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Abstract 
The classical constitutive equation for heat conduction, Fourier’s law, plays an essential role in the 

engineering practice and holds only for homogeneous materials. However, most of the materials 

consist of some kind of heterogeneity, such as porosity, cracks, or different materials are in contact.  

One outstanding example is the thermal behaviour of rocks. We report the results of heat pulse (or 

flash) experiments. This is a standard method in the engineering practice to measure the thermal 

diffusivity of a material. We observed two effects in these experiments.  

Firstly, a size effect emerges, that is, for the same type of rock with different size, different thermal 

diffusivity is measured. Secondly, we also observed the deviation from Fourier’s law in a particular 

time interval. Thus the modelling requires some extension for the constitutive equation. 

The variety of their constituents and the porosity makes it difficult to derive a general constitutive law. 

Here, in this paper, we briefly present the framework of non-equilibrium thermodynamics in which we 

are able to derive an appropriate extension for Fourier’s law. The resulting model is the so-called 

Guyer-Krumhansl equation, which is independent of the structure, therefore able to model the thermal 

behaviour of various samples.  

We conclude that the Guyer-Krumhansl equation is an appropriate extension for Fourier’s law, in 

accordance with the previous measurements and evaluations. Furthermore, we observed that the 

deviation depends on the size of the sample, too. Finally, we communicate the measured thermal 

diffusivities for each sample, showing a size effect as well. 
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1  Introduction 
From an experimental point of view, the history of non-Fourier heat conduction began with the low-

temperature measurements of Peshkov (1944), in which the damped wave-form of heat conduction, 

the so-called second sound has been measured. Later on, the third way of heat propagation, the 

ballistic conduction, is observed by McNelly et al. (1970), which is a thermo-mechanical effect, a 

temperature wave that propagates with the speed of sound. It is characteristic of low-temperature 

situations, too. 

All these successes have led to further experimental works, where similar wave phenomena are tried to 

be found at room temperature on macroscale. One famous experiment is performed by Mitra et al. 

(1995), where frozen meat is situated onto a hot plate, inducing a temperature jump on the boundary. 

Here, a characteristic time-delay has been observed, which would be typical in the low-temperature 

case. However, despite the simplicity of the experimental settings, no one was able to reproduce this 

experiment, and other authors claim that the phase transition inside the meat can result in such a time-

delay, instead of temperature waves. One can conclude similar outcomes related to Kaminski’s 

experiments. Temperature waves are not likely to appear among these circumstances.  

The previous predictions are based on the first extension of the Fourier heat equation; it is the 

Maxwell-Cattaneo-Vernotte (MCV) heat equation (in one spatial dimension): 

𝜏𝜕𝑡𝑡𝑇 + 𝜕𝑡𝑇 = 𝛼𝜕𝑥𝑥𝑇, (1) 

where T is the temperature, 𝜕𝑡 denotes the partial time derivative, α is the thermal diffusivity, and 𝜏 is 

the relaxation time. However, this model is limited in the sense of predictions: it shows either Fourier-

like diffusive conduction or wave-like propagation. One needs to consider other possibilities in order 

to find a non-Fourier phenomenon at room temperature. Here comes non-equilibrium thermodynamics 

into the picture.  

Initially, the physical picture behind non-Fourier heat conduction is built on phonon hydrodynamics 

from kinetic theory. Such a detailed background on the microscale mechanism limits the approach 

itself, that is, these models are applicable only for low-temperature problems. However, using a 

particular way of generalization in the framework of non-equilibrium thermodynamics, i.e., 

introducing the so-called internal variables as new, independent fields into the state space, can 

reproduce the same models without assuming anything about the microstructure. This is what we shall 

do in the following. For further details, we refer to the work Berezovski and Ván (2017). 

In the framework of Classical Irreversible Thermodynamics (CIT), the local equilibrium hypothesis is 

assumed to be valid, and the specific entropy (s) depends only on the specific internal energy (e=cvT):  

𝑠 = 𝑠(𝑒),     𝑱𝑠 =
𝒒

𝑇
, (2) 

and the entropy flux density 𝐉s is the ratio of the heat flux (q) and the temperature. Also assuming the 

following balance for internal energy: 

𝜌𝜕𝑡𝑒 + ∇ ⋅ 𝒒 = 0, (3) 

where 𝜌 is the mass density, and no volumetric heat source is considered. Then, exploiting the second 

law of thermodynamics, and calculating the entropy production (σ): 

𝜌𝜕𝑡𝑠 + ∇ ⋅ 𝑱𝑠 = 𝜎 ≥ 0, (4) 

one obtains Fourier’s law as the solution of the inequality in Eq. 4: 

𝒒 = −𝜆∇𝑇, (5) 

where λ being the thermal conductivity. In the generalization of Fourier’s law, we modify Eq. 2 as 

follows: 

𝑠 = 𝑠(𝑒, 𝒒),     𝑱𝑠 = 𝑩𝒒, (6) 

where B is a current multiplier and a second-order tensor. More importantly, the heat flux stands as a 

new independent state variable, as a special case of an internal variable. Following the same 

procedure, we obtain the Guyer-Krumhansl (GK) constitutive equation: 

𝜏𝜕𝑡𝒒 + 𝒒 = −𝜆∇𝑇 + 𝑙2Δ𝒒, (7) 
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in which a non-local term appears with a coefficient l2, called dissipation cross-section. Equation 7, 

together with Eq. 3 forms a complete system of partial differential equations. Eliminating the heat 

flux, one obtains the next extension after the MCV heat equation, the GK-type heat equation: 

𝜏𝜕𝑡𝑡𝑇 + 𝜕𝑡𝑇 = 𝛼𝜕𝑥𝑥𝑇 + 𝑙2𝜕𝑡Δ𝑇. (8) 

In Eq. 8, we can observe the relation between the parameters. That form suggests that parallel heat 

conductors are in connection, as in the case of heterogeneous materials. Overall, their interaction can 

be characterized by comparing the thermal diffusivity to the ratio of new parameters. Later, when 

evaluating the experiments, we shall exploit this property. Hence we introduce a parameter P: 

𝑃 =
𝑙2

𝜏 𝛼
, (9) 

which characterizes the deviation from Fourier’s law. When P=1 holds, the solution of the Fourier 

equation is recovered, this is the so-called Fourier resonance condition. When P>1, we call it over-

damped or over-diffusive domain. 

2 Heat pulse experiments 
The heat pulse experiments are used to measure the thermal diffusivity of a material by registering the 

rear side temperature history. For the specified settings, see Fig. 1 below. The front surface a sample is 

painted black for absorption, and the rear side is coated with silver in order to achieve good contact 

with the thermocouple. A flash lamp generates the heat pulse; its length is 0.01 seconds. For further 

details, we refer to the earlier papers published by our group, Both et al. (2016), Ván et al. (2017), and 

Fülöp et al. (2018). 

 

Fig. 1: Arrangement of the heat pulse experiments. 

We used three different rock types, with different thickness, but all have the same diameter of 25 mm. 

Table 1 and 2 summarize the sample properties (L. Kovács (2020)), and Fig. 2 shows the samples. 

Table 1: Mechanical properties of the samples I.  

Type of the rock Bulk density 

[kg/m3] 

Shear strength 

[MPa] 

UCS [MPa] Young’s modulus 

[MPa] 

Poisson’s ratio [1] 

Boda Claystone 

Formation 
2720-2760 10.5-15.5 65-100 61-74 0.25-0.31 

Szarsomlyo Limestone 

Formation 
2640-2710 6.5-11 84-96 58-72 0.30-0.37 

Szaszvar Formation 

(clayey conglomerate) 
2410-2510 7.1-10.5 42-55 8-16 0.16-0.21 
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Table 2: Mechanical properties of the samples II. 

Type of the rock Brasil tensile strength 

[MPa] 

Cohesion (Mohr-

Coulomb) [MPa] 

Int. friction angle 

(Mohr-Coulomb) [ °] 

Hoek-Brown mi 

parameter [1] 

Boda Claystone 

Formation 
7.0-10.4 10.4-13.1 44.5-53.0 15.1-21.4 

Szarsomlyo Limestone 

Formation 
4.0-6.3 13.6-19.2 45.7-55.2 22.0-28.5 

Szaszvar Formation 

(clayey conglomerate) 
3.0-4.7 11.0-13.5 32.1-37.0 10.5-15.5 

 

 

Fig. 2: The samples used in our experiments, all have the same diameter of 25 mm.  

3 Thickness effects in thermal diffusivity 
Based on the analytical solution of the Fourier heat equation (Parker, 1961), one can determine the 

thermal diffusivity using the measured temperature history without solving the partial differential 

equations directly. This is a simple equation: 

𝛼 = 1.38 
𝐿2

𝜋2𝑡0.5
, (10) 

where the time instant 𝑡0.5 corresponds to the temperature at half height (comparing to the 

asymptotical value). In Table 3, we first report the thermal diffusivities based on Eq. 10.  

Table 3: Thermal diffusivity values for each sample, based on Fourier’s law 

ID number Type of the rock Sample thickness (L) 

[mm] 

Thermal diffusivity (10-6) [m2/s] 

#1/a Boda Claystone Formation 1.96 0.714 

#1/b Boda Claystone Formation 2.31 0.956 

#2/a Szarsomlyo Limestone Formation 2 1.385 

#2/b Szarsomlyo Limestone Formation 2.15 1.243 

#2/c Szarsomlyo Limestone Formation 2.85 1.091 

#2/d Szarsomlyo Limestone Formation 3.85 1.09 

#3/a Szaszvar Formation 3.05 1.542 

#3/b Szaszvar Formation 3.80 1.012 

#3/c Szaszvar Formation 3.9 1.257 

In case of the sample #1 and #2, the thermal diffusivity depends monotonously on the sample 

thickness, while having the same diameter. This does not hold for sample #3. This effect is 

independent of non-Fourier behaviour. 

4 Non-Fourier thermal behaviour 
Using the thermal diffusivities from Table 3 in the direct numerical solution of the experiment, the 

deviation from Fourier’s law becomes apparent. The numerical method is reported in Rieth et al. 

(2018). In the following, we present the measurement result for each sample. Also, we note that 

cooling is present in every case which is visible in Figs. 3-6, the corresponding heat transfer 

coefficient is around 10 W/(m2 K). 
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4.1 Boda Claystone Formation (sample #1)  
Figure 3 shows the direct solution of the Fourier heat equation, where the deviation from the measured 

temperature history is characteristic, it occurs in the same way for each sample when the non-Fourier 

effect is present. The Guyer-Krumhansl heat equation stands as a better heat conduction model as it 

offers a better description of the transient problem. The time interval in which the deviation is 

observable also depends on the thickness. Thus it can be stronger for larger samples and could be 

found on a more relevant time scale (e.g., days, instead of seconds). 

 

Fig. 3: Measurement result on the sample with the thickness of 1.96 mm (ID #1/a). The temperature is normalized to the 

theoretical maximum. The solid line shows the solution of the Fourier heat equation. 

 

Fig. 4: Measurement result on the sample with the thickness of 1.96 mm (ID #1/a). The temperature is normalized to the 

theoretical maximum. The solid line shows the solution of the Guyer-Krumhansl heat equation. 

Table 4: Parameters in the Guyer-Krumhansl equation related to the Boda Claystone Formation 

ID 

number 

Sample thickness 

(L) [mm] 

Thermal diffusivity 

(10-6) [m2/s] 

Relaxation time  

[s] 

Dissipation cross-section  

(10-7) [m2] 

P [1] 

#1/a 1.96 0.638 0.7 5.17 1.15 

#1/b 2.31 0.956 (Fourier) - - 1 

For sample #1/b, no deviation is detected, and thus the fitting with the GK equation was not necessary. 
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4.2 Szarsomlyo Limestone Formation (sample #2) 
In this case, the strongest deviation is observed on sample #2/b, see Fig. 5 for the Fourier-type solution 

and Fig. 6 for the GK-type fit. The results are summarized in Table 5. Interestingly, the thermal 

diffusivity is smaller when the non-Fourier effect is present, and it also shows the size dependence. 

Moreover, for thicker samples, the non-Fourier effect disappears, and the thermal diffusivity becomes 

independent of the thickness, too.  

 

Fig. 5: Measurement result on the sample with the thickness of 2.15 mm (ID #2/b). The temperature is normalized to the 

theoretical maximum. The solid line shows the solution of the Fourier heat equation. 

 

Fig. 6: Measurement result on the sample with the thickness of 2.15 mm (ID #2/b). The temperature is normalized to the 

theoretical maximum. The solid line shows the solution of the Guyer-Krumhansl heat equation. 

Table 5: Parameters in the Guyer-Krumhansl equation related to the Szarsomlyo Limestone Formation 

ID 

number 

Sample thickness 

(L) [mm] 

Thermal diffusivity 

(10-6) [m2/s] 

Relaxation time  

[s] 

Dissipation cross-section  

(10-7)  [m2] 

P [1] 

#2/a 2 1.154 0.22 3.772 1.45 

#2/b 2.15 0.89 0.65 8.66 1.5 

#2/c 2.85 1.091 (Fourier) - - - 

#2/d 3.85 1.09 (Fourier) - - - 
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4.3 Szaszvar Formation (sample #3) 
Since we have the same observation in this case as well, we report only the corresponding parameters. 

The non-Fourier behaviour vanishes when the thickness is increased. Moreover, the relaxation time is 

higher with one order of magnitude than in the previous cases. 

Table 6: Parameters in the Guyer-Krumhansl equation related to the Szaszvar Formation 

ID 

number 

Sample thickness 

(L) [mm] 

Thermal diffusivity 

(10-6) [m2/s] 

Relaxation time  

[s] 

Dissipation cross-section  

(10-7)  [m2] 

P [1] 

#3/a 3.05 1.235 1.09 18.2 1.35 

#3/b 3.80 0.904 2.157 21.05 1.08 

#3/c 3.9 1.257 (Fourier) - - - 

 

Acknowledgement 
The authors thank Tamás Fülöp, Péter Ván, and Mátyás Szücs for the valuable discussions. We thank 

László Kovács (Kőmérő Kft., Hungary) for producing the rock samples. 

The work was supported by the grants National Research, Development and Innovation Office - 

124366(124508), 123815, KH130378, and FIEK-16-1-2016-0007 and the R&D project NO. 

2018-1.1.2-KFI-2018-00207. The research reported in this paper was supported by the Higher 

Education Excellence Program of the Ministry of Human Capacities in the frame of Nanotechnology 

research area of Budapest University of Technology and Economics (BME FIKP-NANO). The 

research reported in this paper has been supported by the National Research, Development and 

Innovation Fund (TUDFO/51757/2019-ITM), Thematic Excellence Program. 

References  
V. Peshkov (1944) Second sound in Helium II, J. Phys. (Moscow), 381(8) 

H. E. Jackson, C. T. Walker, T. F. McNelly (1970) Second sound in NaF, Physical Review Letters, 25(1):26-28. 

K. Mitra et al. (1995) Experimental evidence of hyperbolic heat conduction in processed meat, Journal of Heat 

Transfer, ASME, 117(3):568-573 

A. Berezovski, P. Ván (2017) Internal Variables in Thermoelasticity, Springer 

Both et al. (2016) Deviation from the Fourier law in room-temperature heat pulse experiments, Journal of Non-

Equilibrium Thermodynamics, 41(1):41-48. 

Ván et al. (2017) Guyer-Krumhansl-type heat conduction at room temperature, EPL, 118(5):50005. 

 

Fülöp et al. (2018) Emergence of non-Fourier hierarchies, Entropy, 20(11):832 

 

Parker et al. (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, 

Journal of Applied Physics, 32(9):1679-1684 

 

Á. Rieth, R. Kovács, T. Fülöp (2018) Implicit numerical schemes for generalized heat conduction equations, 

International Journal of Heat and Mass Transfer, 126:1177-1182 

 
L. Kovács (2020), Measurements of Kőmérő Kft, Hungary 


