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A B S T R A C T

We examine regional differences in diabetes within Europe, and relate them to variations in socio-
economic conditions, comorbidities, health behaviour and diabetes management. We use the SHARE
(Survey of Health, Ageing and Retirement in Europe) data of 15 European countries and 28,454
individuals, who participated both in the 4th and 7th (year 2011 and 2017) waves of the survey. First, we
estimate multivariate regressions, where the outcome variables are diabetes prevalence, diabetes
incidence, and weight loss due to diet as an indicator of management. Second, we study the
heterogeneous impact of demographic, socio-economic, health and lifestyle indicators on the regional
differences in diabetes incidence with causal random forests.
Compared to Western Europe, the odds of a new diabetes diagnosis over a six-year horizon is 2.2-fold

higher in Southern and 2.6-fold higher in Eastern Europe. Adjusting for individual characteristics, the
odds ratio decreases to 1.8 in the South-West and to 2.0 in the East-West dimension. These remaining
differences are mostly explained by country-specific healthcare indicators. Based on the causal forest
approach, the adjusted East-West difference is essentially zero for the lowest risk groups (tertiary
education, employment, no hypertension, no overweight) and increases substantially with these risk
factors, but the South-West difference is much less heterogeneous. The prevalence of diet-related weight
loss around the time of diagnosis also exhibits regional variation. The results suggest that the regional
differences in diabetes incidence could be reduced by putting more emphasis on diabetes prevention
among high-risk individuals in Eastern and Southern Europe.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Living with diabetes mellitus is associated with increased all-
cause mortality as well as mortality due to cardiovascular disease,
chronic lower respiratory diseases, influenza, pneumonia, and
kidney disease (Li et al., 2019). More recently, diabetes has been
shown to increase the mortality rate and the progression to severe
disease in COVID-19 around twofold (Huang et al., 2020).

In this paper, our aim is to document regional differences in the
prevalence and incidence of diabetes across Europe, and to relate
these differences to variations in socio-economic conditions,
comorbidities, health behaviour and diabetes management.
Around 8.9% of Europeans aged 20-79 years live with diabetes,
and 8.5% of all deaths is attributable to diabetes and its
complications (IDF, 2019). However, the regional distribution is

very uneven: prevalence shows a more than twofold and mortality
a more than fourfold difference even across the member states of
the European Union (Whiting et al., 2011; IDF, 2019). It is well
known that genetics, lifestyle, diet and the healthcare system all
influence the incidence and mortality in diabetes, and these risk
factors are unevenly distributed across the population of European
countries (Tamayo et al., 2014). In particular, the roles of socio-
economic inequalities (Agardh et al., 2011; Espelt et al., 2013), of
the body mass index (e.g. Narayan et al., 2007) and of lifestyle
changes (e.g. Diabetes Prevention Program Research Group, 2002)
are well documented. However, less is known about the relative
role of these factors in explaining the variation of diabetes across
Europe. Our study aims to fill this gap.

The risk factors for diabetes are highly correlated and may
influence diabetes prevalence and incidence in a nonlinear and
non-additive way. For instance, the combination of obesity,

Contents lists available at ScienceDirect

Economics and Human Biology

journal homepa ge: www.elsev ier .com/locate /ehb
* Corresponding author. 1097 Budapest, Tóth Kálmán utca 4., Hungary.
E-mail addresses: elek.peter@krtk.hu (P. Elek), biro.aniko@krtk.hu (A. Bíró).

http://dx.doi.org/10.1016/j.ehb.2020.100948
1570-677X/© 2020 The Author(s). Published by Elsevier B.V. This is an open access articl
).
hypertension, slightly elevated blood sugar and abnormal choles-
terol level markedly increases the risk of cardiovascular disease
and the transition rate to overt diabetes. This is the rationale
e under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ehb.2020.100948&domain=pdf
mailto:elek.peter@krtk.hu
mailto:biro.aniko@krtk.hu
http://dx.doi.org/10.1016/j.ehb.2020.100948
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ehb.2020.100948
http://www.sciencedirect.com/science/journal/1570677X
www.elsevier.com/locate/ehb


b
r
a
t
s
i
r
e
d
r
s
t
b
d
t
c
d
o
t

(
p
l
5
i
n
o
s
a
a
d
l
t
h
d
d
i

b
t
t
S
e
f
t
d

2

2
o
i

S
w
s
c
(
2
N
fr
t
1
0
fu

P. Elek and A. Bíró Economics and Human Biology 40 (2021) 100948
ehind the diagnosis of the metabolic syndrome, which is defined,
oughly, when a patient has at least three risk factors out of the
bove four. Some studies argue that metabolic syndrome is more
han its parts in terms of cardiovascular or overt diabetes risk (but
ee e.g. Kassi et al., 2011 for a review of controversies), suggesting
nteraction effects between the risk factors. We train a causal
andom forest developed by Wager and Athey (2018) and Athey
t al. (2019) to investigate heterogeneity in the adjusted regional
ifferences in diabetes incidence. Specifically, we analyse how the
egional differences in diabetes incidence vary by demographic,
ocio-economic, health and lifestyle indicators. Compared to a
raditional full interaction linear regression model, the main
enefit of the causal forest method is the gain in statistical power
ue to the automated choice of heterogeneities to be included in
he model. Finally, we investigate regional differences in the
hange in health behaviour (the probability of weight loss due to
iet) around the time of diabetes diagnosis. The results shed light
n the origins of the marked cross-country differences in diabetes
hroughout Europe.

We use the Survey of Health, Ageing and Retirement in Europe
SHARE) (Börsch-Supan, 2019). SHARE is a cross-national European
anel database of micro data on demographic, socio-economic,
abour market, health and lifestyle information of individuals aged
0 or older, hence it is a convenient database for analysing all
mportant diabetes-related factors simultaneously. Indeed, a
umber of studies have used SHARE for diabetes research. Based
n SHARE data, Rodriguez-Sanchez and Cantarero-Prieto (2019)
how a positive association of diabetes with hospital admissions
nd death, while Espelt et al. (2013) find that education is inversely
ssociated with diabetes prevalence and (for women) with
iabetes incidence. Diabetes is known to increase the rate of
abour force exit by around 30% (Rumball-Smith et al., 2014) and
he probability of disability benefits more than twofold (Kouwen-
oven-Pasmooij et al., 2016). Bashkin et al. (2018) also use SHARE
ata to show that the positive association between diabetes and
epression is no longer significant after adjusting for a rich set of
ndividual characteristics.

We make several contributions to the existing literature. First,
eyond examining diabetes prevalence, we also analyse the
ransition to diabetes over a six-year horizon, a sufficiently long
ime period to measure the effect of the explanatory variables.
econd, we investigate how the prevalence and incidence differ-
nces between the three regions of Europe vary by individual risk
actors and apply the novel causal forest methodology to answer
his question. Finally, we relate weight loss – an indicator of
iabetes management – to the patterns of transition to diabetes.

. Data

The SHARE surveys were conducted in seven waves, starting in
004, and the currently last wave was taken in 2017.1 The number
f participating countries gradually expanded from 12 to 27 to
nclude new EU member states as well. We exploit the panel nature

of the survey by using waves 4 and 7, which were taken six years
apart (2011 and 2017), hence transition to diabetes can be reliably
examined on them. We split the 15 countries that appear in both
waves into three groups: West [including North] (Austria, Belgium,
Denmark, France, Germany, Sweden, Switzerland); South (Italy,
Portugal, Spain); East (Czech Republic, Estonia, Hungary, Poland,
Slovenia).2 We use calibrated weights to avoid bias due to unit
nonresponse and panel attrition (see Malter and Börsch-Supan,
2015 for details).

In our analysis, we treat a person as having diabetes if he / she
answered “yes” to any of the following two questions: (1) “Has a
doctor ever told you that you had / Do you currently have diabetes
or high blood sugar?” (2) “Do you currently take drugs at least once
a week for diabetes or high blood sugar?” We examine diabetes
prevalence, i.e. the binary indicator of having diabetes in wave 7;
and diabetes incidence (transition to diabetes), i.e. the binary
indicator of having diabetes in wave 7 among those who did not
have diabetes in wave 4. We do not distinguish between Type 1 and
Type 2 diabetes, but around 90% of the prevalence and the
overwhelming majority of incidence above 50 years belongs to the
latter category (IDF, 2019).

Other variables – which we use as explanatory variables –

include region, demographic and socio-economic characteristics
(gender, age, years of education, employment status), body mass
index (BMI, calculated from self-reported height and weight, and
then categorised into normal weight (BMI < 25), overweight
(25 � BMI < 30), obesity (30 � BMI)3 and, as a subgroup, severe
obesity (35 � BMI)), comorbidities (hypertension and high choles-
terol, measured by drug use on these conditions, and having ever
been diagnosed with heart attack or stroke) and lifestyle factors
(binary indicators of smoking now; playing sports at least once a
week; eating fruits or vegetables daily). We use the explanatory
variables from wave 4. The dataset also contains the self-reported
binary indicator of having lost weight due to diet during the past 12
months in wave 7.

We merge three country-specific healthcare indicators to the
SHARE data: total healthcare spending per GDP (source: Eurostat,
2020); the number of physicians per 1,000 inhabitants (source:
WHO, 2020); and the share of the population aged 16 and above
who report unmet needs for medical care due to financial reasons,
waiting lists or having to travel too far (source: Eurostat, 2020). The
indicators refer to year 2011 (the time of wave 4), except for health
spending per GDP, which refers to year 2013 (due to missing data in
2011). Our aim with these indicators is to capture healthcare
availability and quality. While the number of physicians and the
prevalence of unmet needs are direct measures of healthcare
availability, the indicator of healthcare spending can serve as a
proxy for healthcare quality due to its known relation to
advancements in medical technology (Beilfuss and Thornton
2016; Newhouse, 1992) and lower avoidable mortality (Heijink
et al., 2013).

1 This paper uses data from SHARE Waves 1, 2, 3, 4, 5, 6 and 7 (DOIs: 10.6103/
HARE.w1.700, 10.6103/SHARE.w2.700, 10.6103/SHARE.w3.700, 10.6103/SHARE.
4.700, 10.6103/SHARE.w5.700, 10.6103/SHARE.w6.700, 10.6103/SHARE.w7.700),
ee Börsch-Supan et al. (2013) for methodological details. The SHARE data
ollection has been primarily funded by the European Commission through FP5 2 We use data from waves 4 and 7 to ensure that at least three countries are

QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-
005-028857, SHARELIFE: CIT4-CT-2006-028812) and FP7 (SHARE-PREP:
o211909, SHARE-LEAP: No227822, SHARE M4: No261982). Additional funding
om the German Ministry of Education and Research, the Max Planck Society for
he Advancement of Science, the U.S. National Institute on Aging (U01_AG09740-
3S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-
1, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C) and from various national
nding sources is gratefully acknowledged (see www.share-project.org).

present from each region and a sufficient number of transitions to diabetes is
observed. Hungary, Poland and Portugal were not included in wave 5, Hungary did
not appear in wave 6, either. Using data from waves 4 and 6, waves 5 and 7 or waves
6 and 7 would reduce the number of observed transitions by 15%, 17% and 34%,
respectively. The variation in country coverage and survey content hinders us from
conducting a panel analysis with more than two waves.

3 Only 1% of the respondents in wave 4 are underweight (BMI < 18.5), whom we
include in the normal weight category.
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3. Methods

3.1. Multivariate regressions

We fit linear probability and logit models on diabetes
prevalence (i.e. being diabetic in wave 7) and incidence (i.e.
becoming diabetic between waves 4 and 7), respectively. We
include gradually more control variables beyond the regional
dummies (or in some specifications the country dummies) to
examine their confounding effect on regional / cross-country
differences. First, we add the demographic and socio-economic
indicators (age, age squared, gender, education categories and
employment). Then, we extend the models with indicators of
health status (BMI categories, hypertension, high blood cholester-
ol) and health behaviour (smoking, weekly sports activity and daily
fruit or vegetable consumption).4 To reduce the problem of reverse
causality on the individual level, we use the explanatory variables
from wave 4. As the last extension, we add the country-specific
healthcare indicators to the explanatory variables to check
whether they explain the remaining part of regional differences.

We also investigate the change in health behaviour around the
time of diabetes diagnosis. Specifically, we estimate linear and logit
models of the probability of weight loss due to diet in wave 7. We fit
these models on the sample of individuals who were not diabetic in
wave 4, and use the interaction of the regional dummies with the
wave 7 diabetes dummy (and other controls) to investigate
regional heterogeneities in the prevalence of weight loss due to the
diagnosis of diabetes. As a supplementary analysis, to understand
the co-movement of diabetes diagnosis and weight loss due to diet,
we add waves 5 and 6 of the SHARE data to our sample, look at the
two-year transitions to diabetes for the available countries and
analyse the prevalence of weight loss due to diet concurrently, as
well as one or two waves before and one or two waves after the
diagnosis (i.e. up to four years before and four years after it).

3.2. Causal forests

In order to analyse the heterogeneous effect of the risk factors
on the regional differences in diabetes incidence, we train causal
forests separately on East-West and South-West differences (in
each analysis we omit the third category from the sample).
Specifically, let Wi be the regional dummy (which takes one for East
or South and zero for West) and Xi denote the individual-level
demographic, socio-economic, health- and lifestyle-related control
variables. Let Yi 1ð Þ ¼ Yi Wi ¼ 1ð Þ and Yi 0ð Þ ¼ Yi Wi ¼ 0ð Þ be the
potential outcomes, i.e. the diabetes status of a particular person in
the (imagined) situation that she is in Eastern (Southern) or in
Western Europe, respectively. (We set Western Europe as the
reference category because diabetes incidence is the lowest there.)
We seek to estimate the conditional “treatment” effect

t xð Þ ¼ E Yi 1ð Þ � Yi 0ð ÞjXi ¼ xð Þ
assuming unconfoundedness and overlap. The unconfoundedness
assumption states that fYi 1ð Þ; Yi 0ð Þg are independent from Wi

conditional on the value of Xi, while overlap means that 0 < p xð Þ <

1; where p xð Þ ¼ Pr Wi ¼ 1jXi ¼ xð Þ is the propensity
score.

The fundamental problem of estimating treatment effects lies
in the fact that for each i we only observe either Yi 1ð Þ or Yi 0ð Þ; not
both. Still, unconfoundedness ensures that we can treat

observations with similar x values as if they came from a
randomized experiment, hence can estimate t xð Þ by comparing
realized Yi 1ð Þ and Yi 0ð Þ outcomes for similar Xi = x values. Under
the overlap assumption, such realised outcomes are available for
both groups.

Since in our setting the regional dummies do not have a clear
causal interpretation, we interpret t(x) in this paper merely as the
heterogenous regional “effect” after controlling for the observable
variables. Hence, instead of the usual “treatment effect” we can use
the term “predictive effect” (following e.g. Chernozhukov et al.,
2018a,b) or “adjusted difference” (following the epidemiological
literature).

Traditional regression methods estimate the effect of Wi by
adjusting for Xi in a parametric way, while nearest neighbour
methods explicitly search for observations with similar Xi but
different Wi values. Heterogeneous effects (varying t xð Þ) can be
estimated in the regression setting by including interaction terms
between Wi and Xi, or, similarly, by fitting separate regression
models to different subsamples defined according to the values of
Xi. However, if the number of potential interaction terms is

Fig. 1. Unadjusted and adjusted diabetes prevalence and incidence by countries,
deviations from the mean. Adjustment is made by controlling for the individual-
specific variables listed in Tables 2 and 3 .
4 We experimented with the addition of a rich set of further controls such as
household size, marital status, childhood health or alcohol consumption. These
controls turned out to be statistically insignificant and their inclusion in the models
did not change the coefficients of the regional dummies.

3

substantial, model selection (i.e., deciding which interaction terms
should be used) can be difficult because of multicollinearities.

The causal forest, developed by Wager and Athey (2018) and
Athey et al. (2019), is a promising new and automated way to
estimate heterogeneous treatment (or predictive) effects. Accord-
ing to the simulations of Wager and Athey (2018), it provides much
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etter mean-squared error than e.g. classical nearest neighbour
ethods. (In Appendix B we compare the heterogeneities found by

he causal forest method to those obtained from subsample-
pecific regression estimates.)
The causal forest builds on the random forest algorithm, which

as designed for pure forecasting purposes, i.e. for estimating
onditional expectations m xð Þ ¼ E YijXi ¼ xð Þ: Forecasts from ran-
omforestsareobtainedbyaveragingforescastsfrommanyindividual
ecision trees, each of which is fitted on a bootstrapped subsample of
he original sample (called bootstrap aggregation or bagging), with
ne additional twist: during each split of a tree the partitioning
ariable may only be chosen from a random subset of the full variable
st. A split of a tree is carried out by maximising the heterogeneity of
he predictions across the resulting two child nodes. (For more details
n random forests see e.g. Hastie et al. (2009)).
Instead of estimating m xð Þ; causal forests focus on the

stimation of t xð Þ: The basic idea is that the conditional treatment
or predictive) effect of Wi at x can be estimated by taking the
ifference of the average outcomes of observations with Wi = 1 and
i = 0 within the leaf L of the tree that contains x :

 t xð Þ ¼ YfWi¼1;Xi2Lg � YfWi¼0;Xi2Lg: ð1Þ
Appendix A shows the details of the causal forest methodology,

hich we implement with the R package grf (Tibshirani et al.,
019).5 We use the automatic tuning procedure of the package to
etermine the parameters of the forest (e.g. the minimum leaf
ize), apart from the number of trees grown, which is set as 32,000
or the East-West comparison and 64,000 for the South-West
omparison (the latter being larger due to the smaller sample
ize).6 After growing the forest, we estimate average treatment (or

predictive) effects on subsamples split according to the presence or
absence of various risk factors. Following Athey and Wager (2019)
and Farrell (2015), here we use an augmented inverse propensity
weighting (AIPW) correction.

Finally, we evaluate the fit of the estimated causal forests in
three ways. First, we check the overlap assumption by looking at
whether the propensity scores are bounded away from zero and
one. Second, we investigate covariate balance by comparing the
inverse-propensity weighted averages of the explanatory variables
across the two groups. Third, we implement the “best linear
predictor” method of Chernozhukov et al. (2018a,b). (See
Appendix A for details.)

4. Results

4.1. Prevalence

Fig. 1a and the first column of Table 2 show unadjusted (raw)
differences in diabetes prevalence across countries and regions,
respectively, referring to the population aged at least 50 years as
sampled in SHARE. Prevalence is significantly higher than average
in Poland, the Czech Republic and Spain, and lower in Switzerland,
Denmark, Austria, France, Belgium and Sweden. Taken the
countries together, the prevalence exceeds the Western European
average (12.7%) by 7.4% points in Eastern and by 5.6% points in
Southern Europe.

Descriptive statistics in Table 1 show that, compared to the
Western European population, Eastern Europeans on average
have less education, are less likely to be employed, have a higher
BMI (particularly in the obese and severely obese range), are
more often diagnosed with hypertension, are more likely to have
ever had a heart attack or stroke, smoke more often; but play

able 1
escriptive statistics of the variables used in Table 2.

West South East South-West diff East-West diff
mean SE(mean) mean SE(mean) mean SE(mean) p-value p-value

diabetes (wave 7) 0.127 0.003 0.183 0.006 0.201 0.004 0.000 0.000
age 63.461 0.087 62.590 0.161 63.001 0.086 0.005 0.080
female 1.559 0.004 1.551 0.008 1.595 0.005 0.604 0.008
years of education 0-8 0.221 0.004 0.630 0.008 0.288 0.004 0.000 0.000
years of education 9-12 0.395 0.004 0.165 0.006 0.497 0.005 0.000 0.000
years of education 13+ 0.383 0.004 0.205 0.006 0.215 0.004 0.000 0.000
employment 0.363 0.004 0.312 0.007 0.269 0.004 0.001 0.000
BMI -25 0.426 0.004 0.338 0.007 0.272 0.004 0.000 0.000
BMI 25-30 0.397 0.004 0.456 0.008 0.413 0.005 0.000 0.234
BMI 30-35 0.137 0.003 0.157 0.006 0.228 0.004 0.027 0.000
BMI 35+ 0.041 0.002 0.048 0.003 0.086 0.003 0.176 0.000
hypertension 0.353 0.004 0.367 0.008 0.506 0.005 0.282 0.000
high cholesterol 0.221 0.004 0.233 0.007 0.219 0.004 0.313 0.875
ever had heart attack 0.093 0.003 0.082 0.004 0.153 0.003 0.122 0.000
ever had stroke 0.026 0.001 0.022 0.002 0.043 0.002 0.292 0.001
smoker 0.179 0.003 0.192 0.006 0.235 0.004 0.296 0.000
sports weekly 0.520 0.004 0.367 0.008 0.425 0.005 0.000 0.000
fruit or vegetable daily 0.812 0.003 0.828 0.006 0.623 0.005 0.178 0.000
country-specific indicators
health spending per GDP (%) 11.113 0.004 9.000 0.001 7.139 0.006 0.000 0.000
physicians per 1,000 population 3.469 0.005 3.880 0.001 2.914 0.005 0.000 0.000
ratio with unmet healthcare needs (%) 1.776 0.006 2.895 0.040 3.891 0.027 0.000 0.000

number of individuals 13,253 4,086 11,115

part from wave 7 diabetes, all indicators are measured in wave 4.
he last two columns show the results of t-test of equality across country groups.
5 See also the technical reference of the package (https://github.com/grf-labs/grf/
lob/master/REFERENCE.md), section 6.2. of Athey et al. (2019) or section 1.3. of
they and Wager (2019).
6 We tried various other specifications for the causal forest such as using the
aseline built-in parameters or tuning only a subset of the parameters, but the
onclusions did not change.

4

sports at least weekly or eat fruit or vegetable daily in a smaller
proportion. Southern Europeans have less education, are less
likely to be employed, have a higher BMI (in the overweight
range) and less often play sports than Western Europeans, but
otherwise the differences are smaller than in the East-West
dimension.



P. Elek and A. Bíró Economics and Human Biology 40 (2021) 100948
Looking at the country-specific indicators, health spending per
GDP and the density of physicians are lower, while the prevalence
of unmet needs is higher in the East than in the West. In the South,
these indicators are in between, apart from the number of
physicians, which is the highest there.

According to Table 2, the unadjusted East-West difference of 7.4
%points (odds ratio [OR] = 1.74) is only slightly reduced by
controlling for demographic and socio-economic variables (age,
gender, years of education and employment) but decreases to less
than half (to 2.4 %points, OR=1.26) by controlling further for
health-related (BMI, hypertension, high cholesterol, heart attack,
stroke) and lifestyle factors. The South-West difference decreases

Hungary and Poland, the bulk of the worse than average prevalence
is explained by the worse values of the observed risk factors.

As columns (4) and (8) in Table 2 indicate, once we add the three
country-specific indicators to the regression (health spending per
GDP, physicians per capita, prevalence of unmet needs), the East-
West difference in diabetes prevalence disappears and the South-
West difference decreases substantially. Thus, differences in
healthcare availability largely explain the residual differences in
prevalence.

4.2. Incidence

Table 2
OLS and logit models of diabetes prevalence in SHARE wave 7.

Dep. var.: prevalence linear probability model effects logit model odds ratios
(1) (2) (3) (4) (5) (6) (7) (8)

South 0.056*** 0.038*** 0.030*** 0.023a 1.541*** 1.363*** 1.334*** 1.198
[0.010] [0.009] [0.009] [0.014] [0.113] [0.097] [0.101] [0.141]

East 0.074*** 0.061*** 0.024** 0.003 1.736*** 1.587*** 1.259*** 0.989
[0.011] [0.011] [0.010] [0.025] [0.127] [0.119] [0.099] [0.207]

(age-50)/10 0.025 0.001 0.010 1.248 1.023 1.100
[0.018] [0.017] [0.022] [0.193] [0.159] [0.219]

(age-50)/10 squared �0.005 �0.000 �0.002 0.955 1.000 0.987
[0.005] [0.004] [0.004] [0.037] [0.039] [0.038]

female �0.053*** �0.046*** �0.045*** 0.659*** 0.654*** 0.660***
[0.009] [0.008] [0.008] [0.043] [0.045] [0.045]

education 9-12 years �0.022** �0.015 �0.016 0.871a 0.916 0.909
[0.011] [0.010] [0.010] [0.067] [0.073] [0.073]

education 13+ years �0.051*** �0.020** �0.021** 0.662*** 0.838a 0.830**
[0.010] [0.010] [0.010] [0.056] [0.076] [0.075]

employment �0.096*** �0.069*** �0.069*** 0.408*** 0.473*** 0.476***
[0.014] [0.013] [0.013] [0.050] [0.058] [0.058]

BMI 25-30 0.053*** 0.052*** 1.921*** 1.905***
[0.008] [0.008] [0.167] [0.165]

BMI 30-35 0.159*** 0.156*** 3.735*** 3.669***
[0.014] [0.014] [0.367] [0.359]

BMI at or above 35 0.286*** 0.281*** 6.746*** 6.544***
[0.025] [0.025] [0.889] [0.859]

hypertension 0.061*** 0.062*** 1.611*** 1.625***
[0.009] [0.009] [0.114] [0.114]

high cholesterol 0.079*** 0.078*** 1.716*** 1.706***
[0.011] [0.012] [0.126] [0.127]

ever had heart attack 0.027 0.026 1.123 1.119
[0.017] [0.016] [0.110] [0.109]

ever had stroke 0.020 0.020 1.107 1.102
[0.025] [0.025] [0.165] [0.164]

smoker 0.010 0.009 1.103 1.094
[0.011] [0.011] [0.106] [0.105]

sports weekly �0.033*** �0.034*** 0.746*** 0.741***
[0.008] [0.008] [0.053] [0.053]

fruit or veg. daily �0.005 �0.004 0.949 0.953
[0.010] [0.010] [0.079] [0.080]

health spending / GDP (%) �0.009 0.914
[0.006] [0.052]

physicians / 1,000 pop. �0.006 0.957
[0.007] [0.058]

ratio with unmet needs (%) �0.008*** 0.941***
[0.002] [0.017]

constant 0.127*** 0.251*** 0.159*** 0.281*** 0.145*** 0.359*** 0.151*** 0.479
[0.005] [0.028] [0.027] [0.095] [0.006] [0.075] [0.034] [0.379]

Number of observations: 28,454. All explanatory variables are measured in wave 4.
Standard errors in brackets (OLS: robust),

*** p<0.01.
** p<0.05.
a p<0.1.
by more than one-third, from 5.6% points to 3.0 %points (OR from
1.54 to 1.33) after controlling for these variables. According to
Fig. 1a, the unadjusted and adjusted differences are far from each
other in Switzerland and Denmark, where a substantial portion of
the better than average prevalence is explained by the more
favourable distribution of the risk factors. On the other hand, in
5

In the following, we focus on incidence (i.e. on the transition to
diabetes between waves 4 and 7) because risk factors measured
before the diagnosis (in wave 4) are more plausibly exogenous.
Fig. 1b and the first column of Table 3 show how the transition rate
from non-diabetes to diabetes varies across countries and regions.
Incidence is significantly higher than average in Hungary, Spain,
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oland, the Czech Republic, and lower in Denmark, Switzerland,
rance, Germany, Sweden and Austria. Six-year incidence is by 5.9
points (OR = 2.64) higher in Eastern and by 4.3 %points (OR = 2.20)
igher in Southern Europe than in Western Europe (4.0%).
ccording to Table 3, controlling for the individual-level variables
easured at wave 4 reduces the East-West difference to 3.9 %
oints (OR = 2.01) and the South-West difference to 3.2 %points (OR

 1.85).
Among the control variables, the three additional health-

elated components of the metabolic syndrome all increase the
ate of transition to overt diabetes. Even overweight
25 � BMI < 30), which characterises more than 40% of the 50+
opulation, is a significant risk factor (OR = 2.1), while the two

Just as in the case of diabetes prevalence, the bulk of the
remaining East-West difference and a large portion of the South-
West difference in diabetes incidence is explained by the three
country-specific healthcare indicators (columns (4) and (8) of
Table 3).

4.3. Heterogeneity in incidence

The descriptive plots of Fig. 2 show that hypertension, high
blood cholesterol and high BMI are associated with a higher
probability of new diabetes diagnosis in all three regions, but to
varying degrees. For instance, the association of hypertension and
high cholesterol with the diagnosis seems to be more pronounced

able 3
LS and logit models of new diabetes diagnosis between SHARE waves 4 and 7.

Dep. var.: incidence linear probability model effects logit model odds ratios
(1) (2) (3) (4) (5) (6) (7) (8)

South 0.043*** 0.035*** 0.032*** 0.022** 2.195*** 1.953*** 1.847*** 1.391a

[0.007] [0.007] [0.007] [0.010] [0.245] [0.215] [0.210] [0.248]
East 0.059*** 0.055*** 0.039*** 0.010 2.642*** 2.513*** 2.009*** 1.036

[0.009] [0.009] [0.009] [0.020] [0.319] [0.303] [0.244] [0.346]
(age-50)/10 �0.012 �0.018 �0.023 0.819 0.716 0.655

[0.014] [0.014] [0.017] [0.187] [0.167] [0.192]
(age-50)/10 squared 0.005 0.007a 0.006a 1.080 1.123** 1.114a

[0.003] [0.003] [0.003] [0.059] [0.064] [0.062]
female �0.032*** �0.027*** �0.027*** 0.574*** 0.601*** 0.605***

[0.006] [0.006] [0.006] [0.059] [0.063] [0.063]
education 9-12 years �0.012 �0.009 �0.009 0.855 0.891 0.886

[0.008] [0.008] [0.008] [0.107] [0.114] [0.113]
education 13+ years �0.020** �0.008 �0.009 0.713** 0.858 0.857

[0.008] [0.008] [0.008] [0.101] [0.126] [0.126]
employment �0.034*** �0.027** �0.027** 0.507*** 0.541*** 0.542***

[0.011] [0.011] [0.011] [0.101] [0.109] [0.108]
BMI 25-30 0.026*** 0.026*** 2.068*** 2.038***

[0.005] [0.005] [0.269] [0.266]
BMI 30-35 0.082*** 0.081*** 4.005*** 3.948***

[0.012] [0.012] [0.606] [0.595]
BMI at or above 35 0.118*** 0.116*** 5.462*** 5.306***

[0.023] [0.023] [1.135] [1.105]
hypertension 0.015** 0.016** 1.301** 1.326***

[0.007] [0.007] [0.138] [0.140]
high cholesterol 0.017a 0.015a 1.300** 1.261a

[0.009] [0.009] [0.156] [0.154]
ever had heart attack �0.009 �0.009 0.878 0.879

[0.010] [0.010] [0.117] [0.117]
ever had stroke 0.037a 0.036 1.473a 1.454a

[0.022] [0.022] [0.323] [0.319]
smoker 0.009 0.009 1.182 1.178

[0.008] [0.008] [0.176] [0.176]
sports weekly �0.007 �0.007 0.860 0.860

[0.006] [0.006] [0.095] [0.096]
fruit or veg. daily �0.009 �0.008 0.857 0.865

[0.008] [0.008] [0.104] [0.106]
health spending / GDP (%) �0.009a 0.822**

[0.005] [0.074]
physicians / 1,000 pop. �0.009 0.895

[0.005] [0.083]
ratio with unmet needs (%) �0.005*** 0.923***

[0.002] [0.024]
constant 0.040*** 0.117*** 0.082*** 0.233*** 0.041*** 0.149*** 0.070*** 1.237

[0.003] [0.022] [0.022] [0.076] [0.003] [0.049] [0.025] [1.549]

umber of observations: 24,967. All explanatory variables are measured in wave 4.
tandard errors in brackets (OLS: robust),
*** p<0.01.
** p<0.05.
a p<0.1.
lasses of obesity have a markedly larger effect (OR = 4.0 and 5.5,
ot significantly different from each other). Previous hypertension
nd high blood cholesterol have ORs around 1.3. Female gender and
mployment are associated with strongly reduced diabetes
ncidence, while measured lifestyle factors have only marginally
ignificant effects.
6

in Eastern Europe than elsewhere.
To analyse the heterogeneity of regional effects, we train causal

forests as explained in section 3.2, using the same individual-level
control variables as in column (3) of Table 3. The causal forests
yield very similar estimates for the average adjusted regional
differences in diabetes incidence as the controlled linear
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probability model in Table 3: 3.8 %points (S.E. = 0.6 %point) for the
East-West difference and 3.9 %points (S.E.= 0.4 %point) for the
South-West difference. However, the value added of the causal
forest approach is that it automatically yields effect estimates for
each individual, so that they can be aggregated by different risk
factors.

The subsample-specific adjusted regional differences (calculat-
ed from equation (4) in Appendix A), their 95% confidence intervals
and the statistical significance of the between-group variations are
displayed in Fig. 3.7 The adjusted East-West difference is
significantly higher for individuals with lower education level,
without employment in wave 4, with higher BMI, with previous
hypertension or high cholesterol, in such a way that the least
vulnerable groups have essentially no excess transition risk to
diabetes in the East compared to the West. For instance, the effect
estimate is 1.1 %point (not significantly different from zero at the
10% level) for those with more than 12 years of schooling but 5.5 %
points for those with at most 8 years, or 1.3 %points (not

hypertension and 7.0 %points for those with it. Among lifestyle
factors, smoking increases the excess risk significantly at the 5%
level. Meanwhile, effect heterogeneity is not significant across
gender, age, previous heart attack or weekly sports activity.

Compared to the the East-West dimension, heterogeneity is
much less pronounced in the South-West dimension (Fig. 3b),
where the effect estimate is statistically significantly positive in
each subsample. Significant heterogeneity is observed only by level
of education, previous employment status, BMI and sports activity.

For robustness check, Appendix B displays subsample-specific
regional effects that were estimated by OLS regressions run on
differentsubsamples,usingthesamecontrolvariablesasincolumn(3)
of Table 3. (For illustration, the subsamples were defined by health
status.) The OLS point estimates are similar to the causal forest ones
but have larger standard errorsbecause the causal forest methodology
automatically chooses the heterogeneities that should be included in
the model (while the subsample-specific OLS models implicitly use
many interaction terms between the control variables).

Fig. 2. Transition probabilities to diabetes between SHARE waves 4 and 7, by hypertension, high cholesterol and BMI category measured in wave 4.
significantly different from zero at the 5% level) for those without
7 The figures do not show heterogeneities by the presence or absence of previous
stroke because the ratio of individuals who ever had a stroke is only 2-4% hence the
regional effects for them are very imprecisely estimated.

7

Appendix C contains the goodness-of-fit analysis of the
estimated causal forests. According to Fig. C1, the propensity
scores are mainly between 0.05 and 0.95, hence the overlap
assumption holds both for the East-West and the South-West
model. Table C1 shows that the large (standardized) differences in
the explanatory variables (especially in BMI, hypertension and



Fig. 3. Average individual-level adjusted regional differences by various risk factors, with 95% confidence intervals and with the statistical significance of the between-group
variation (*** p<0.01, ** p<0.05, * p<0.1, n.s p�0.1).

Table 4
Models of the probability of reporting weight loss due to diet in SHARE wave 7.

linear probability model effects logit model odds ratios
(1) (2) (3) (4)

South �0.007 �0.025*** 0.894 0.650**
[0.012] [0.010] [0.175] [0.112]

East �0.051*** �0.054*** 0.277*** 0.268***
[0.007] [0.007] [0.046] [0.046]

West � diabetes in wave 7 0.077** 0.101** 2.245*** 2.826***
[0.035] [0.040] [0.644] [0.849]

South � diabetes in wave 7 0.007 0.022 1.109 1.463
[0.025] [0.026] [0.429] [0.641]

East � diabetes in wave 7 0.038a 0.035a 2.886*** 2.717**
[0.019] [0.021] [1.069] [1.098]

(age-50)/10 0.005 1.274
[0.021] [0.503]

(age-50)/10 squared �0.005 0.880
[0.004] [0.081]

female 0.021** 1.456**
[0.009] [0.217]

education 9-12 years �0.012 0.800
[0.010] [0.149]

education 13+ years 0.006 1.101
[0.010] [0.186]

employment �0.009 0.861
[0.011] [0.153]

constant 0.072*** 0.062** 0.078*** 0.056***
[0.006] [0.028] [0.007] [0.027]

Sample: non-diabetic and overweight or obese in wave 4. Number of observations: 10,406.
The explanatory variables are measured in wave 4, apart from diabetes in wave 7.
Standard errors in brackets (OLS: robust).

*** p<0.01.
** p<0.05.
a p<0.1.
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daily fruit or vegetable consumption in the East-West dimension;
and BMI, education and weekly sports activity in the South-West
dimension) are substantially reduced after weighting with the
inverse of the propensity score, which points to a reasonable post-
estimation balance across the explanatory variables. In fact, for
most variables, the absolute value of the inverse-propensity
weighted standardized difference is below 0.10, the threshold of
appropriate balance as suggested by Austin (2009).

Finally, Table C2 displays the results of the “best linear
prediction” method of Chernozhukov et al. (2018a,b). For the
East-West model, neither coefficients differ significantly from one,
suggesting an appropriate fit both in terms of the average
treatment effect and treatment effect heterogeneity. Meanwhile,
for the South-West model, the coefficient of the average effect is
essentially one, but the coefficient of effect heterogeneity takes an
imprecisely estimated negative value (which does not differ
significantly either from zero or one). In line with Fig. 3, this also
suggests a more homogeneous treatment effect in the South-West
dimension.

4.4. Management

Finally, we analyse how the new diagnosis of diabetes is
associated with changes in dietary habits. Table 4 indicates that
among the overweight or obese population in wave 4 who
remained non-diabetic throughout waves 4 � 7, weight loss due to
diet in wave 7 was less prevalent by 5.1 %points in Eastern Europe
than in Western Europe (OR = 0.28), while there was no difference
in the South-West dimension. Compared to this population, the
diagnosis of diabetes increased the prevalence of weight loss in the
West (by 7.7 %points) as well as in the East (by 3.8 %points), while
there was no change in the South. These results are only slightly
affected when control variables are included in the analysis,
although then the South-West difference in the prevalence of
weight loss in the non-diabetic (baseline) sample becomes
statistically significantly negative (2.5 %points lower in the South
than in the West). Hence, in Western as well as in Eastern Europe, a
new diabetes diagnosis is associated with a substantially increased
likelihood of weight loss due to diet but no such association is
found in the South.

Looking at two-year transitions to diabetes and using data from
waves 4 to 7 for the available countries, we observe that in the
wave when diabetes is first reported, 11.9% of the respondents who
were overweight or obese in the previous wave report weight loss
due to diet. This ratio is around 7-8% two and four years before and
two and four years after the diagnosis, which is close to the average
probability of weight loss due to diet among the overweight or
obese population (6.7%). Hence, the change in dietary habits
mostly coincides with the diagnosis of diabetes and thus the
analysis above merits attention.

5. Conclusions

Using data from three regions and 15 countries in Europe, we
documented that diabetes prevalence and incidence are much
higher in the South and East than in the West, and only 25� 70 % of
these differences disappear by controlling for individual-level
demographic and socio-economic characteristics, health status
and health behaviour. The country-specific indicators of health
spending, availability of physicians and prevalence of unmet needs

those with tertiary education or without hypertension. At the same
time, Western European countries fare much better in preventing
diabetes among lower-educated individuals and among those with
comorbidities. Meanwhile, the South-West difference seems more
stable across these dimensions.

Our results on the association of diabetes prevalence and
incidence with regional, socio-economic, health and lifestyle
indicators are in line with the existing literature (Agardh et al.,
2011; Espelt et al., 2013; IDF, 2019; Diabetes Prevention Program
Research Group, 2002; Narayan et al., 2007; Whiting et al., 2011).
On the other hand, we extend our understanding of the regional
differences in diabetes by showing that these differences are larger
among the high-risk individuals and – at least for Eastern Europe –

are essentially zero among the lowest-risk population.
Using an indicator of change in dietary habits, we also found

that overweight or obese individuals are less likely to change diet
effectively in the South and especially in the East than in the West.
However, among people newly diagnosed with diabetes, the
prevalence of weight loss due to diet is similar in the East and in the
West. Thus, at least for the East, we do not see evidence that the
higher incidence of diabetes would be coupled with worse
management as measured by weight loss due to diet.

The analysis is subject to some limitations. First, it uses self-
reported data on diagnosed diabetes, although undiagnosed
cases make up one-third to one-half of total (diagnosed and
undiagnosed) prevalence (IDF, 2019). The explanatory variables
such as BMI, hypertension or high blood cholesterol are also
self-reported and thus are subject to measurement error.
Second, the three examined regions are not homogeneous,
hence, by construction, any regional analysis overlooks the
differences across countries within a region. (Meanwhile, the
country-level sample sizes are generally too small to yield
powerful conclusions.) Third, diabetes incidence is only
analysed over a six-year horizon, due to the changing
country-composition of the SHARE sample. Finally, only a crude
and self-reported measure of diabetes management – weight
loss due to diet – is used because we do not observe detailed
outpatient, inpatient or laboratory testing data (apart from the
raw number of doctoral visits).

In the 6th wave of SHARE, blood samples were collected from
around 24 thousand individuals from 12 countries. Since the
blood parameters (including glycated hemoglobin [HbA1c]
measurements) are not yet available for researchers, it remains
for future research to analyse the prevalence of undiagnosed
diabetes and the quality of diabetes management based on blood
sample results.

Overall, we found that diabetes incidence in Eastern and
Southern Europe is more than twofold higher than in Western
Europe, and these differences cannot be explained by differences in
the demographic composition, education level and economic
activity of the population. Our results suggest that to reduce the
regional differences in diabetes incidence in Europe, more
emphasis should be put on the prevention of diabetes among
individuals more prone to the disease in Eastern and Southern
Europe, which could at least partly be achieved by interventions
aimed at preventing obesity, hypertension or high cholesterol
among the high-risk population.

Funding
explain a large portion of the remaining part. Thus, the observed
regional differences are likely to be caused by a combination of the
differences in healthcare systems and in individual socio-
economic and health-related variables.

Heterogeneity analyses showed that the East-West difference in
incidence is essentially zero for the least vulnerable groups such as
9
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ppendix A. Details of the causal forest methodology

A basic algorithm for estimating t(x) based on equation (1) is
he following (Procedure 1 in Wager and Athey (2018), called
ouble-sample tree). A random subsample is chosen without
eplacement, and is split into two parts: one half will be used for
artitioning the tree, and the other half for estimating the
reatment effect within each leaf of a tree. Partitioning is done
y maximising the variance of 9 t Xið Þ on the first sample, and the
ffects are estimated afterwards on the second sample. Random
ubsampling and tree building are then repeated many times and
he resulting effect estimates are averaged.

It turns out that the above procedure works well for estimating
eterogeneous treatment effects in a randomised setting but does
oorly in the presence of confounding (Athey et al., 2019). Hence
he causal forest algorithm as implemented within the R package
rf makes some important changes as follows.
Motivated by the partialling-out interpretation of multivariate

egression, the basic idea is that if t ¼ t xð Þ is constant then

 ¼
P

i Yi � bmð�iÞ Xið Þ
� �

Wi � bpð�iÞ Xið Þ
� �

P
i Wi � bpð�iÞ Xið Þ
� �2 ð2Þ

s a semiparametrically efficient estimator of t (see Athey and

ager, 2019), where bmð�iÞ and bpð�iÞ denote “out-of-bag” random
orest estimates of the regression function m xð Þ and the propensity
core p xð Þ; respectively. (“Out-of-bag” means that the i-th
bservation is not used in the estimation.) Furthermore, a non-
onstant t xð Þ can be estimated as

 xð Þ ¼
P

iai xð Þ Yi � bmð�iÞ Xið Þ
� �

Wi � bpð�iÞ Xið Þ
� �

P
iai xð Þ Wi � bpð�iÞ Xið Þ

� �2 ; ð3Þ

here ai xð Þ is a data-based kernel that can be determined with a
orest-based procedure.

More specifically, the algorithm proceeds as follows. First, the
ffect of X on Y and W are partialled out by conventional random

forest predictions and subsequent steps are carried out on the

orthogonalised data eYi ¼ Yi � bmð�iÞ Xið Þ and fWi ¼ Wi � bpð�iÞ Xið Þ:
Second, in the training phase, a forest is grown recursively, by
maximising in each tree split the heterogeneity of the estimated
treatment effects across the resulting child nodes. (The idea is
similar to equation (1) but a numerical approximation is used to
speed up computations.) Third, in the forecast phase, the ai xð Þ
values of equation (3) are calculated by gathering a weighted list of
the sample neighbours that fall into the same tree leaf as x . This
third step is similar to the weighting-based interpretation of
conventional random forests. Indeed, beyond the usual “averaging-
across-trees” interpretation, forecasts from random forests can
also be viewed as bm xð Þ ¼ P

iai xð ÞYi; where ai xð Þ is a data-adaptive
kernel that measures how often Xi falls into the same final tree leaf
as x and how large the corresponding tree leaf is (Athey et al.,
2019).

The resulting causal forest can be used to estimate average
treatment effects on various subsamples. A naive estimator would
be the average of the t̂i ¼ t̂ Xið Þ values taken over a particular
subsample S, but, following Athey and Wager (2019), Farrell (2015)
and using the built-in function of the grf package, this can be made
more precise with an augmented inverse propensity weighting
(AIPW) correction:

^ATE ¼ 1
n

X
i:Xi2S

t̂i þ
Wi � bpibpi 1 � bpi� �

Yi � bmi
� �� Wi � bpi� �

t̂i
� �� �

; ð4Þ

where bpi and bmi are the estimates of the propensity score and the
regression function, respectively, and n is the size of the
subsample. This modification ensures that the estimator is doubly
robust, i.e. it provides valid inference if either the propensity score
function or the regression function (but not both of them) is
misspecified.

Finally, the fit of the estimated causal forests should be
evaluated. First, the overlap assumption can be checked by looking
at whether the propensity scores are bounded away from zero and
one. Second, covariate balance can be examined by comparing the
inverse-propensity weighted averages of the explanatory variables
across the two groups. (Here, treatment observations are weighted
by 1=bpi and control observations by 1= 1 � bpi� �

:) Third, the “best
linear predictor” method of Chernozhukov et al. (2018a,b) can be
implemented. In this method, motivated by equation (2), ~Yi is

regressed on Ci ¼ tfWi and Di ¼ t̂ �ið Þ Xið Þ � t
� �fWi; where t̂ �ið Þ Xið Þ is

the out-of-bag treatment effect estimate and t is its sample
average. If the coefficent of Ci is one then the model captures the
average treatment effect adequately, and if the coefficient of Di is
one (or at least significantly positive) then the heterogeneity of the
treatment effect is well calibrated, too. (See Athey and Wager, 2019
for more details.)
10
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Appendix B. Comparison of causal forest and subsample-specific OLS results

Fig. B1

Appendix C. Goodness-of-fit analysis of the estimated causal forests

Fig. C1
Tables C1 and C2

Fig. B1. Adjusted East-West and South-West differences based on the causal forest (CF) analysis and subsample-specific ordinary least squares (OLS) regressions, with 95%
confidence intervals.
Fig. C1. Histogram of the propensity scores in the causal forest models.
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