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Abstract: The current publication summarizes the main results of the lignocellulosic biofu-

el research carried out within the project Sustainable Raw Material Management Thematic 

Network – RING 2017. In the first part of the paper, we explore the different type of cur-

rently available biomass residues potential and summarized for each Hungarian county. In 

the next part, we identify the main factors that significantly influence the sustainable raw 

material supply of a lignocellulosic biofuel production plant and investigate the additional 

feedstocks, which may be useable in the future. The results show a large amount of availa-

ble biomass residues with more than 330 PJ energy potential. Particularly, the amount of 

generated agroresidues is outstanding, almost half of which can be used for energy produc-

tion. However, the collection, storage and utilization for biofuel production of agroresidues 

is less developed than for woody material. 

 

Keywords: lignocellulosic biofuel research, biomass, dendromass,  

 

 

1. INTRODUCTION 

Biofuels have a key role to play in combating climate change in the future through 

lowering greenhouse gas emissions. The prescribed biofuel ratio target values for 

member states of the EU is also encouraging the application of biofuel blends. 

According to the RED II (Renewable Energy Directive II) regulation, member 

states will have to meet targets of 14% renewable energy use in road and rail 

transport by 2030. At the same time, decision-makers have recognized that crop-

based biofuels encroach upon land used for food crop production through indirect 

land use. According to estimates, the land area used for growing biofuel feedstock 

in 2018 covered about 5% of the total crop area [1]. The growing areas for corn, 

sugar cane, or palm were enlarged through the conversion of rainforests and grass-

lands. This has reduced the net carbon dioxide absorption capacity and increased 

emissions. Droughts, forest fires, biotic and abiotic damage are becoming more 

frequent as a result of the changing climate. Carbon stored in forest biomass is re-

leased and contributes to climate change.  
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The occasional yield loss of conventional biofuel raw materials is already a prob-

lem today. A doubling of cereal consumption for food and animal feed due to popu-

lation growth and changes in consumption structure in the 21st century only adds to 

this problem [2]. The intensified application of mechanical soil cultivation technolo-

gy with irrigation and the vast use of fertilizers has made the satisfaction of cumula-

tive demands possible. However, fertilizer production is an energy-intensive industry 

[3]. For these reasons, the EU legislation restricts the use of food crops for energy 

purposes. The maximum contribution of conventional biofuels will be frozen at 2020 

consumption levels, plus an additional 1% with a maximum cap of 7% of road 

transport fuel in each member state. The proportion of advanced fuels to be achieved 

must grow gradually and its proportion was set at least 3.5% by 2030. With the help 

of lignocellulosic biofuels there is an opportunity to meet the target. 

Commercial-scale production of lignocellulosic biofuels from forestry and agri-

cultural by-products is under development, and its increased use in transport sector 

will be viable in the near future [8]. The use of wood industry by-products is al-

ready largely realized today.  

The conversion of lignocellulosic feedstock to liquid biofuels requires much 

more complex technology than first generation biofuels. Overall, conversion rates 

and production capacity are lower, but the investment cost can be up to ten times 

higher compared to advanced biofuels [4]. To achieve a sustainable raw materials 

supply for the planned expansion, an extensive raw material analysis is absolutely 

necessary. 

 

2. METHODS 

The following methodology was used to calculate the available raw material poten-

tial reserves. As a starting point for calculations of forest residue amounts, we used 

Hungary’s wood use data from the compilation of Statistical Mirror in 2013, “Fea-

tures of Forest Management”, by the Hungarian Central Statistical Office (KSH) 

[5]. Subsequently, this logging data was updated from the 2016 Forest Balance 

Sheet and created the gross volume of timber harvested per county per tree species. 

The by-product volume is worth an average of 17% relative to the gross volume of 

timber produced. The data were retrieved in a humid state while 50% moisture con-

tent was assumed. When cubic meters were converted to metric tons, the wood 

weight ratio of the species harvested by clear cutting in the country based on the 

2016 forest balance sheet data was considered and multiplied by the density values 

specific to the tree species. 

National wood use data as described for forest residues were calculated to esti-

mate the stump and root amount. Larger quantities of stumps can only be 

technically harvested in areas where clear-cutting has been executed within the end 

use. However, stumping and subsequent rotational soil preparation are limited to 

flat or slightly undulating surfaces and can only be performed on some genetic soil 

types, e.g. sandy soil [6]. Therefore, it mostly takes place with black locust, poplar, 

and pine as characteristic tree species. After that, the black locust, poplar, and for-
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est pine areas were determined according to the table of the NÉBIH Forest Invento-
ry by Tree Species Group and the Current Forest Association Group, followed by 

the gross volume count of these trees. Root stump logs account for 15–25% of the 

aboveground tree mass for black locust and up to 10–20% for poplar and pine [6].  

The potential estimation of grape and fruit tree areas was derived from the Hun-

garian Central Statistical Office (KSH) 2017 Land by Field Cultivation Table [7]. 

According to the methodology of the Statistical Office, grape-growing areas pro-

ducing propagating material are also included. Vineyards produce about 1–2.5 tons 

of pruning residues per hectare per year, with an average of annual 1.5 t/ha. Fruit 

tree thinning produces a smaller amount of prunings annually, with larger amounts 

every 4-5 years; on average, we can count on 2.5 t/ha per year. Since the by-

products can only be cost-effectively collected in vineyards with larger contiguous 

areas, only vineyards above 3 ha were taken into account during the calculation. 

The breakdown by size categories made in 2005 and 2007 Census of Vine and 

Fruit Plantations was used for the calculations. 

Since woody energy plantations are also a potential lignocellulosic biofuel feed-

stock, we conducted a survey of these as well. The survey was based on the area 

data collected by the Forestry Directorate of the NÉBIH in 2018. Furthermore, we 

used the average yearly yields for the calculations. 

Table 1 summarizes the characteristics of dendromass feedstock. 

Table 1 

Features of dendromass base materials [8, 9] 

Type of by-product 
Generated by-product  

[t/ha or %] 

Heating value  

(at w% 15−20) 

[MJ/kg] 

Forest residues 12% 14−15 

Grape pruning 1.5 t/ha 14.5−15 

Orchard residues 2.5 t/ha 14.5−15.5 

Woody energy plantations 10 tdry/ha 18 

 

 

For comparison, the by-products of arable herbaceous plant production have also 

been surveyed. Hungary has a great deal of arable land due to favorable weather 

conditions; the volume of agricultural residues in the country is remarkable. Calcu-

lations were completed by determining the harvested area of different agricultural 

crops based on KSH 2018 data tables. Area size changes every year due to crop 

rotation. As a result, five-year averages (2013–2017) were considered. By-product 

mass determination was possible using KSH 2018 main product yield data. We 

also considered 5-year averages here due to crop yield fluctuations. Data in the lit-

erature on the main product ratio (seed:stem ratio) to the by-product were collected 

and used to determine the residue amounts. Table 2 summarizes these data. 

Using formulas (1) and (2) the determination of the theoretical and energetical 

biomass potential is possible. 
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Table 2  

Features of by-products of herbaceous plants [10, 11, 12, 13, 14, 15, 16] 

Type of stem, stalk 
Seed:stem  

ratio 

Heating value  

at harvest 

[GJ/t] 

Moisture content  

at harvest 

[%] 

Corn stem 1 : 1.5 12 30–40 

Wheat straw 1 : 1.2 13 10–15 

Barley straw 1 : 1.2–1 : 1.5 13 15–20 

Rye straw 1 : 1.8 13 15–20 

Oat straw 1 : 1.3 13 15–20 

Triticale straw 1 : 1.2 13 15–20 

Sunflower stem 1 : 2 14 25–35 

Rape seed straw 1 : 1.4 14 15–20 

 

 

Theoretical biomass potential: 

The energy potential of the amount of studied annually generated biomass. 

 

Forest residues per county: 

 

  (1) 

 

where: 

Eei for – theoretical annual energy potential of forest residues in a county (PJ/yr) 

i – county (i=1 to i=20)1 

Vbr – gross volume of wood use in the county (m3/yr) 

a – crop yield relative to main product (~17%) 

k – average multiplication factor at m3 to metric ton conversion (national ave. ap-

prox. 0.6 for dry wood) 

F– calorific value of the residues (MJ/kg). 

 

Agricultural residues per county: 

 

  (2) 

where: 

Eei agr – theoretical annual energy potential of agricultural residues in a county (PJ/yr) 

i – county (i=1 to i=20) 

Tn – 5-year average of the growing area of the plant type “n” (ha) 

fn – 5-year average yield of the main product of the plant type “n” (t/ha*yr) 

 
1  Hungary has 19 counties plus the capital city of Budapest, which is counted here as a county. 
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mn – ratio of the yield of the by-product to the main product of the plant type “n” 

Fn – calorific value of the by-product of the plant type “n” (MJ/kg). 
 

Gross energy potential of biomass residues in Hungary per county (PJ/yr): 

 

 Ei=Σ Eei for. + Σ Eei agr  (3) 

 

 

Energetical biomass potential 

This is the amount of biomass that can be used for energy purposes. To determine 

this value, we considered the various sustainability, environmental and technical 

interests, as well as the biomass amounts potential users requires.  

In the case of forestry residues, larger quantities of raw material can only be 

cost-effectively collected in areas practicing clear-cutting within end use. Accord-

ing to the KSH OSAP 1254 data collection, the use of clear cutting occurred in 

47% of the total national harvested gross timber volume in 2016 [19]. Only the 3–7 

cm thin wood parts from end uses felling can be harvested technically and 

ecologically, which represents 12% of the total wood weight [6]. 

In the case of agricultural residues, it would be optimal to return 20–30% of the 

stem mass to the soil for soil fertilizing [17, 18]. We also determined the average 

amount of straw used for animal litter per year based on the data from the literature 

and from the number of Hungarian livestock recorded by KSH (Table 3). 

We summarized the biomass demand of currently operating users and potential 

users (those planning to become users) through the collection of data in the litera-

ture and electronically-available data from the website of the companies.  

 

Table 3  

Specific straw needs for bedding [20] 

Farm animals 

Straw needs for bedding 

[kg/head/day] [kg/head/year] 

Cattle 3.8 1,400 

Sow 1.4 511 

Sheep 1.1 220 

Poultry – 3.3 

 

 

3. RESULTS 

3.1. Residues potential 

Based on the calculation methods given in the methodology, the nationally gener-

ated theoretical annual potential of biomass by-products is shown in Table 4. 
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Table 4 

Theoretical annual biomass potential in Hungary [8, 21] 

Type of biomass 
Amount (dry) 

[1000 t] 

Energy  

[PJ] 

Forest residue 1,000 11.0 

Stump 160 1.8 

Fruit tree pruning 165 2.6 

Vineyard pruning 57 1.0 

Agricultural herbaceous  

residue (stalk, stem) 
22,700 314.0 

Short rotation coppice (SRC) 4.4 0.08 

 

3.1.1. Forest residues and stumps 

Almost 1 million metric tons of forest residues, calculated in the wet state at the 

harvest, are generated annually, in theory. Within this figure, about 700,000 tons 

can be collected, once technical, ecological and economical aspects are taken into 

account. Roughly 7.7 PJ of energy can be gained through forest residue utilization.  

Stump amounts are only an additional available potential from forestry. This tech-

nology can be mainly used in Somogy, Szabolcs-Szatmár-Bereg, Bács-Kiskun, 

Pest and Hajdú-Bihar Counties. It is worth mentioning that the annual yield of 

black locust, poplar, and pine has shown a slight increase over the last five years, 

but the biomass of root and stump is technically unusable so far. 

 

3.1.2. Orchards, vineyards 

According to our survey, the amount of collectable fruit tree prunings is about 

165,000 tons annually, which would provide 2.6 PJ of usable energy. In vineyards, 

57,000 thousand tons of prunings can be realistically collected, which equals nearly 

1 PJ of energy.  

 

3.1.3. Agricultural residues 

Corn is the most cultivated crop in Hungary, with a cultivation area of about 1.1 mil-

lion hectares. This is followed by wheat with 1 million hectares, and sunflower with 

a cultivation area of 625,000 hectares. According to our calculations, corn production 

generates more than 11 million tons of by-products in Hungary annually. The amount 

of wheat straw is also large; on average more than 6 million tons every year. Sun-

flower stalks amount to 3.3 million tons, while the amount of rapeseed stalks is just 

over 1 million tons per year. The quantity of barley straw is also significant, around 

1.4 million tons per year. 

 

3.1.4 Short rotation coppice 

In Hungary, energy plantations are worth mentioning, primarily with regard to 

woody plantations. However, energy plantation size is not significant when com-
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pared to Western European countries. According to 2019 NÉBIH Forestry Directo-
ry data, energy plantations in Hungary occupy a total of 4351 ha, of which about 

80% is cultivated with poplar due to the suitability of the species in the available 

areas. Miscanthus plantations only comprise about 360 ha in the country [22]. 

 

3.2. Impact of climate change on collectable raw material 

Future indirect effects of climate change will increase biotic and abiotic damage. 

The number of forest pests is forecast to grow due to average annual temperature 

increases and warmer winters [26]. Most intense forms of damage have occurred in 

the last 20 years. Moreover, this damage has generally accumulated over the past 

10 years [26]. Therefore, in our previous research study we began focusing on for-

est damage-induced logging, which will affect the useable amount of raw materials 

for energy recovery in the future [23]. In agriculture harmful effects can be elimi-

nated in a relatively short time period with the help of appropriate agrotechnical 

methods, while in forestry this is only possible over a longer time frame and only 

through appropriate tree species choices.  

Drought and favorable periods for crop production have a strong impact also on 

the amount of agricultural by-products generated. Based on KSH data, 2012 was 

one of the worst drought years of the last decade, and we took this year into ac-

count in our research. According to yields, the most favorable weather occurred in 

2016. The generated amount of by-products that could be harvested annually na-

tionwide in these two years is compared to the average of 2013–2017 and shown in 

Table 5. 

Table 5 

Change in the theoretical amount of by-products annually [8] 

 
National data 

2012 

“worst year” 

2016 

“favorable year” 

2013–2017  

“average” 

Corn 

growing area [ha] 1,191,291 1,011,563 1,115,955 

average crop yield 

[t/ha] 
4.0 8.6 6.9 

harvestable stalk 

[t] 
7,147,746 13,049,162 11,550,134 

Sunflower 

growing area [ha] 615,097 629,675 625,488 

average crop yield 

[t/ha] 
2.1 3.0 2.7 

harvestable stalk 

[t] 
2,583,407 3,778,050 3,377,635 

Rapeseed 

growing area [ha] 164,916 256,679 238,346 

average crop yield 

[t/ha] 
2.5 3.6 3.0 

harvestable stalk 577,206 1,293,662 1,001,053 
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The amount of rapeseed stalk showed the biggest difference, but this was mainly 

due to the changing size of harvested area. Crop yield loss per hectare was 30% in 

2012 compared to the most favorable year, while in the case of rapeseed stalk, less 

than half could be collected. Of the examined cereals, corn had the largest yield 

fluctuation. Less than half of the corn crop and corn stalk could be collected in the 

worst year compared to the favorable year. The fluctuation is the smallest in the 

case of sunflower, and there is no significant difference in the harvested area or 

yields. However, it should be mentioned that only a weak-medium correlation can 

be detected between the yield of main products and by-products n recent years, 

which can impair the accuracy of the survey [24]. 

In addition to the quantitative change caused by climate change, agroresidues 

are also affected by plant breeding methods (Figure 1). The plant breeding meth-

ods have an important role influencing the long-term energy strategies through of 

the amount of generated biomass.  

 

 

In terms of raw material supply, woody energy plantations can be an additional 

solution for lignocellulosic biofuel plants, which can be successfully grown even in 

low-quality agricultural areas. Energy plantations can be much better protected 

against biotic and abiotic damage. Unfortunately, dry summers represent a high 

risk, especially in planting years. Up to 50% of shoots planted during dry summers 

do not sprout and need to be replaced. The expected yield is also far from optimal, 

since drought inhibits photosynthesis; leaves become smaller; shoots become elon-

gated; leaves untimely wilt and fall; and peak dehydration may occur [27]. 

The frequency of persistently cold winters is decreasing. Nevertheless, their ep-

isodic occurrence in Hungary should be taken into account even with a slightly 

warmer global climate. In principle, frosts in April–May and September–October 

will become less frequent, but as the growing season lengthens, the risky periods 

 
 

Figure 1  

Changes in straw and stem specific quantities due to plant breeding activities [26] 
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will also shift towards the cold season. Early frosts shorten the vegetation period, 

thereby inhibiting the “ripening” of wood [27]. Late spring frost can cause severe 

damage to some poplar clones; their shoots often die completely. This poses a par-

ticular risk to clones originating from less frigid regions [27] (Figure 2). The pho-

tos of two different poplar clones were taken in the same area, at the same time. 

The variety on the left with mostly dead shoots is highly sensitive to spring frost. 

The plant emerges much later, produces a lower number of shoots, and results in a 

lower yield at harvest. The poplar variety shown in the picture on the right is not 

sensitive to late spring frost. Breeding and tree species selection as well as choos-

ing varieties according to the given climatic and soil conditions are of great im-

portance during planting. 

 

 

Figure 3 illustrates the yield differences of the different poplar clones under the 

same climatic and soil conditions. 

The annual change in precipitation based on climate scenarios is expected to be 

characterized by a slightly negative trend in Hungary by 2100. About 90% of the 

country’s territory is at risk of drought. Drought can change the mechanical proper-

ties, the chemical composition of soil, organisms within soils and the wildlife of a 

plantation over time. In addition to the decrease in soil moisture, a drier climate 

may also lead to a drop in the groundwater level. This causes a greater decline in 

yields, especially in summer energy plantations. In addition to direct climatic ef-

fects, indirect effects such as plant diseases and pests may also occur. For this rea-

son, it is important to choose the right tree species. 

Increasing CO2 emissions from burning fossil fuels has a fertilizing effect on 

most plants because CO2 is a component of photosynthesis. Experiments on the 

effects of enriched atmospheric CO2 on plants have been completed in several cas-

es around the world. Based on their results, the mass of aboveground woody bio-

mass may rise by up to 25–38% due to increasing photosynthesis. This may change 

the mass ratio of plant components, e.g. the mass of leaf, stem, and root system. On 

the other hand, plant stock characteristics also change due to altered conditions. For 

      
Figure 2  

Effect of spring frost on different poplar clones [8] 
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example, plant biomass increases, plant stocking density increases, water utiliza-

tion improves, and the C:N ratio changes, all of which also affects the infectious 

characteristics of pathogens and the nutritional characteristics of animal pests. 

However, the beneficial effect can only be achieved if the necessary water supply 

is available. 

 

 

 

3.3. Utilized residues by main potential users 

An important part of the base material survey is the examination of the current op-

erating and planned potential users. Forest and agricultural by-products are only 

partially collected, and are most often sold to power plants, perhaps to a smaller 

extent to heating plants, boilers, and pellet and briquette factories. 

 

3.3.1. Dendromass utilization 

Different information is available on the currently used quantities because the larg-

est collectors and purchasers obtain some of their by-products from forests in other 

countries. According to the literature, about 4.5% of the thin wood part of the col-

lectable forest residues is utilized [6]. 

Pécs Power Plant is the largest forestry residue utilizer in Hungary. Smaller 

amounts are utilized in the cities of Pornóapáti, Hangony, Csitár-Nógrádgárdony, 
Mátészalka, Szakoly, Miskolc, Pannonhalma, Homrogd, and Szombathely. In Ti-

szaújváros, forestry residues are used for wood pellet production. In addition, a 

 
Figure 3  

Height difference of two different poplar clones with the same environmental 

and soil conditions [8] 



194      Szalay, D. – Vágvölgyi, A. – Czupy, I. – Kertész, Sz. – Beszédes, S. – Hodúr, C. – Papp, V. 
 

 

 

common form of forest residue utilization today is collection by local people for 

their personal use. In the Kiskunság Forestry and Wood Processing Co. (KEFAG) 

area, for example, the local population harvests 3,000–4,000 m3 of tree branches to 

obtain cheap fuel for own energy needs. An additional 10,000 m3 of logging waste 

collection is done mechanically. 

Tree stumps offer further potential from forest management. There have been 

attempts to utilize stumps in the country (Pécs, Szakoly), but this is not typical due 
to challenges with harvesting and burning. Furthermore, the presence of a signifi-

cant amount of bark and contamination causes problems during biofuel production; 

hence, we did not include it as a potentially useable base material. 

The main users of forestry and woody by-products are pellet and briquette man-

ufacturers. Their number has been rising steadily due to significant export demand. 

Exports make up about 70% of the total Hungarian production. At the same time, 

pellet production is largely restrained by the cheap inflow of pellets from Ukraine. 

The utilization of raw materials is usually done with bark-free by-products in a 

mixture. Of the larger manufacturers, forest residues are utilized by the Eko Fire 

Pellet Ltd. in Tiszaújváros, for example.  
There are several paper mills in Hungary. Most of their raw material is derived 

from forests that have been deliberately planted for industrial use. The mills also 

manufacture products from waste paper. As in Hungary, the global wood-based 

panel industry primarily uses low quality wood resources and turns them into val-

ue-added products. One of the forms of using by-products from forestry and the 

wood industry is chipboard manufacturing. Falco Zrt. in Szombathely is the best-

known chipboard manufacturing plant in Hungary. Furthermore, the Swiss Crono 

OSB factory in Vásárosnamény started operations in 2016. Veneer sheet produc-

tion (e.g. Derula Kft. in Szolnok) mainly uses poplar logs, which are produced on 

industrial plantations. In this process the by-products are not used [29]. 

Upcoming projects may also modify the available raw material. Mátra Power 
Plant (Visonta) recently received a permit for the construction of a mixed-fueled 

(Refuse-derived fuel RDF 75.2% and biomass 24.8%) power plant in Halmajug. 

This is expected to amount to 84,836 t of BIOMIX per year. About 30% of this is 

stem and straw, 15% is forest and wood by-product, and the remainder is biomass 

from food processing. The 49.9 MW wood chip-fired block at Pécs utilizes 
400,000 tons of woody biomass each year – mostly residues from forestry and 

sawmills including wood chips and sawdust, but also sunflower shells. However, 

by the end of November, about a quarter of the fuel used in the woodchip block 

may be replaced by the so-called “Mecsek mix”. This product contains commer-
cially available quality-assured fuel biomass and pre-sorted PVC-free plastics, pa-

per, and textiles from Pécs and its surroundings [28]. 

Despite the cost-effective 50 km transport distance of wood chips, raw material 

can also arrive at the larger power plants from even longer distances. This implies 

neighboring counties, and they can, in fact, become potential raw material suppliers.  
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3.3.2. Agricultural residues (stalk, stem) utilization 

Corn stalks represent the largest quantity of agricultural residues. Currently, the 

most common way of utilizing corn stalks is to simply plow them into the soil, 

which is done to approx. 93-94% of the stalks [30]. However, large amounts of 

lignocellulose should not be returned the soil because it launches a pentosane effect 

(cellulose effect). Optimal values for straw and stem quantities used for soil im-

provement vary in the literature, but according to most analyses, 20–40% of stem 

weight is the best [17, 18, 31]. Large amounts of nitrogen fertilizer are needed to 

avoid cellulose effects; this would significantly increase costs and environmental 

hazards. From an ecological perspective, we calculated with a max. 50% useable 

amount together with technical losses. 

The utilization of wheat straw in livestock farming is significant. Straw is fed 

primarily to ruminants, but only in small quantities. Due to its low usable energy 

concentration, straw cannot replace hay as feed; thus, straw can only be used effec-

tively in small daily doses as supplementary feed. The utilization of by-products as 

fodder may be higher in drought years if the amount of harvested crop does not 

meet national needs. However, the amounts used for bedding are significant. Ac-

cording to the calculations described in the methodology, the required amount of 

litter has increased by 7% in the last two years and by 13% in the last decade. 

Straw is also utilized in some power plants. The district heating system of Pécs can 
supply approximately 60% of the region’s heat demand, which means 200,000 tons 

of straw purchased from the local farmers. The Oroszlány Power Plant is capable 

of burning 100,000 tons of straw annually [32, 33]. The available potential is lower 

than 1.5 million tons [8]. 

Rapeseed stem also represents significant quantities of by-products. It can be 

easily balled; the technology of harvesting is well-known. Its utilization began to 

be examined during the biodiesel production boom. When mixed with different 

materials, rapeseed stem could be a valuable raw material for agripellet production 

[34]. The usable potential of sunflower stems is also significant, but their harvest-

ing is still problematic; therefore, utilization for energy purposes cannot be 

achieved by current methods.  

For the time being, the corn stalk utilization is relatively low. Pécs utilizes about 
10,000 tons and the Mátra Power Plant consumes about 100,000 tons of corn 

stalks. Mátra also uses straw in smaller quantities. Other agricultural by-products 

are utilized in Szakoly, Szerencs, and Homrogd. The plant in Dorog uses sunflower 

stems. 

As far as potential users are concerned, the biogas plants are mainly based on 

animal by-products such as manure, animal carcasses, and meat processing indus-

try by-products. A major agricultural products such as silage corn or sugar sor-

ghum silage usually complements these products. It should be emphasized that the 

whole plant is chopped during the preparation of silage maize, so we did not con-

sider it as a potential raw material in the previous section (3.1.3.). There are only 
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three or four biogas plants utilizing some types of plant stalk or straw, but not to a 

significant extent.  

The annual raw material consumption of agripellet plants in Hungary is not yet 

significant. In Polgárdi, Vertikál Plc. processes a few hundred tons. In Szentes the 
amount of annually produced pellets is 3,600 tons/year, which includes wheat, corn 

and rapeseed stalk. In Agárd-Pálmajor, Agripellet Ltd. produces 4,200 tons of pel-

lets per year, of which rapeseed straw and sunflower husk represent a smaller por-

tion. In addition, straw pellets are produced in smaller quantities in some plants 

(Jászladány, Vép). In the future, it will be possible to produce torrefication pellets 

from agricultural by-products, but the technology is not yet widespread [34]. 

In the neighboring countries, larger biomass recovery plants located near the 

Hungarian border could be a further source of demand. There is a plan to develop 

an advanced bioethanol production plant based on agricultural by-products with a 

capacity of 50,000 tons (63 million L/year) in Leopoldov, Slovakia [35]. It will be 

located at a distance of 110 km from the border, which can only show an uptake 

market in drought years, because of the larger collection area due to smaller yield. 

In October, 2014, Beta Renewables and BioChemtex signed an agreement with 

Energochemica SE to produce commercial lignocellulose based ethanol from 

55,000 tons of wheat straw, rapeseed, and maize stalks in Strazske, also in Slovakia 

[36]. A demand for raw materials could be manifested, since Strazske is less than 

50 km from the border. 

A biofuel plant with fermentation technology, which is expected to use wheat 

and other cereal straw to produce 63 million liters of biofuel per year, is planned 

for construction in southwestern Romania. However, the realization of this plant is 

not yet certain. 

 

3.4. Gross energy potential of biomass residues per county 

 

Figure 4 

Distribution of energy originated from herbaceous and woody collectable  

by-products by county [8] 
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The amount of generated woody and herbaceous by-products were aggregated for 

each county. Figure 4 shows the amount of agricultural by-products is dominant and 

adds up to 92% of the total energy content of potential that can be obtained with its 

utilization. However, the collection, storage, and utilization of soft-stemmed by-

products all are less developed compared to those of woody by-products. 

The total energy amount of collectable by-products in Hungary is about 152 PJ.  

 

3.5. Evaluation of raw materials so far not used for energy purposes 

Meeting the needs of potential users can be facilitated by planting new woody en-

ergy plantations. The 250,000–300,000 hectares of uncultivated land area in Hun-

gary could be well utilized for this purpose. Based on data from the Forestry Direc-

torate of NÉBIH, the creation of energy plantations for energy recovery has been 

completely absent over the past year. Lack of support and the start of a rival grant 

F 5 billion tender for the planting of new woody plantations for industrial purposes 

are the reasons for this. The main priority of support is to promote carbon seques-

tration in agriculture and forestry. Furthermore, optional additional activities in-

clude the establishment of electric fences (4.8 EUR/m) and fences (5.8 EUR/m) if 

appropriate conditions are met. The smallest eligible area is 0.5 hectares. The re-

quirement for disbursement of support is the sale of more than 50% of the generat-

ed dendromass for wood industrial purposes within 20 years; the establishment of 

woody and short rotation plantations for energy production purposes are ineligible 

activities. 

However, woody industrial plantations also generate large amounts of residues 

(10%) and bark (15–17%) that can be used for energy purposes. The production of 

industrial wood is about 70%. According to [39], the average increment of the total 

wood yield is 27 m3/ha/year at age 12. Calculating the data reveals that up to 5 t/ha 

of usable biomass per year can be generated. Approximately 1.0–1.5 t/ha/year of 

biomass can be used for energy recovery if bark residues are excluded from the 

calculations. However, if we use 49% of biomass for energy purposes, an addition-

al 5 tons of absolute dry matter becomes available. Besides, we can calculate in the 

material from pruning, which is generated during the formation of the 6–8 m high 

branch-clear trunk in the first three years of the plantation. 

Agroforestry is an intermediate solution. This can be a highly advanced produc-

tion method today and is becoming a viable option for land use as it offers many 

ecological and environmental benefits [40]. Agroforestry is a type of climate-smart 

agriculture practice of deliberately integrating woody vegetation (trees or shrubs) 

with crop and/or animal systems. Through intercropping, the carbon sequestration 

in trees compared to herbaceous plants occurs in the deeper layers of the soil, due 

to their deeper root system. Therefore, these cultivation systems are a good tool for 

increasing carbon sequestration in the agricultural field. In addition, intercropping 

technology helps to prevent the growing fire risk of dendromass production, espe-

cially in southern European countries [41]. 
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Several EU projects are working on extending the amount of raw materials via 

the agroforestry method. The aim of the AgroCop project is to maximize the pro-

duction of both high quality timber and wood for energy use by combining the 

available advantages of agroforestry systems (AFS) and short rotation coppice 

(SRC) [45]. The AGFORWARD project (2014–2017) aimed to promote agrofor-

estry practices in Europe that will advance sustainable rural development with the 

active participation of Hungarian partners [46]. The AFINET project is an ongoing 

project with Hungarian participants (University of Sopron Cooperative Research 

Centre Non-profit Ltd.) [47]. 

Another possible raw material is waste wood, which has not been utilized yet due 

to the problem of surface treatment (except of untreated waste wood for pellet and 

briquett production). At the same time, research studies from abroad claim the chem-

icals used for surface treatment can be degraded, thereby enabling use of the material 

for energy purposes to have low environmental risk [42, 43, 44]. We calculate 0.5–
0.7 million m3/year of wood material from this area in the longer term [38]. 

 

4. DISCUSSION 

The choice of biofuel feedstock has undergone a strong transformation in the last 

decade. The range of raw materials that are less dangerous to the food supply but 

at the same time sustainable has expanded. The advantage is that several types of 

raw materials can be introduced into the system at the same time with proper 

construction. 

However, based on the described results, it will become increasingly difficult to 

plan the raw material supply for both food crop-based and lignocellulosic biofuel 

plants in the future. The increased frequency of extreme weather events, especially 

droughts during the growing season, will increase the uncertainty of a sustainable 

raw material supply. The consequence of the crop loss for biofuel production was 

also manifested in the drought period of the year of 2007. Many of the planned bi-

oethanol plants at that time did not materialize. Although the climate in Hungary is 

more favorable for corn production than it is in most countries in Western Europe, 

Hungary’s yield is still below the average of many other EU countries. This is ac-

companied by the above-mentioned yield fluctuations. For example, in 2003 and 

2007 less than 35–40% of corn was produced in Hungary compared to the national 

average of in that decade. The same value was at most 18% in Austria and Germa-

ny [26]. The yield loss could be decreased in Hungary by using appropriate agricul-

tural technology. Furthermore, as a result of climate change, we can expect a rise in 

temperature in Hungary, which may lead to a narrowing of the growing area of 

rapeseed, which is a raw material for biodiesel production that prefers cooler, wet-

ter areas. 

Increased use of forest and agricultural residues is necessary on the one hand to 

avoid food conflicts and on the other hand to comply with legal requirements. For-

estry labor shortages make it increasingly difficult to harvest the forest residues. 

Mechanization development would help alleviate this, but it would entail higher 
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costs. Beyond forestry residues timber harvested by forced cutting is likely to be 

used for energy purposes. The pyrolytic utilization of this material is aided by the 

fact that the damaged wood can be harvested with relatively low moisture contents; 

thus, instead of drying the wood, the energy can be used to produce heat and elec-

tricity, which improves the economy of the industry. 

Agricultural by-products demonstrate high potential, but their low bulk density 

makes transportation costly over long distances. In addition, the conversion rate of 

agricultural by-products is also low. Extreme weather effects must be taken into 

account when planning biofuel plants; these effects can increase the collection area 

of agroresidues by up to 70% [37]. Meeting ecological needs (soil improvement) 

doubles the base material footprint. Furthermore, agricultural by-products are also 

used in animal husbandry. Harvesting and storing corn stalks with high moisture 

content is still cumbersome. Nevertheless, according to the raw material footprint – 

which is suitable for given the collection area – forest residues require higher raw 

material collection for biofuel production with the same energy content. Moreover, 

the risk of Indirect Land Use Change (ILUC) can be reduced with the use of agri-

cultural residues. Short rotation coppices (SRC) requires the smallest collection 

area [37].  

Overall, a large amount of useable residues is available for the supply of raw 

material to potential lignocellulosic biofuel plants in Hungary. However, it must be 

considered that for all forestry and agricultural lignocellulosic feedstocks, more 

frequent plant protection activities should be conducted to mitigate effects of cli-

mate change threats. These activities will increase CO2 emissions as well as costs 

through the use of machinery and the production of pesticides. 

 

5. SUMMARY 

The course of the survey in 2018 revealed that many agricultural by-products, es-

pecially corn stalk, are available for energy production purposes. However, the 

harvesting and utilization of these by-products for biofuel production have not been 

fully developed. 

Climate change, together with the current operating and potential users, signifi-

cantly influences the locally usable amount of biomass. Hereby, the raw material 

supply of a scheduled plant can be accomplished with longer transport distances. 

Commercially operated decentralized technology primarily enables the utilization 

of dendromass. Although harvesting of forest residues is still problematic, forestry 

development in this direction is underway. Occasional biotic and abiotic damage 

events in forests increase the amount of dendromass that can be used for energy 

purposes. 
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