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AnnotatorJ: an ImageJ plugin to ease hand 
annotation of cellular compartments

ABSTRACT  AnnotatorJ combines single-cell identification with deep learning (DL) and man-
ual annotation. Cellular analysis quality depends on accurate and reliable detection and seg-
mentation of cells so that the subsequent steps of analyses, for example, expression mea-
surements, may be carried out precisely and without bias. DL has recently become a popular 
way of segmenting cells, performing unimaginably better than conventional methods. How-
ever, such DL applications may be trained on a large amount of annotated data to be able to 
match the highest expectations. High-quality annotations are unfortunately expensive as 
they require field experts to create them, and often cannot be shared outside the lab due to 
medical regulations. We propose AnnotatorJ, an ImageJ plugin for the semiautomatic anno-
tation of cells (or generally, objects of interest) on (not only) microscopy images in 2D that 
helps find the true contour of individual objects by applying U-Net–based presegmentation. 
The manual labor of hand annotating cells can be significantly accelerated by using our tool. 
Thus, it enables users to create such datasets that could potentially increase the accuracy of 
state-of-the-art solutions, DL or otherwise, when used as training data.

INTRODUCTION
Single-cell analysis pipelines begin with an accurate detection of the 
cells. Even though microscopy analysis software tools aim to be-
come more and more robust to various experimental setups and 
imaging conditions, most lack efficiency in complex scenarios such 
as label-free samples or unforeseen imaging conditions (e.g., higher 
signal-to-noise ratio, novel microscopy, or staining techniques), 
which opens up a new expectation of such software tools: adapta-
tion ability (Hollandi et al., 2020). Another crucial requirement is to 
maintain ease of usage and limit the number of parameters the us-
ers need to fine-tune to match their exact data domain.

Recently, deep learning (DL) methods have proven themselves 
worthy of consideration in microscopy image analysis tools as they 
have also been successfully applied in a wider range of applications 

including but not limited to face detection (Sun et al., 2014; Taigman 
et al., 2014; Schroff et al., 2015), self-driving cars (Redmon et al., 2016; 
Badrinarayanan et al., 2017, Grigorescu et al., 2019), and speech rec-
ognition (Hinton et al., 2012). Caicedo et al. (Caicedo et al., 2019) and 
others (Hollandi et al., 2020; Moshkov et al., 2020) proved that single-
cell detection and segmentation accuracy can be significantly im-
proved utilizing DL networks. The most popular and widely used 
deep convolutional neural networks (DCNNs) include Mask R-CNN 
(He et al., 2017): an object detection and instance segmentation net-
work; YOLO (Redmon et al., 2016; Redmon and Farhadi, 2018): a fast 
object detector; and U-Net (Ronneberger et al., 2015): a fully convo-
lutional network specifically intended for bioimage analysis purposes 
and mostly used for pixel classification. StarDist (Schmidt et al., 2018) 
is an instance segmentation DCNN optimal for convex or elliptical 
shapes (such as nuclei).

As robustly and accurately as they may perform, these networks 
rely on sufficient data, both in amount and quality, which tends to be 
the bottleneck of their applicability in certain cases such as single-
cell detection. While in more industrial applications (see Grigorescu 
et al., 2019 for an overview of autonomous driving) a large amount 
of training data can be collected relatively easily (see the cityscapes 
dataset [Cordts et  al., 2016; available at https://www.cityscapes 
-dataset.com/] of traffic video frames using a car and camera to 
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record and potentially nonexpert individuals to label the objects), 
clinical data is considerably more difficult, due to ethical constraints, 
and expensive to gather as expert annotation is required. Datasets 
available in the public domain such as BBBC (Ljosa et al., 2012) at 
https://data.broadinstitute.org/bbbc/, TNBC (Naylor et  al., 2017, 
2019) or TCGA (Cancer Genome Atlas Research Network, 2008; 
Kumar et al., 2017), and detection challenges including ISBI (Coelho 
et al., 2009), Kaggle (https://www.kaggle.com/, e.g., Data Science 
Bowl 2018; see at https://www.kaggle.com/c/data-science-bowl 
-2018), ImageNet (Russakovsky et al., 2015), etc., contribute to the 
development of genuinely useful DL methods; however, most of 
them lack heterogeneity of the covered domains and are limited in 
data size. Even combining them one could not possibly prepare 
their network/method to generalize well (enough) on unseen do-
mains that vastly differ from the pool they covered. On the contrary, 
such an adaptation ability can be achieved if the target domain is 
represented in the training data, as proposed in Hollandi et  al., 
2020, where synthetic training examples are generated automati-
cally in the target domain via image style transfer.

Eventually, similar DL approaches’ performance can only be in-
creased over a certain level if we provide more training examples. 
The proposed software tool was created for this purpose: the expert 
can more quickly and easily create a new annotated dataset in their 
desired domain and feed the examples to DL methods with ease. 
The user-friendly functions included in the plugin help organize data 
and support annotation, for example, multiple annotation types, ed-
iting, classes, etc. Additionally, a batch exporter is provided offering 
different export formats matching typical DL models’; supported an-
notation and export types are visualized in Figure 1; open-source 
code is available at https://github.com/spreka/annotatorj under 
GNU GPLv3 license.

We implemented the tool as an ImageJ (Abramoff et al., 2004, 
Schneider et al., 2012) plugin because ImageJ is frequently used by 
bioimage analysts, providing a familiar environment for users. While 
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FIGURE 1:  Annotation types. The top row displays our supported types of annotation: instance, 
semantic, and bounding box (noted as “bbox” in the figure) based on the same objects of 
interest, in this case nuclei, shown in red. Instances mark the object contours, semantic overlay 
shows the regions (area) covered, while bounding boxes are the smallest enclosing rectangles 
around the object borders. Export options are shown in the bottom row: multilabel, binary, 
multilayer images, and coordinates in a text file. Lines mark the supported export options for 
each annotation type by colors: orange for instance, green for semantic, and blue for bounding 
box. Dashed lines indicate additional export options for semantics that should be used carefully.

other software also provide a means to sup-
port annotation, for example, by machine 
learning–based pixel classification (see a 
detailed comparison in Materials and 
Methods), AnnotatorJ is a lightweight, free, 
open-source, cross-platform alternative. It 
can be easily installed via its ImageJ update 
site at https://sites.imagej.net/Spreka/ or 
run as a standalone ImageJ instance con-
taining the plugin.

In AnnotatorJ we initialize annotations 
with DL presegmentation using U-Net to 
suggest contours from as little as a quickly 
drawn line over the object (see Supplemen-
tal Material and Figure 2). U-Net predicts 
pixels belonging to the target class with the 
highest probability within a small bounding 
box (a rectangle) around the initially drawn 
contour; then a fine approximation of the 
true object boundary is calculated from 
connected pixels; this is referred to as the 
suggested contour. The user then manually 
refines the contour to create a pixel-perfect 
annotation of the object.

RESULTS AND DISCUSSION
Performance evaluation
We quantitatively evaluated annotation per-

formance and speed in AnnotatorJ (see Figures 3 and 4) with the 
help of three annotators who had experience in cellular compartment 
annotation. Both annotation accuracy and time were measured on 
the same two test sets: a nucleus and a cytoplasm image set (see also 
Supplemental Figure S1 and Supplemental Material). Both test sets 
contained images of various experimental conditions, including fluo-
rescently labeled and brightfield-stained samples, tissue section, and 
cell culture images. We compared the effectiveness of our plugin 
using Contour assist mode to only allowing the use of Automatic 
adding. Even though the latter is also a functionality of AnnotatorJ, it 
ensured that the measured annotation times correspond to a single 
object each. Without this option the user must press the key “t” after 
every contour drawn to add it to the region of interest (ROI) list, which 
can be unintendedly missed, increasing its time as the same contour 
must be drawn again.

For the annotation time test presented in Figure 3 we measured 
the time passed between adding new objects to the annotated ob-
ject set in ROI Manager for each object, then averaged the times for 
each image and each annotator, respectively. Time was measured in 
the Java implementation of the plugin in milliseconds. Figures 3 and 
4 show SEM error bars for each mean measurement (see Supple-
mental Material for details).

In the case of annotating cell nuclei, results confirm that hand-
annotation tasks can be significantly accelerated using our tool. 
Each of the three annotators were faster by using Contour assist; 
two of them nearly double their speed.

To ensure efficient usage of our plugin in annotation assistance, 
we also evaluated the accuracies achieved in each test case by cal-
culating mean intersection over union (IoU) scores of the annota-
tions as segmentations compared with ground truth masks previ-
ously created by different expert annotators. We used the mean IoU 
score defined in the Data Science Bowl 2018 competition (https://
www.kaggle.com/c/data-science-bowl-2018/overview/evaluation) 
and in Hollandi et al., 2020:

https://www.kaggle.com/c/data-science-bowl-2018/overview/evaluation
https://www.kaggle.com/c/data-science-bowl-2018/overview/evaluation
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FIGURE 2:  Contour assist mode of AnnotatorJ. The blocks show the order of steps; the given tool needed is 
automatically selected. User interactions are marked with orange arrows, and automatic steps with blue. 1) Initialize the 
contour with a lazily drawn line; 2) the suggested contour appears (a window is shown until processing completes), 
brush selection tool is selected automatically; 3) refine the contour as needed; 4) accept it by pressing the key “q” or 
reject with “Ctrl” + “delete.” Accepting adds the ROI to ROI Manager with a numbered label. See also Supplemental 
Material for a demo video (figure2.mov).
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FIGURE 3:  Annotation times on nucleus images. AnnotatorJ was tested on sample microscopy 
images (both fluorescent and brightfield, as well as cell culture and tissue section images); 
annotation time was measured on a per-object (nucleus) level. Bars represent the mean 
annotation times on the test image set; error bars show SEM. Orange corresponds to Contour 
assist mode and blue to only allowing the Automatic adding option. (A) Nucleus test set 
annotation times. (B) Example cell culture test images. (C) Example histopathology images. 
Images shown in B and C are 256 × 256 crops of original images. Some images are courtesy of 
Kerstin Elisabeth Dörner, Andreas Mund, Viktor Honti, and Hella Bolck.
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IoU determines the overlapping pixels of 
the segmented mask with the ground truth 
mask (intersection) compared with their 
union. The IoU score is calculated at 10 dif-
ferent thresholds from 0.5 to 0.95 with 0.05 
steps; at each threshold true positive (TP), 
false positive (FP), and false negative (FN) 
objects are counted. An object is consid-
ered TP if its IoU is greater than the given 
threshold t. IoU scores calculated at all 10 
thresholds were finally averaged to yield a 
single IoU score for a given image in the test 
set.

An arbitrarily small ε = 10–40 value was 
added to the denominators for numerical 
stability. Equation 1 is a modified version of 
mean average precision (mAP) typically 
used to describe the accuracy of instance 
segmentation approaches. Precision is for-
mulated as
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Nucleus and cytoplasm image segmen-
tation accuracies were averaged over the 
test sets, respectively. We compared our 
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annotators using and not using Contour assist mode (Figure 4). The 
results show greater interexpert than intraexpert differences, allow-
ing us to conclude that the annotations created in AnnototarJ are 
nearly as accurate as freehand annotations.

Export evaluation
As the training data annotation process for deep learning applica-
tions requires the annotated objects to be exported in a manner that 
DL models can load them, which typically covers the four types of 
export options offered in AnnotatorJExporter, it is also important to 
investigate the efficiency of export. We measured export times simi-
larly to annotation times. For the baseline results, each object defined 
by their ROI was copied to a new empty image, then filled and saved 
to create a segmentation mask image file. Exportation from Annota-
torJExporter was significantly faster and only required a few clicks: it 
took four orders of magnitude less time to export the annotations 
(∼60 ms). Export times reported correspond to a randomly selected 
expert so that computer hardware specifications remain the same.

Comparison to other tools and software packages
The desire to collect annotated datasets has arisen with the growing 
popularity and availability of application-specific DL methods. Ob-
ject classification on natural images (photos) and face recognition 
are frequently used examples of such applications in computer vi-
sion. We discuss some of the available software tools created for 
image annotation tasks and compare their feature scope in the fol-
lowing table (Table 1; see also Supplemental Table S1) and in the 
Supplemental Material.

We collected our list of methods to compare following Mori-
kawa, 2019 and “The best image annotation platforms”, 2018. 
While there certainly is a considerable amount of annotation tools 
for object detection purposes, most of them are not open source. 
We included Lionbridge.AI (https://lionbridge.ai/services/image 
-annotation/) and Hive (https://thehive.ai/), two service-based solu-
tions, because of their wide functionality and artificial intelligence 
support. Both of them work in a project-management way and out-
source the annotation task to enable fast and accurate results. Their 

main application spectra cover more general object detection tasks 
like classification of traffic video frames. LabelImg (https://github 
.com/tzutalin/labelImg), on the other hand, as well as the following 
tools, is open source but offers a narrower range of annotation op-
tions and lacks machine learning support making it a lightweight but 
free alternative. VGG Image Annotator (Dutta and Zisserman, 2019) 
comes on a web-based platform, therefore making it very easy for 
the user to become familiarized with the software. It enables multi-
ple types of annotation with class definition. Diffgram (https://
diffgram.com/) is available both online and as a locally installable 
version (Python) and adds DL support which speeds up the annota-
tion process significantly; that is, provided the intended object 
classes are already trained and the DL predictions only need minor 
edit. A similar, also web-based approach is provided by supervise.ly 
(https://supervise.ly/; see the Supplemental Material), which is free 
for research purposes. Even though web-hosted services offer a con-
venient solution for training new models (if supported), handling sen-
sitive clinical data may be problematic. Hence, locally installable 
software is more desirable in biological and medical applications. A 
software closer to the bioimage analyst community is CytoMine 
(Marée et al., 2016; Rubens et al., 2019), a more general image pro-
cessing tool with a lot of annotation options that also provides DL 
support and has a web interface. SlideRunner (Aubreville et al., 2018) 
was created for large tissue section (slide) annotation specifically, but 
similar to others it does not integrate machine learning methods to 
help annotation and rather focuses on the classification task.

AnnotatorJ, on the other hand, as an ImageJ (Fiji) plugin should 
provide a familiar environment for bioimage annotators to work in. 
It offers all the functionality available in similar tools (such as differ-
ent annotation options: bounding box, polygon, freehand drawing, 
semantic segmentation, and editing them) while it also incorporates 
support for a popular DL model, U-Net. Furthermore, any user-
trained Keras model can be loaded into the plugin with ease 
because of the DL4J framework, extending its use cases to general 
object annotation tasks (see Supplemental Figure S2 and Supple-
mental Material). Due to its open-source implementation, the users 
can modify or extend the plugin to even better fit their needs. 
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Additionally, as an ImageJ plugin it requires no software installation, 
can be downloaded inside ImageJ/Fiji (via its update site, https://
sites.imagej.net/Spreka/), or run as a standalone ImageJ instance 
with this plugin.

We also briefly discuss ilastik (Sommer et al., 2011; Berg et al., 
2019) and Suite2p (Pachitariu et al., 2017) in the Supplemental Ma-
terial because they are not primarily intended for annotation pur-
poses. Two ImageJ plugins that offer manual annotation and ma-
chine learning–generated outputs, Trainable Weka Segmentation 
(Arganda-Carreras et al., 2017) and LabKit (Arzt, 2017), are also de-
tailed in the Supplemental Material.

We presented an ImageJ plugin, AnnotatorJ, for convenient and 
fast annotation and labeling of objects on digital images. Multiple 
export options are also offered in the plugin.

We tested the efficiency of our plugin with three experts on two 
test sets comprising nucleus and cytoplasm images. We found that 
our plugin accelerates the hand-annotation process on average and 
offers up to four orders of magnitude faster export. By integrating 
the DL4J Java framework for U-Net contour suggestion in Contour 
assist mode any class of object can be annotated easily: the users 
can load their own custom models for the target class.

MATERIALS AND METHODS
Motivation
We propose AnnotatorJ, an ImageJ (Abramoff et al., 2004, Schnei-
der et  al., 2012) plugin for the annotation and export of cellular 
compartments that can be used to boost DL models’ performance. 
The plugin is mainly intended for bioimage annotation but could 
possibly be used to annotate any type of object on images (see 
Supplemental Figure S2 for a general example). During develop-
ment we kept in mind that the intended user should be able to get 
comfortable with the software very quickly and quicken the other-
wise truly time-consuming and exhausting process of manually an-
notating single cells or their compartments (such as individual nucle-
oli, lipid droplets, nucleus, or cytoplasm).

The performance of DL segmentation methods is significantly 
influenced by both the training data size and its quality. Should we 
feed automatically segmented objects to the network, errors pres-
ent in the original data will be propagated through the network dur-
ing training and bias the performance, hence such training data 
should always be avoided. Hand-annotated and curated data, how-
ever, will minimize the initial error boosting the expected perfor-
mance increase on the target domain to which the annotated data 
belongs. NucleAIzer (Hollandi et al., 2020) showed an increase in 
nucleus segmentation accuracy when a DL model was trained on 
synthetic images generated from ground truth annotations instead 
of presegmented masks.

Features
AnnotatorJ helps organize the input and output files by automati-
cally creating folders and matching file names to the selected type 
and class of annotation. Currently, the supported annotation types 
are 1) instance, 2) semantic, and 3) bounding box (see Figure 1). Each 
of these are typical inputs of DL networks; instance annotation pro-
vides individual objects separated by their boundaries (useful in the 
case of, e.g., clumped cells of cancerous regions) and can be used to 
provide training data for instance segmentation networks such as 
Mask R-CNN (He et  al., 2017). Semantic annotation means fore-
ground–background separation of the image without distinguishing 
individual objects (foreground); a typical architecture using such seg-
mentations is U-Net (Ronneberger et al., 2015). And finally, bound-
ing box annotation is done by identifying the object’s bounding Fe
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rectangle, and is generally used in object detection networks (like 
YOLO [Redmon et al., 2016] or R-CNN [Girshick et al., 2014]).

Semantic annotation is done by painting areas on the image 
overlay. All necessary tools to operate a given function of the plugin 
are selected automatically. Contour or overlay colors can be se-
lected from the plugin window. For a detailed description and user 
guide please see the documentation of the tool (available at https://
github.com/spreka/annotatorj repository).

Annotations can be saved to default or user-defined “classes” 
corresponding to biological phenotypes (e.g., normal or cancerous) 
or object classes—used as in DL terminology (such as person, chair, 
bicycle, etc.), and later exported in a batch by class. Phenotypic dif-
ferentiation of objects can be supported by loading a previously 
annotated class’s objects for comparison as overlay to the image 
and toggling their appearance by a checkbox.

We use the default ImageJ ROI Manager to handle instance an-
notations as individual objects. Annotated objects can be added to 
the ROI list automatically (without the bound keystroke “t” as de-
fined by ROI Manager) when the user releases the mouse button 
used to draw the contour by checking its option in the main window 
of the plugin. This ensures that no annotation drawn is missing from 
the ROI list.

Contour editing is also possible in our plugin using “Edit mode” 
(by selecting its checkbox) in which the user can select any already 
annotated object on the image by clicking on it, then proceed to 
edit the contour and either apply modifications with the shortcut 
“Ctrl” + “q,” discard them with “escape,” or delete the contour with 
“Ctrl” + “delete.” The given object selected for edit is highlighted 
in inverse contour color.

Object-based classification is also possible in “Class mode” (via 
its checkbox): similarly to “Edit mode,” ROIs can be assigned to a 
class by clicking on them on the image which will also update the 
selected ROI’s contour to the current class’s color. New classes can 
be added and removed, and their class color can be changed. A 
default class can be set for all unassigned objects on the image. 
Upon export (using either the quick export button “[^]” in the main 
window or the exporter plugin) masks are saved by classes.

In the options (button “…” in the main window) the user can 
select to use either U-Net or a classical region-growing method to 
initialize the contour around the object marked. Currently only in-
stance annotation can be assisted.

Contour suggestion using U-Net
Our annotation helper feature “Contour assist” (see Figure 2) allows 
the user to work on initialized object boundaries by roughly marking 
an object’s location on the image which is converted to a well-de-
fined object contour via weighted thresholding after a U-Net (Ron-
neberger et al., 2015) model trained on nucleus or other compart-
ment data predicts the region covered by the object. We refer to 
this as the suggested contour and expect the user to refine the 
boundaries to match the object border precisely. The suggested 
contour can be further optimized by applying active contour (AC; 
Kass et al., 1988) to it. We aim to avoid fully automatic annotation 
(as previously argued) by only enabling one object suggestion at a 
time and requiring manual interaction to either refine, accept, or 
reject the suggested contour. These operations are bound to key-
board shortcuts for convenience (see Figure 2). When using the 
Contour assist function automatic adding of objects is not available 
to encourage the user to manually validate and correct the sug-
gested contour as needed.

In Figure 2 we demonstrate Contour assist using a U-Net model 
trained on versatile microscopy images of nuclei in Keras and on a 

fluorescent microscopy image of a cell culture where the target ob-
jects, nuclei, are labeled with DAPI (in blue). This model is provided 
at https://github.com/spreka/annotatorj/releases/tag/v0.0.2-model 
in the open-source code repository of the plugin.

Contour suggestions can be efficiently used for proper initializa-
tion of object annotation, saving valuable time for the expert an-
notator by suggesting a nearly perfect object contour that only 
needs refinement (as shown in Figure 2). Using a U-Net model ac-
curate enough for the target object class, the expert can focus on 
those image regions where the model is rather uncertain (e.g., 
around the edges of an object or the separating line between adja-
cent objects) and fine-tune the contour accurately while sparing 
considerable effort on more obvious regions (like an isolated object 
on simple background) by accepting the suggested contour after 
marginal correction.

The framework of the chosen U-Net implementation, DL4J 
(available at http://deeplearning4j.org/ or https://github.com/
eclipse/deeplearning4j), supports Keras model import, hence cus-
tom, application-specific models can be loaded in the plugin easily 
by either training them in DL4J (Java) or Python (Keras) and saving 
the trained weights and model configuration in .h5 and .json files. 
This vastly extends the possible fields of application for the plugin 
to general object detection or segmentation tasks (see Supplemen-
tal Material and Supplemental Figures S2 and S3).

Exporter
The annotation tool is supplemented by an exporter, AnnotatorJ-
Exporter plugin, also available in the package. It was optimized for 
the batch export of annotations created by our annotation tool. 
For consistency, one class of objects can be exported at a time. 
We offer four export options: 1) multilabeled, 2) multilayered, 3) 
semantic images, and 4) coordinates (see Figure 1). Instance an-
notations are typically expected to be exported as multilabeled 
(instance-aware) or multilayered (stack) grayscale images, the lat-
ter of which is useful for handling overlapping objects such as cy-
toplasms in cell culture images. Semantic images are binary fore-
ground–background images of the target objects while coordinates 
(top-left corner [x,y] of the bounding rectangle appended by its 
width and height in pixels) can be useful training data for object 
detection applications including astrocyte localization (Suley-
manova et al., 2018) or in a broader aspect, face detection (Taig-
man et al., 2014). All export options are supported for semantic 
annotation; however, we note that in instance-aware options (mul-
tilabeled or multilayered mask and coordinates) only such objects 
are distinguished whose contours do not touch on the annotation 
image.

OpSeF compatibility
OpSeF (Open Segmentation Framework; Rasse et al., 2020) is an 
interactive python notebook-based framework (available at https://
github.com/trasse/OpSeF-IV) that allows users to easily try different 
DL segmentation methods in customizable pipelines. We extended 
AnnotatorJ to support the data structure and format used in OpSeF 
to allow seamless integration in these pipelines, so users can manu-
ally modify, create, or classify objects found by OpSeF in Annota-
torJ, then export the results in a compatible format for further use in 
the former software. A user guide is provided in the documentation 
of https://github.com/trasse/OpSeF-IV.

ImageJ
ImageJ (or Fiji: Fiji is just ImageJ; Schindelin et al., 2012) is an open-
source, cross-platform image analysis software tool in Java that has 

https://github.com/spreka/annotatorj
https://github.com/spreka/annotatorj
http://deeplearning4j.org/
https://github.com/eclipse/deeplearning4j
https://github.com/eclipse/deeplearning4j
https://github.com/trasse/OpSeF-IV
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been successfully applied in numerous bioimage analysis tasks (seg-
mentation [Legland et al., 2016; Arganda-Carreras et al., 2017], par-
ticle analysis [Abramoff et  al. 2004], etc.) and is supported by a 
broad range of community, comprising of biomage analyst end us-
ers and developers as well. It provides a convenient framework for 
new developers to create their custom plugins and share them with 
the community. Many typical image analysis pipelines have already 
been implemented as a plugin, for example, U-Net segmentation 
plugin (Falk et al., 2019) or StarDist segmentation plugin (Schmidt 
et al., 2018).

U-Net implementation
We used the DL4J (http://deeplearning4j.org/) implementation of 
U-Net in Java. DL4J enables building and training custom DL net-
works, preparing input data for efficient handling and supports both 
GPU and CPU computation throughout its ND4J library.

The architecture of U-Net was first developed by Ronneberger 
et al. (Ronneberger et al., 2015) and was designed to learn medical 
image segmentation on a small training set when a limited amount 
of labeled data is available, which is often the case in biological 
contexts. To handle touching objects as often is the case in nuclei 
segmentation, it uses a weighted cross entropy loss function to en-
hance the object-separating background pixels.

Region growing
A classical image processing algorithm, region growing (Haralick 
and Shapiro, 1985; Adams and Bischof, 1994) starts from initial seed 
points or objects and expands the regions towards the object 
boundaries based on the intensity changes on the image and con-
straints on distance or shape. We used our own implementation of 
this algorithm.
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