

mixtures such as the square-square [57], disk-disk [58, 92], disk-square [59], disk-rod [93-95] 

and confluent biological tissues [96]. We are not aware of experimental and simulation studies 

of mesogenic rod-rod studies, but the weakly anisotropic rod-rod mixtures serve also 

interesting transitions and orientational ordering features both in the athermal and thermal cases 

with glass transitions and jamming [78, 97, 98]. Our results are consistent with the results 

obtained for some monodisperse systems, where the fluid-solid transitions of hard disks and 

the I-N transitions of hard ellipses become first-order with decreasing temperature if attractive 

interactions are also present between the particles [99, 100]. This change can also be seen in 

the phase diagram of the mixture of superellipses where the second-order I-N transition changes 

to be first-order due to the unlike excluded volume interactions, which corresponds to an 

attractive depletion interaction between the large superellipses.   

The stability of tetratic ordering has been examined in the mixture of squares and 

superellipses. With adding hard squares into the sea of ordered superellipses we have found 

that the superellipses act as a quadrupolar ordering field for the squares. The observed phase is 

nematic for superellipses, while it is tetratic for squares. The strength of the ordering field is 

very weak, so the tetratic order parameter of the squares is low. To induce stronger tetratic 

order, the pressure should be increased substantially. The interesting feature of the tetratic order 

in binary mixtures is that the minimal packing fraction can be much lower than in the pure 

systems of squares [23] and other shapes [101,102]. Therefore, mixing of long particles with 
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squares open the window for the detection of low density tetratic ordering in simulations and 

experiments. 

In the presented phase diagrams the deformation parameters are taken to be even 

numbers, although the calculations can be performed for any real numbers of n1 2 and  n2 2.

This is due to the general form of the excluded area presented in the Appendix. This allows to 

get a deeper insight into the effect of varying deformation parameter. We note that our method 

allows to determine the distance of closest approach (contact distance) between two arbitrary 

superellipses. This distance is crucial in testing the overlap between the particles, which is used 

Monte Carlo simulations [16, 40] in perturbation theories of liquid crystals [103]. We believe 

that our expressions for the excluded area and the distance of closest approach between two 

superellipses will aid the future theoretical and simulation studies to understand the shape and 

size dependence of 2D melting, orientational ordering and demixing transitions. 
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Appendix: Excluded area between two superellipses  

The equation of a standard superellipse, where the center of the body is fixed at the origin and 

the semi-major axis a (the semi-minor axis b) is parallel with axis x(y), can be written as  

( , ) 1x y                                                                                                                             (A.1) 

where 

( , )

n n

x y
x y

a b

   
     

   
.                                                                                                     (A.2) 

Note that n is the deformation parameter, which is a positive real number. A parametric 

representation of the above superellipse is given by 

cos
( ) ( )

sin
r r


 



 
  

 
,                                                                                                             (A.3) 

where 

1

cos sin
( )

n n n

r
a b

 




    
     
     

 .                                                                                          (A.4) 

In Eqs.(A.3) and (A.4) r is the usual radial distance and   is the polar angle. Note that the 

curve of the superellipse is smooth only and the gradient is well defined at all points of the 

superellipse for  n≥2  even if the absolute values of x and y are used in (A.2). Therefore we deal 

with n≥2 case. The normal unit vector of the curve at any point r  is given by 

( ) ( ) / ( )n r r r   , which points out from the superellipse. Using our parametric 

representation, ( )r  can be expressed as 

 

2

2

1

cos
cos

( ) ( )

sin
sin

n

n

n
n

n

a
r n r

b















 
 
 

 
 
 
 
 

.                                                                                  (A.5) 

Let us continue with two superellipses, which are characterized by the parameters a1, b1, n1  

and a2, b2, n2 and 12  is the angle between their main axes. We use the notations of Fig. 10, 

where 
1r  and 

2r  position vectors points to the common point of the two bodies, when they are 
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in contact. The polar angles of these vectors are denoted by 1  and 2 , which are measured 

from x and x   axes of the respective body fixed coordinate systems. The angle between the 

two coordinate systems ( 12 ) is the angle between the two superellipses. In the following 

derivations, we determine the excluded areas for smooth superellipes only, i.e. n1 and n2 ≥ 2. 

Fig. 10 shows that the two curves have common tangent at the contact point. The normal 

vectors of both superellipses point outside from the corresponding curves and must have 

exactly the opposite directions, i.e. 
1 1 2 2( ) ( )n r n r  , because the particles touch each other from 

outside. As the particle 2 is rotated by 12 angle with respect to the particle 1,  its normal vector 

is also rotated by 12 . Therefore the condition for the normal vectors becomes 

1 1 1 12 2 2 2

1 1 1 2 2 2

ˆ( ( )) ( ) ( ( ))

( ( )) ( ( ))

r R r

r r

  

 

 
 

 
,                                                                                   (A.6) 

where the rotational matrix 12
ˆ ( )R   is given by 

12 12

12

12 12

cos sin
ˆ( )

sin cos
R

 


 

 
  
 

.                                                                                              (A.7) 

Note that the gradients are taken in the particle’s fixed frames and that the rotation does not 

affect the norm of the vector. Substituting Eqs. (A.4) and (A.5) with the corresponding indices 

of the particles into Eq. (6) and using the rotational matrix Eq. (A.7), we get the following two 

equations for the x and y components of Eq. (A.6) 

2
2 22 2

21

1 2
2( 1) 2( 1) 2( 1) 2( 1)1 1 2 2

2
12 2 2 12 2 2

1 1 2

1 1
2 22 2

1 2
1 1 2 2

1 2
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(A.8) 

and 
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2
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1 2
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.    

(A.9) 

Eqs. (A.8) and (A.9) provide a relationship between 1  and 2  when the two particles are in 

contact. This means practically that, for a given relative orientation 12 , supposing that the 

second particle touch the first one at 2 2( )r   point, the simultaneous solution of Eqs. (A.8) and 

(A.9) provides 1  as a function 2 and 1 1( )r   points to the contact point of the particle 1.The 

contact distance vector  , which connects the centers of the two particles when they are in 

contact, depends only on 2 , because 
1 2r r   . Therefore, the excluded area between the first 

and second particles can be expressed from the well-known formula for the area of two-

dimensional objects as 

2

2

20

1
ˆ

2
exc z

d
A e d

d




 


 
  

 
                                                                                          (A.10) 

where 
ẑe  is the unit vector perpendicular to the xy plane, which selects the z component of the 

cross product. Using 
1 2r r    and the identity of 

 1 22 1 2
1 2 1

2 2 2 2

2
d r rdr dr dr

r r r
d d d d   


        

we can rewrite Eq (A. 10) as 

2

2
1 2 1 2

20

ˆ
exc z

dr
A a a e r d

d






 
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where 

2
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                                                                                            (A.12) 
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is the area of particle i. Note that in the derivation of  Eq. (A.11) we have performed an 

integration using the integration by parts method. To compute the last term of Eq. (A.11) we 

need the components of 1r  and 2r  relative to the same coordinate frame. Using the coordinate 

frame, which is fixed to the particle 1, the derivate in Eq. (A11) is given by 

  
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2

2
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2
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2
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









r

d

dr
R

d

rd


   .                                                              (A.13) 

Using this equation, the final form of the excluded area can be written as 

2

2
1 2 2 2 12 2 2 12 1

20
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       

 

 
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
                                  (A.14) 

Here we used the central symmetry of the excluded area, therefore the integral over 2  runs 

only up to π. In the above expression 1 , 
1r  and 

2r  are considered to be functions of 2  from 

the solution of Eqs. (A.8)-(A.9). Note that we need only 
1sin  and 

1cos  as functions of 
2  in 

the excluded area calculations (A.14). Now we show that it is possible to get analytic formulas 

for 
1sin  and 

1cos in the following way. Let us denote the r.h.s of Eqs. (A.8) and (A.9) by F 

and G, respectively, which functions depend on the molecular parameters of particle 2, 
2  and 

12 . Using F we get from Eq. (A. 8) that 

     
1

1 1 1

2
1 1 1

2 2 2 21
1 1 1

1

cos cos 1 cos

n
n n na

F
b
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    
   

 ,                                                        (A.15) 

which can be written shortly as 

2

1cos
1

c

c
 


 ,                                                                                                                   (A.16) 

where 

1 1

1
2 12

1

2

11

n n
aF

c
F b

  
   
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.                                                                                                      (A.17) 
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From Eq. (A.8) it is clear that the sign of 
1cos   is the same as the sign of F , therefore 

1cos sgn( )
1

c
F

c
 


   .                                                                                                   (A.18) 

In a similar way from Eq. (A.9) we get that 

1sin sgn( )
1

b
G

b
 


      ,                                                                                                 (A.19) 

where 

1 1

1
2 12

1

2

11

n n
bG

b
G a

  
   
   

  .                                                                                                     (A.20) 

We must mention here that Eqs. (A.18) and (A.19) are consistent with each other satisfying the 

identity 2 2

1 1cos sin 1   . Substituting Eqs. (A.18) and (A.19) into Eq. (A.14) the excluded 

area is expressed explicitly as a function of 
2 . Using these tricks the integrals can be performed 

easily using a simple numerical quadrature without resorting to equation solvers for Eqs. (A.8) 

and (A.9). By the appropriate choice of the molecular parameters Eq. (A14) can provide the 

like  11 22,exc excA A  and the unlike ( 12 21,exc excA A ) excluded areas. If particle 1 and particle 2 are 

identical, i.e. both particles are characterized with   1 1 1, ,a b n  or  2 2 2, ,a b n  we get 11

excA  or 22

excA

.However we get 21

excA  and 12

excA  if the particles have different parameters, i.e. 

   1 1 1 2 2 2, , , ,a b n a b n .  
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Figure 10: Two superellipses are in contact externally. The following notation is used: the angle between the 

major axes of the two superellipses is denoted by 12 ,   is the contact distance vector between the two 

superellipses, 
1   and 

2  are the orientations of the position vectors 
1r   and

2r  of the contact point which are 

measured in the coordinate frame fixed to particle 1 and 2, respectively. Moreover 
1n  and 

2n  are the normal 

vectors of the common tangent. 

 

Data Availability Statement 

The data that support the findings of this study are available from the corresponding author 

upon reasonable request. 
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