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We allocate objects to agents as exemplified primarily by school choice. Welfare judgments of the object- 

allocating agency are encoded as edge weights in the acceptability graph. The welfare of an allocation 

is the sum of its edge weights. We introduce the constrained welfare-maximizing solution , which is the 

allocation of highest welfare among the Pareto-efficient allocations. We identify conditions under which 

this solution is easily determined from a computational point of view. For the unrestricted case, we for- 

mulate an integer program and find this to be viable in practice as it quickly solves a real-world instance 

of kindergarten allocation and large-scale simulated instances. Incentives to report preferences truthfully 

are discussed briefly. 
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. Introduction 

We consider the allocation of objects to agents, such as school

eats to students, in the absence of monetary transfers. We take

s given that the assignment should reflect the agents’ prefer-

nces and operationalize this by restricting to Pareto-efficient al-

ocations. 1 Typically, not all agents can receive their first choice

nd the more popular objects have to be rationed. How they

re rationed reflects a welfare judgment on behalf of the object-

llocating agency, say in terms of what is fair or socially optimal.

or instance, costs of transportation may prohibit admitting a stu-
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1 An allocation is Pareto-efficient if no other allocation leaves each agent at least 

s well off and some agent better off. As an example, if we order the agents and 

et them sequentially select their preferred object (among those that remain), then 

he final allocation will be Pareto-efficient. This procedure is known as Serial Dicta- 

orship . 

a  

a

 

s  

t  

k  

v  

R  

l  

t  

2  

b  

2  

a  

t  

p  

ttps://doi.org/10.1016/j.ejor.2020.03.018 

377-2217/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article

Please cite this article as: P. Biró and J. Gudmundsson, Complexity of

Journal of Operational Research, https://doi.org/10.1016/j.ejor.2020.03.01
ent to a highly preferred but remote school or there may be ben-

fits to sending children on the same street to the same kinder-

arten even though the families’ preferences differ. We model this

n a simple yet surprisingly flexible way: assigning agent i object

 creates welfare w (i, a ) , and the welfare of an allocation is the

um of these terms. We use tools of economics, computer science,

nd operational research to address the following questions: Un-

er which conditions does a Pareto-efficient allocation maximize

elfare? When there is a trade-off between Pareto-efficiency and

elfare-maximization, how should the objects be allocated? And

nally, given that the problem can encompass a large number of

gents in practice, can we find a desirable solution efficiently from

 computational point of view? 

In addressing these questions, we refer for the most part to

chool choice ( Abdulkadiro ̆glu and Sönmez, 2003; Shi, 2016 ), but

he problem extends to a wide range of applications, some well-

nown and some new within the field of OR. These include uni-

ersity admission, resident allocation ( Bronfman, Hassidim, Afek,

omm, Shreberk, Hassidim, & Massler, 2015 ), dormitory room al-

ocation ( Perach, Polak, & Rothblum, 2008 ), deceased organ dona-

ion, social housing, and refugee allocation ( Andersson & Ehlers,

017; Moraga & Rapoport, 2014; Delacrétaz, Kominers, & Teytel-

oym, 2016; Trapp, Teytelboym, Martinello, Andersson, & Ahani,

018 ). Present in each of these applications is a centralized object-

llocating institution (a “planner”) with its own objective function

hat should be taken into consideration in parallel with the agents’

references. We refer to Section 2 for more detailed examples on
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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how the welfare levels w (the “edge weights”) can be set in order

to cover a wide variety of objectives. 

For the particular application of school choice, we propose an

alternative to the priority-based approach that is most used in

practice (see Section 1.1 ). Essentially, whereas our edge weights

can be encoded with cardinal information, the ordinal priorities

cannot. 2 If one student is prioritized over another, then this may

show that the former lives closer to the school—but not how close,

or how much closer. To illustrate further, say two students prefer

school a to b and that student 1 lives next to b but also closest

to (but some distance away from) a . An allocation is then Pareto-

efficient as long as both students are assigned a school. By respect-

ing the distance-based priorities, student 1 is admitted to a , stu-

dent 2 to b , and both students require transportation. In contrast,

by setting the edge weight between 1 and b high, our optimal so-

lution will swap the assignment and thus reduces transportation

costs while retaining Pareto-efficiency. 

For our first result, we rely on a recent finding by Saban and

Sethuraman (2015) . They study the complexity of determining the

outcome obtained by Random Serial Dictatorship and derive, as a

byproduct, results on the decision problem termed SD Feasibil-

ity . This asks: For a given profile of preferences, an agent i , and

an object a , does there exist a serial dictatorship that assigns a

to i ? Saban and Sethuraman (2015) show that SD Feasibility is

NP-complete even in a restricted environment. 3 Using this result,

our Theorem 1 shows that deciding whether there exists a Pareto-

efficient, welfare-maximizing allocation is NP-complete with the

same restrictions imposed as in the result of Saban and Sethura-

man (2015) . For these hard problems, relaxing the restrictions only

makes the problems yet harder: they remain NP-hard, but the re-

sults get weaker. 

Unless the preferences or the edge weights take on a particu-

lar form, there is little reason to believe that there actually exists

a Pareto-efficient allocation that maximizes welfare. When there is

a conflict between these desiderata, we propose to select a con-

strained welfare-maximizing allocation. This is a Pareto-efficient al-

location of highest welfare among the Pareto-efficient allocations.

We label the problem of finding such an allocation Constrained-

WelfareMax . This is harder than deciding whether there exists

a Pareto-efficient, welfare-maximizing allocation, so Constrained-

WelfareMax is computationally tractable only under yet stronger

conditions. As a first step, we restrict attention to object-based

weights . Such weights w (i, a ) depend only on the object a . For

school choice, this can be interpreted as the planner promoting

a particular school or topic of study. In Theorem 2 , we show

that ConstrainedWelfareMax is NP-hard even under object-based

weights and complete preferences. 

The next result pertains to the case in which all agents rank

the objects acceptable to them in the same way. This is a plausible

restriction when there is an objective measure of quality on the

objects, such as some schools providing objectively better educa-

tion than others. If all agents rank the objects acceptable to them

in the same way, then the condition of common preferences is satis-

fied. Theorem 3 shows that deciding whether there exists a Pareto-

efficient, welfare-maximizing allocation is NP-complete even for

balanced problems with object-based weights and common pref-

erences. In addition, we derive a result that complements ( Saban

& Sethuraman, 2015 ) on SD Feasibility . 
2 The same argument applies to preference intensity, which again is cardi- 

nal information that cannot be encoded in ordinal preferences. On this topic, 

Abdulkadiro ̆glu, Che, and Yasuda (2015) introduce Choice-Augmented Deferred Accep- 

tance , which allows agents to express richer preference information. In particular, 

their agents report both a ranking over schools and a “target” school. 
3 Specifically, it is NP-complete when agents have complete and strict preferences 

and the problem is “balanced” with an equal number of agents and objects. 
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We then proceed to identify computationally tractable cases.

heorem 4 shows that, for balanced problems with object-based

eights and complete preferences, all serial dictatorships yield

onstrained welfare-maximizing allocations. Theorem 5 shows that

onstrainedWelfareMax is polynomial-time solvable under com-

on and complete preferences using ( Kuhn, 1955 ) Hungarian

ethod. There are other ways of combining the four conditions in-

roduced thus far, but the remaining cases can all be inferred from

heorem 1 through 5 as summarized in Fig. 1 . 

We introduce three additional conditions, each on its own is

trong enough to make ConstrainedWelfareMax tractable. The

rst of these restricts to dichotomous preferences in which all

gents are indifferent between all objects acceptable to them. This

omain restriction is relevant when all objects are similar in qual-

ty. Under this condition, an allocation is Pareto-efficient if and

nly if it is of maximum cardinality. Theorem 6 shows that, under

ichotomous preferences, a constrained welfare-maximizing allo-

ation can be found using the Hungarian method. 

The next condition is aligned interests and implies that assign-

ng an agent a more preferred object leads to higher welfare. That

s, the interests of the planner, to assign higher-valued objects, is

ligned with the interests of the agents, to be assigned more pre-

erred objects. Theorem 7 shows that, under aligned interests, each

elfare-maximizing allocation is Pareto-efficient. In consequence,

here exists a Pareto-efficient, welfare-maximizing allocation, and

e find it efficiently using the Hungarian method. 

The final restriction is to agent-based weights , which are such

hat the weight w (i, a ) only depends on the agent i . Such weights

re plausible for instance in merit-based university admissions: the

bjective is to admit the students with the highest grades, but it

s less important whereto they are admitted. Theorem 8 shows

hat, under agent-based weights, there exists a Pareto-efficient,

elfare-maximizing allocation. Again, we find it efficiently using

he Hungarian method. We emphasize also that, for each of the

ositive results of Theorem 4 through 8 , we permit indifference

n the preferences, whereas the hardness results of Theorems 1 , 2 ,

nd 3 are obtained when restricting to strict preferences. Gener-

lizing by permitting indifference only makes these problems yet

arder. Therefore, our polynomial-time algorithms remain efficient

or strict preferences while our NP-hardness results still hold when

e allow indifferences. 

Moving away from the computational aspects, Theorem 9 pro-

ides a still related finding: under positive and object-based

eights, each constrained welfare-maximizing allocation is of max-

mum cardinality. That is, there exists no way of allocating more

bjects even if the constraints of Pareto-efficiency and welfare-

aximization are removed. 

We also formulate an integer program (IP) to solve the general,

nrestricted problem. To do so, we use a novel characterization, in

he form of linear constraints, of Pareto-efficiency in the presence

f preference ties. Theorem 10 provides a link between Pareto-

fficiency and competitive equilibrium through a variation of the

ell-known second welfare theorem. Theorem 11 summarizes the

P formulation. 

Finally, we consider the strategic properties of our solution con-

ept. Theorem 12 establishes a positive result when the prob-

em is sufficiently restricted. That is, with some conditions on the

references and the weights, we can select constrained welfare-

aximizing allocations in a way that incentivizes the agents to re-

ort preferences truthfully. However, we also show that relaxing

ither of the conditions may allow for manipulation. 

The paper is structured as follows. Next, we describe the related

iterature. We introduce the model in Section 2 together with a se-

ies of examples and applications. In Section 3 , we examine the

omplexity of finding constrained welfare-maximizing allocations,

rst through hardness results and then through tractable cases.
 finding Pareto-efficient allocations of highest welfare, European 
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Fig. 1. Complexity of ConstrainedWelfareMax . Numbers refer to theorems, “H” to NP-hardness, and “P” to polynomial-time solvable cases. Parentheses indicate that the 

case is covered by a stronger result. 
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n Section 4 , we formulate the IP to solve ConstrainedWelfare-

ax . In Section 5 , we examine the 2016 kindergarten allocation in

arku, Estonia, with a focus on comparing the constrained welfare-

aximizing allocation with other solutions. We discuss incentives

ssues in Section 6 . We conclude in Section 7 . Appendix A defines

ll solutions referred to throughout the paper more formally. Fi-

ally, Appendix B contains a simulation study that serves both to

ontrast the different solutions and to show that the integer pro-

ramming approach is viable in solving larger problems quickly. 

.1. Related literature 

A focal point in the literature are the stable (also known as

ustified envy-free and non-wasteful) allocations. Stable alloca-

ions refuse an agent a preferred object only if the object is as-

igned a higher-priority agent. Such an allocation can be computed

hrough the Deferred Acceptance algorithm (DA; Gale & Shapley,

962 ), which may be adapted to handle priority ties ( Erdil & Er-

in, 2008 ). 4 These solutions have a particular structure as shown

hrough the so called Rural Hospitals’ theorem ( Roth, 1984a; 1986;

ale & Sotomayor, 1985 ). First, the same students are allocated in

very stable allocation. Second, a school that fails to fill its seats at

ne stable allocation is assigned the same students at every stable

llocation. Nowadays, DA may be the most used procedure in col-

ege admission and school choice programs around the world (for

pecific cases, see Abdulkadiro ̆glu, Pathak, & Roth, 2005a; Abdulka-

iro ̆glu, Pathak, Roth, & Sönmez, 2005b ; for a recent survey, see

iró, 2017 ). Not only is DA stable, but it also selects the student-

ptimal allocation among the stable allocations and it gives stu-

ents incentives to report preferences truthfully. A recent devel-

pment is to allow agents to report preferences only over a well-

esigned “menu” of schools ( Ashlagi & Shi, 2016; Shi, 2015 ). In this

ay, the outcome of DA becomes closer to optimal from the point

f view of the planner (in this case, the city of Boston) in as far

s cutting down busing costs. Taken to its extreme, if the menus

nly contain a single school, then the planner can implement any

llocation. 

The second leading procedure is Top Trading Cycles (TTC;

hapley & Scarf, 1974; Abdulkadiro ̆glu and Sönmez, 2003 ), for

nstance used in New Orleans ( Abdulkadiro ̆glu, Che, Pathak, Roth,

 Tercieux, 2017 ). Like DA, TTC cannot be manipulated, but in con-

rast to DA, TTC is Pareto-efficient but not stable. Serial Dictatorship

s another non-manipulable way of achieving a Pareto-efficient
4 The problem with ties is quite different from the strict case and there are sev- 

ral different notions of stability, such as weak, strong, and super stability. In the 

conomics literature, focus has mainly been on weak stability. Weakly stable allo- 

ations always exist, but they may differ in size. Moreover, the problem of finding 

 weakly stable allocation of maximum size is NP-hard ( Manlove, Irving, Iwama, 

iyazaki, & Morita., 2002 ). 
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llocation, used in Amsterdam’s school choice ( de Haan, Gautier,

osterbeek, & Van der Klaauw, 2018 ) and for residence allocation

n Israel until 2014 ( Bronfman et al., 2015 ). It is equivalent to TTC

hen schools share priorities. Another Pareto-efficient solution is

mmediate Acceptance , which was used in Boston ( Abdulkadiro ̆glu

nd Sönmez, 2003 ) and is still used in many applications. Its ma-

ipulability is considered its main issue, although it has still some

esirable properties in regards to the expected utilitarian welfare

 Abdulkadiro ̆glu, Che, & Yasuda, 2011 ). Finally, simple first-come

rst-served systems are sometimes used for course allocation,

or example in almost every university in Hungary. Fig. 2 sum-

arizes these approaches; see also Appendix A for more formal

efinitions. 

The model of matching with contracts is an important exten-

ion that is well-studied for two-sided matching problems such as

he match of doctors to hospital residency programs (see, for in-

tance, Cechlárová & Fleiner, 2005; Fleiner, 2003; Hatfield & Mil-

rom, 2005 ). The extension is meaningful also in our allocation

etting as it allows to assign objects to agents under different con-

ractual terms. To illustrate, consider the Hungarian college admis-

ions. Most programs can be attended under two possible con-

racts: either the student pays a fee or the state finances the stud-

es (see Biró, 2011 ). There is still a trade-off as stricter rules apply

o the state-funded contracts: the student has to graduate in a cer-

ain time and work in Hungary for some time thereafter. If she fails

o meet these requirements, she has to pay back the funding with

nterest. Therefore, some students prefer to pay the tuition fee over

aking part in the “free” state-funded programs (see also Shorrer &

óvágó, 2018 ). For our purposes, contracts are easy to include in

he model but actually add very little. This is due to the strong

mplication of Pareto-efficiency: each agent is assigned her object

nder her most preferred contract. Otherwise, changing the terms

f her contract is a Pareto-improvement. In particular, if we, for

ach agent and object, remove all contracts but the preferred one,

hen the set of Pareto-efficient allocations is unchanged. Thus, find-

ng a constrained welfare-maximizing allocation in a model with

ontracts is no more difficult than finding one when there is just

 single contract for each agent-object pair, which is equivalent to

he simpler model without contracts. 

A new application of operational research, receiving consid-

rable attention following the 2015 European migrant crisis, is

efugee allocation. While the larger problem of assigning refugees

o countries is likely to be resolved using other criteria ( Bansak,

ainmueller & Hangartner, 2017; Moraga and Rapoport, 2014 ), the

ssignment within countries can be viewed as an allocation prob-

em in line with our stylized model. Specifically, we may think of

he refugees as our agents and of the various locations that they

an be resettled to as our objects ( Delacrétaz et al., 2016 ) or turn

hings around and view citizens looking to host refugees as agents

hile treating the refugees as objects ( Andersson & Ehlers, 2017 ).
 finding Pareto-efficient allocations of highest welfare, European 
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Social welfare
Linear welfare function

Priorities on objects

CWM

TTC

DA

Pareto-efficient allocations

Stable allocations
Preferences

Fig. 2. The most common ways of taking preferences into account is by selecting a stable or a Pareto-efficient allocation. In parallel, welfare factors can be accounted for 

through priorities, or, as we are proposing, a linear welfare function. Here, “CWM” denotes the constrained welfare-maximizing solution. 
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Fig. 3. Students and schools for Example 1 . Edge weights represent distances. 
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Our edge weights can then encode, as Bansak, Ferwerda, Hain-

mueller, Dillon, Hangartner, Lawrence, and Weinstein (2018) put

it, that “there are synergies between places and people” and that

“certain characteristics will make a refugee a better match for a

particular location”. For instance, the edge weights can be deter-

mined using the data-driven algorithm provided by Bansak et al.

(2018) to represent the probability that a refugee will find em-

ployment within a location (see also Mossaad, Ferwerda, Lawrence,

Weinstein, & Hainmueller, 2018; Bansak, Hainmueller, & Hangart-

ner, 2016; Trapp et al., 2018 ). Once the infrastructure is in place

to allow refugees to express their preferences in a safe and cred-

ible way, our IP can readily be used to find a welfare-maximizing

refugee resettlement. 

Lastly, we summarize some of the existing complexity results.

Abraham, Cechlárová, Manlove,and Mehlhorn (2005) provide the

first NP-hardness results by showing that finding a minimum size

Pareto-efficient allocation is computationally hard. For two-sided

matching, Irving, Leather, and Gusfield (1987) showed that find-

ing an optimal stable matching for a linear welfare function is a

tractable problem. In contrast, if the objective is to find an optimal

allocation (say with respect to size or welfare) that is “as stable as

possible” in that it minimizes the number of blocking pairs, then

the problem is NP-hard ( Biró, Manlove, & Mittal, 2010 ). We refer to

Manlove (2013) for a comprehensive survey of related complexity

results. 

Regarding the optimization techniques used to tackle the above

described computationally hard cases, integer programs have re-

ceived significant attention in recent years. They have been used

in more general settings such as allocation of papers to review-

ers ( Garg, Kavitha, Kumar, Mehlhorn, & Mestre, 2010 ) or for course

allocation ( Othman, Sandholm, & Budish, 2010 ), later implemented

at Wharton College ( Budish, Cachon, Kessler, & Othman, 2016 ). Fur-

ther examples include the resident allocation problem with cou-

ples motivated by the US and Scottish applications ( Biró, Manlove,

& McBride, 2014 ) and the college admission problem with lower

and common quotas ( Ágoston, Biró, & McBride, 2016 ). Other OR

techniques, based on Scarf’s lemma ( Scarf, 1967 ), have also been

proposed for the problem of matching with couples ( Biró, Fleiner,

& Irving, 2016 ) and in other many-to-one stable matching settings

such as Nguyen, Nguyen, and Teytelboym (2019) . 

There are different reasons for why integer programming tech-

niques had not been used to solve these problems until recently.

First, the heuristic algorithms based on DA perform relatively

well in practice, as illustrated by the US resident allocation pro-

gram with couples ( Roth & Peranson, 1999 ). Secondly, the prob-

lem sizes are relatively large (around 40,0 0 0 residents in the US,

and 10 0,0 0 0 students in the Hungarian higher education admis-

sion scheme), and this large input size can be challenging for the

IP solvers. However, new studies within computer science and OR

show that even such large problems can be tractable with the IP

approach (see, for instance, Firat, Briskorn, & Laugier, 2016 ). As an

example, the NP-hard problem of having lower quotas for univer-

sity programs was solved for a real 2008 instance of the Hungarian

college admissions after a careful preprocessing and by using ad-

vanced IP techniques ( Ágoston et al., 2016 ). We believe that our IP

formulation for a special problem setting can be equally useful in
Please cite this article as: P. Biró and J. Gudmundsson, Complexity of

Journal of Operational Research, https://doi.org/10.1016/j.ejor.2020.03.01
ractice and serve as a starting point when considering more gen-

ral problems. 

. Model 

There is a finite set of agents N = { 1 , 2 , . . . } and objects A =
 a, b, . . . } . A problem is balanced if there are as many agents as

here are objects. Agent i has preference R i over objects accept-

ble to her, A i ⊆A , and not being assigned an object, ∅ . She finds

 at least as good as b whenever a R i b. The strict relation is de-

oted P i and the indifference relation I i . For each a ∈ A i , a P i ∅ . The

ipartite acceptability graph ( N ∪ A , E ) has an edge ( i , a ) ∈ E when-

ver a is acceptable to i . An allocation x ⊆E is an independent edge

et (matching). If ( i , a ) ∈ x , then i is assigned object x i = a . If i is

ot assigned an object, then x i = ∅ . The set of allocations is X . An

llocation is Pareto-efficient if no allocation leaves each agent at

east as well off and some agent better off. Thus, x ∈ X is Pareto-

fficient if there is no y ∈ X such that, for each i ∈ N , y i R i x i , and,

or some j ∈ N , y j P j x j . The social welfare of assigning agent i ob-

ect a ∈ A i is represented by the weight w (i, a ) ≥ 0 on the edge ( i ,

 ) ∈ E . The welfare of x ∈ X is W (x ) = 

∑ 

(i,a ) ∈ x w (i, a ) . An allocation

 ∈ X is welfare-maximizing if it creates the highest welfare among

ll allocations: for each y ∈ X , W ( x ) ≥ W ( y ). A Pareto-efficient alloca-

ion is constrained welfare-maximizing if it creates the highest wel-

are among the Pareto-efficient allocations. 

Next, we illustrate the model through two examples in the con-

ext of school choice. 

xample 1 (Distance-based school choice) . In a school choice

roblem, the agents are students and the objects are seats at

chools. A school with several seats is thus treated as several dis-

inct objects which we assume students to be indifferent between.

ypically, the student assignment has to respect some priorities,

ay to favor students closer to the school. We offer a different im-

lementation of this through the edge weights inspired by a re-

ent court case in Lund, Sweden (see Andersson, 2017 , “Perceived

ssues”). 

More students top-ranked school a than it had seats for, so its

eats were assigned to the students living closest. Student 1 had

.2 kilometers walking distance to her preferred school a and 3.2

ilometer to her assigned school b . Hence, the walking distance for

 increased by one kilometer when she was placed at b rather than

t a . In contrast, student 2 was assigned to a but would only have

ad to walk 250 meters further had she been placed at b . See Fig. 3

or an illustration. 

The parents argued that student 1 should be given higher pri-

rity at a as 1 would lose more from being placed elsewhere. Two

ourts (Förvaltningsrätten and Kammarrätten) have ruled in favor
 finding Pareto-efficient allocations of highest welfare, European 
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Fig. 4. Students and schools in Example 2 . An edge weight of 1 represents walk- 

zone priority. For the sake of readability, we have left out the remaining zero- 

weight edges. 
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f the parents. One interpretation is that the judges considered the

ejection of 1 at a fair from the perspective of the distance-based

riorities, but that the allocation suggested by the parents was bet-

er from the planner’s perspective as it reduced the total travel dis-

ance. 

xample 2 (Walk zones in school choice) . School choice priori-

ies are typically coarse with many ties. For instance, all students

ithin the school’s walk zone may be equally prioritized. As an ex-

mple, say that there are four students and four schools, each with

 single seat. Each student prefers school a to b to c to d , so any

omplete allocation is Pareto-efficient. Walk-zone priority is given

o student 1 at schools a and b , to 2 at c , and to 3 at d ; see Fig. 4 .

Before running an algorithm like Deferred Acceptance or Top

rading Cycles , the priority ties are often broken randomly. This

ay give student 2 priority at school b (over 3 and 4) and 3 pri-

rity at c . Then both algorithms select the allocation {(1, a ), (2, b ),

3, c ), (4, d )}, which sends only student 1 to a walk-zone school.

n the other hand, if we use the edge weights to indicate whether

he student is within the school’s walk zone, then the allocation

(1, b ), (2, c ), (3, d ), (4, a )} is welfare-maximizing. It assigns all but

tudent 4 to a walk-zone school. Hence, this reduces transportation

osts while retaining Pareto-efficiency. 

To finish this section, we want to stress that we can take

any different objectives into account through the edge weights.

n Example 1 , we showed how one can minimize total walking

istance, while we in the introduction discussed having weights

epresent the probabilities that refugees find employment at dif-

erent locations. Next, we will see that many more objectives can

e achieved through our solution concept. 

Maximizing the number of agents assigned acceptable objects. As

n Example 2 , we may want to maximize the number of agents

ssigned to suitable places. Further examples are refugee alloca-

ion ( Andersson & Ehlers, 2017 ), kindergarten allocation ( Veski,

iró, Põder, & Lauri, 2017 ), and timetable scheduling. In our model,

his objective can be achieved through uniform weights (see

heorem 9 ). 

Assigning important agents or positions. We may want to guar-

ntee the allocation of a particularly important group of agents

r objects. A practical example is (re-)allocation in the US Navy

 Yang, Giampapa, & Sycara, 2003 ). This objective can be achieved

y putting large weights on the edges incident with the important

odes in the graph (compare the set A 

◦ in Theorem 5 ). 

Reallocation with initially assigned objects. In many applications

gents either own or are initially assigned objects and the task

s to reallocate the objects in a desirable way. Two examples are

eacher reallocation in France ( Combe, Tercieux, & Terrier, 2018 )

nd kidney exchange ( Roth, Sönmez, & Ünver, 2004 ). In these set-

ings, one typically has to ensure that no agent receives an ob-

ect less preferred than the one she is initially assigned. This is

chieved in our model by putting large weights on the edges link-

ng the agents to their initial assignments and their more preferred

bjects. 

Affirmative action in school choice by minority reserves . In many

chool choice and college admission systems, there are distribu-

ional goals over the composition of the students. This is some-
Please cite this article as: P. Biró and J. Gudmundsson, Complexity of

Journal of Operational Research, https://doi.org/10.1016/j.ejor.2020.03.01
imes enforced by so-called minority reserves, meaning that stu-

ents with a particular background or ethnicity have priority for

ome school seats. Real-world examples include school choice in

he US ( Abdulkadiro ̆glu and Sönmez, 2003 ) and college admissions

n India ( Aygün & Turhan, 2017; Sönmez & Yenmez, 2019 ) and

razil ( Aygün & Bó, 2017 ). This objective can be achieved in our

odel by putting large weights on the edges linking minority stu-

ents to the school seats reserved for the minority students. As an

xample, a school with 100 seats that wants to admit 20 students

ith a particular socio-economic background can link 20 copies of

ts seats with high-weight edges to students qualifying for the af-

rmative action policy. 

. Complexity of constrained welfare-maximization 

In this section, we study the complexity of finding a con-

trained welfare-maximizing allocation. We denote this problem

onstrainedWelfareMax , and we show that it is NP-hard even

nder strong conditions. However, we also identify restrictions un-

er which the problem is tractable. Throughout, all hardness re-

ults restrict to strict preferences whereas the positive results per-

it indifference. Moreover, the hard problems are stated in their

ost restricted form and imply NP-hardness for all less restricted

ettings. 

.1. Hardness results 

For our first result, suppose that a single edge has non-zero

eight. That is, there is an agent i and an object a such that

 (i, a ) > 0 and otherwise the weights are zero. An allocation is

hen welfare-maximizing if and only if it assigns a to i . Further-

ore, say preferences are strict and complete ( A i = A ); an alloca-

ion is then Pareto-efficient if and only if it is obtained through

 serial dictatorship ( Abdulkadiro ̆glu and Sönmez, 1998 ). Hence,

here exists a Pareto-efficient, welfare-maximizing allocation if and

nly if there exists a serial dictatorship that assigns a to i . This

roblem, deciding whether such a serial dictatorship exists, is

nown as SD Feasibility and shown by Saban and Sethuraman

2015) , Theorem 2) to be NP-complete for balanced problems.

heorem 1 follows immediately. 

heorem 1. Deciding whether there exists a Pareto-efficient, welfare-

aximizing allocation is NP-complete even for balanced problems

ith complete preferences in which a single edge has non-zero weight.

roof. Checking Pareto-efficiency ( Manlove, 2013 , Section 6.2.2.1)

nd welfare-maximality of an allocation (the Hungarian method of

uhn, 1955 ) can be done in polynomial time (even for unbalanced

roblems with indifferences and incomplete preferences). Hence,

he problem is in NP. To show NP-hardness of our problem, we

educe from SD Feasibility as described above. �

Corollary 1 is an immediate implication of Theorem 1 . 

orollary 1. CONSTRAINEDWELFAREMAX is NP-hard even for balanced

roblems with complete preferences. 

roof. By contradiction, if we easily could find a constrained

elfare-maximizing allocation, then we just need to check whether

t assigns a to i . If it does, then there exists a Pareto-efficient,

elfare-maximizing allocation. If it does not, then no such alloca-

ion exists. But Theorem 1 shows that this is NP-complete. �

This construction shows that a polynomial-time approxima-

ion algorithm that finds a “good” but not necessarily constrained

elfare-maximizing allocation cannot give a meaningful worst-

ase welfare-guarantee. That is, the welfare-difference between the

onstrained welfare-maximizing allocation and a second-best allo-

ation can be arbitrarily large, w (i, a ) − 0 . Indeed, neither of the
 finding Pareto-efficient allocations of highest welfare, European 
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Table 1 

Preferences over acceptable objects. 

i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 

a 1 a 2 a 3 a 1 a 2 a 3 a 4 a 5 a 7 
c 1 c 2 c 3 a 4 a 5 a 6 a 5 a 6 a 8 

a 7 a 8 a 9 

c1

c2

c3

i1

i2

i3

a1

a2

a3

i4

i5

i6

a4

a5

a6

i7

i8

a7

a8

i9 a9

Fig. 5. Acceptable pairs are connected by an edge. 
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cases shown to be NP-hard in Theorems 1 , 2 and 3 permits a

meaningful polynomial-time approximation. 5 

We proceed to derive related results by imposing different re-

strictions. Generally, edge weights can depend on both the agent

and the object, but for the upcoming results it suffices to re-

strict attention to object-based weights. That is, the social wel-

fare of assigning an object to an agent depends only on the object.

Theorem 2 shows that the NP-hardness result extends to the case

of object-based weights and complete preferences. 

Definition 1 (Object-based weights) . For each { i , j } ⊆N and

a ∈ A i ∩ A j , w (i, a ) = w ( j, a ) . 

Theorem 2. CONSTRAINEDWELFAREMAX is NP-hard even under object-

based weights and complete preferences. 

Proof. We reduce from the problem of assigning objects in a

Pareto-efficient way but to as few agents as possible. Finding such

a minimum size Pareto-efficient allocation is NP-hard ( Abraham

et al., 2005 ). 

Extend an arbitrary instance I = (N, A, E, R, w ) to I ∗ = (N, A ∪
A 

∗, E ∗, R ∗, w 

∗) such that the properties required in the statement

of Theorem 2 are satisfied for I ∗. In particular, 

• Add objects A 

∗ such that | A 

∗| = | N| ; 
• Complete the preferences through a complete acceptability

graph: E ∗ = N × (A ∪ A 

∗) ; 
• New preference R ∗

i 
extends R i : the acceptable objects A i at I are

in the same order at the top of R ∗
i 
, followed by A 

∗ in any order,

followed by the unacceptable objects of I; 
• The object-based weights are w 

∗(i, a ) = 0 for a ∈ A and

w 

∗(i, a ) = 1 for a ∈ A 

∗. 

In this way, I ∗ is guaranteed to have at least as many objects

as agents. 

Let x ∗ be a constrained welfare-maximizing allocation in I ∗. By

Pareto-efficiency, as each of the | N | agents i prefers at least | A 

∗| =
| N| objects in I ∗ to those unacceptable in I, x ∗

i 
∈ A i ∪ A 

∗. Define the

corresponding allocation x in I such that x i = x ∗
i 

if x ∗
i 

∈ A i and x i =
∅ if x ∗

i 
∈ A 

∗. As x ∗ is Pareto-efficient in I ∗, x is Pareto-efficient in I .

The welfare W ( x ∗) is the number of assigned A 

∗-object in x ∗, so the

number of unassigned agents in x . Therefore, if we can efficiently

find the constrained welfare-maximizing x ∗ in I ∗—that is, a Pareto-

efficient allocation that assigns the most A 

∗-objects—then we can

efficiently find a minimum size Pareto-efficient allocation in I . But

this is NP-hard. �

In some applications, there may exist an objective ranking of

the objects ( Alpern & Katrantzi, 2009 ). That is, agents’ preferences

are derived from a common preference � on A and whenever an

agent compares two objects, she does so in accordance with the

common preference. 

Definition 2 (Common preference � on A ) . For each i ∈ N and { a ,

b } ⊆A i , a R i b ⇐⇒ a � b. 

Even if preferences are common in the sense that acceptable

objects are compared in the same way, an object may be accept-

able to some agents but not to others. Theorem 3 and its immedi-

ate corollary show that ConstrainedWelfareMax remains NP-hard

even with object-based weights and common preferences. 

Theorem 3. Deciding whether there exists a Pareto-efficient, welfare-

maximizing allocation is NP-complete even for balanced problems

with object-based weights and common preferences in which a sin-

gle edge has non-zero weight. 
5 For Theorem 3 , this follows by the same logic as for Theorem 1 as there again is 

only one non-zero weight. For Theorem 2 , inapproximability can be shown through 

a construction similar to the one used in the proof of Theorem 2 . 

y

W

Please cite this article as: P. Biró and J. Gudmundsson, Complexity of
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roof. We reduce from the NP-complete Exact-3-Cover decision

roblem ( Garey & Johnson, 1979 ). An instance of Exact-3-Cover is

s follows. We are given C = { c 1 , ..., c 3 n } and B = { B 1 , ..., B m 

} such

hat, for each B � ∈ B, B � = { c � 
1 
, c � 

2 
, c � 

3 
} ⊆ C. We wish to determine

hether there is B 

′ ⊆ B such that each object in C is included in

xactly one B � ∈ B 

′ . That is, is there a partition of C into n ele-

ents of B? Next, we transform this instance of Exact-3-Cover

nto its corresponding object allocation problem with preferences

n which a single edge has non-zero weight. The size of the lat-

er problem is not much larger than the original one (polynomial

ize in m + n ). We show that the instance of Exact-3-Cover has a

easible solution if and only if the non-zero weighted edge can be

ncluded in a Pareto-efficient allocation. 

Define the total order ≥ C on C and, without loss, assume that

ach B � = { c � 
1 
, c � 

2 
, c � 

3 
} is labeled accordingly: c � 

1 
> C c 

� 
2 

> C c 
� 
3 
. For each

 � = { c � 
1 
, c � 

2 
, c � 

3 
} ∈ B, we create a subproblem (“gadget”) G � that in-

ludes objects B � and A � = { a � 
1 
, ..., a � 

9 
} and agents N � = { i � 

1 
, ..., i � 

9 
} .

or k  = � , N k ∩ N � = A k ∩ A � = A � ∩ C = ∅ . Moreover, no object in A k

s acceptable to an agent in N � . We label the objects in A � “gadget-

pecific”—they are only part of one gadget, and they are only ac-

eptable to agents within this gadget. In contrast, the objects in C

an be part of multiple gadgets and acceptable to any agent. We

abel them “common” objects. Preferences for an arbitrary gadget

 � are in Table 1 (as all gadgets are symmetric, we drop the � ’s).

ig. 5 shows the associated acceptability graph. 

Let A 0 = { a 1 
9 
, ..., a m 

9 
} be the objects of “type” a � 

9 
and define the

otal order ≥A 0 
on A 0 . Add further a set N 0 of n agents who top-

ank the objects in A 0 according to ≥A 0 
followed by the objects in

 according to ≥ C . Add also a special agent i ∗ and a special object

 

∗ such that i ∗ top-ranks A 0 according to ≥A 0 
, then C according

o ≥ C , and last a ∗. Hence, a ∗ is only acceptable to i ∗. All in all,

he object allocation problem contains agents N = N 0 ∪ N 1 ∪ · · · ∪
 m 

∪ { i ∗} and objects A = C ∪ A 1 ∪ · · · ∪ A m 

∪ { a ∗} . (To ensure that

he problem is balanced, add 2 n agents who find no object accept-

ble.) Observe that there is a common preference � on A : let �
ank the gadget-specific objects as a 1 � · · · � a 9 in order ≥A 0 

and

bove the common objects, and then rank the common objects as

n ≥ C , and last rank a ∗. The object-based weights are such that

he only non-zero weight is w (i ∗, a ∗) > 0 . Hence, we wish to de-

ide whether there exists a Pareto-efficient allocation that assigns

 

∗ to i ∗. 

In order to assign a ∗ to i ∗ in a Pareto-efficient way, all objects

n A 0 and C must also be assigned. Consider an arbitrary gadget G � .

here is only one Pareto-efficient way of assigning a � 
9 

to i � 
9 
: namely,

hrough x � = { (i � 
1 
, a � 

1 
) , ..., (i � 

9 
, a � 

9 
) } . Alternatively, we can assign the

ommon objects c � 
1 
, c � 

2 
, c � 

3 
through y � : 

 � = 

{(
i � 1 , c 

� 
1 

)
, 
(
i � 2 , c 

� 
2 

)
, 
(
i � 3 , c 

� 
3 

)
, 
(
i � 4 , a 

� 
1 

)
, ..., 

(
i � 8 , a 

� 
5 

)
, 
(
i � 9 , a 

� 
7 

)}
. 

e can then assign a � 
9 

to an agent in N 0 . 
 finding Pareto-efficient allocations of highest welfare, European 
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Suppose that there exists a solution B 

′ ⊆ B to the instance of

xact-3-Cover . Define its corresponding allocation x as follows. For

ach B � ∈ B 

′ , include the edges of y � in x together with an edge

( j, a � 
9 
) for some j ∈ N 0 . For each B � ∈ B 

′ , include x � in x . Finally,

nclude the edge ( i ∗, a ∗) in x . Then x is a constrained welfare-

aximizing allocation. It covers the common objects C and n ob-

ects in A 0 in n gadgets, and then covers the remaining m − n ob-

ects in A 0 in the remaining m − n gadgets. In this way, we can

ssign a ∗ to i ∗ in a Pareto-efficient way. 

In contrast, if there is no solution to the instance of Exact-3-

over , then we require more than n gadgets to cover C , leaving

oo few agents to cover A 0 . �

orollary 2. CONSTRAINEDWELFAREMAX is NP-hard even for balanced

roblems with object-based weights and common preferences. 

Corollary 3 is immediate from the proof of Theorem 3 and com-

lements ( Saban & Sethuraman, 2015) ) result on SD Feasibility for

he case of common but incomplete preferences. 

orollary 3. SD FEASIBILITY is NP-complete even for balanced prob-

ems with common but incomplete preferences. 

.2. Tractable cases 

We proceed to conditions under which ConstrainedWelfare-

ax is tractable. Theorem 4 shows that, in a sufficiently restricted

etting, we can use a Serial Dictatorship to find a constrained

elfare-maximizing allocation. 

heorem 4. CONSTRAINEDWELFAREMAX is polynomial-time solvable

or balanced problems with object-based weights and complete pref-

rences. 

roof. As the problem is balanced and the preferences com-

lete, all objects are assigned at every Pareto-efficient alloca-

ion. As weights are object-based, every Pareto-efficient allocation

reates the same welfare. The problem of finding a constrained

elfare-maximizing allocation is then reduced to finding a Pareto-

fficient allocation. This can be done efficiently through Serial

ictatorship . �

A natural counterpart to common preferences is “common ac-

eptability”: an object is acceptable to one agent whenever it is ac-

eptable to all agents. However, an object that is not acceptable to

nyone adds little to the problem, so we consider only the special

ase of complete preferences. When both common and complete,

references are “the same” for all agents. Next, Theorem 5 shows

hat the Hungarian method can be used to find a constrained

elfare-maximizing allocation when all agents have the same pref-

rence. Compared to Theorem 4 , there is now a trade-off between

areto-efficiency and welfare-maximization as the highest-valued

bjects may be the least liked. 

heorem 5. CONSTRAINEDWELFAREMAX is polynomial-time solvable

nder common and complete preferences. 

roof. Let A 

◦⊆A be the maximal set of at most | N | objects such

hat a � b and b ∈ A 

◦ imply a ∈ A 

◦. Pareto-efficiency implies that all

bjects in A 

◦ must be assigned. To ensure that this is done, first ad-

ust the weights by adding a large-enough constant K > 0 to w (i, a )

or each i ∈ N and a ∈ A 

◦. 

If | A 

◦| < | N | < | A |, then we need to assign some of the objects

utside A 

◦ as well. Let A 

∗⊆A be the minimal set of at least | N |

bjects such that a � b and b ∈ A 

∗ imply a ∈ A 

∗. In the acceptability

raph, cut all edges to objects not in A 

∗. This ensures that only ob-

ects in A 

∗ are assigned in the reduced problem. Apply the Hungar-

an method to find a matching of maximum weight in the reduced
Please cite this article as: P. Biró and J. Gudmundsson, Complexity of
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raph. This is a constrained welfare-maximizing allocation in the

riginal problem. �

In addition, ConstrainedWelfareMax is also tractable when

ll agents are indifferent between all objects acceptable to them.

uch dichotomous preferences are a special case of common pref-

rences. 

efinition 3 (Dichotomous preferences) . For each i ∈ N and { a ,

 } ⊆A i , a I i b. 

heorem 6. CONSTRAINEDWELFAREMAX is polynomial-time solvable 

nder dichotomous preferences. 

roof. It is immediate that an allocation of maximum cardinal-

ty is Pareto-efficient under dichotomous preferences. To show the

onverse, suppose for contradiction that x ∈ X is Pareto-efficient but

hat y ∈ X is of larger cardinality than x . Then, in the symmetric dif-

erence between x and y , ( x �y ) ∪ ( y �x ), there is an alternating path

hat starts and ends with an edge in y . Updating x by assigning

he objects along the path as in y allows one more agent to re-

eive an object without another agent becoming unassigned. This

s a Pareto-improvement, contradicting that x is Pareto-efficient.

ext, add a constant K > 0 to all edge weights. For a sufficiently

arge K , the weights are such that an allocation of larger cardinal-

ty has higher welfare than a smaller allocation. Hence, a welfare-

aximizing allocation in the new problem must be of maximum

ardinality and therefore Pareto-efficient. In particular, the alloca-

ion is constrained welfare-maximizing in the original problem. �

Furthermore, ConstrainedWelfareMax is tractable when as- 

igning a more preferred object leads to higher social welfare. Un-

er this condition, the planner’s interests are aligned with the

gents’ and the edge weights numerically represent the prefer-

nces. 

efinition 4 (Aligned interests) . For each i ∈ N and { a , b } ⊆A i , a R i 
 ⇐⇒ w (i, a ) ≥ w (i, b) . 

heorem 7. Under aligned interests, each welfare-maximizing alloca-

ion is Pareto-efficient. 

roof. Suppose that x ∈ X is welfare-maximizing but Pareto-

ominated by y ∈ X . Hence, for each i ∈ N , y i R i x i , and, for

ome j ∈ N , y j P j x j . Under aligned interests, y i R i x i ⇐⇒ w (i, y i ) ≥
 (i, x i ) and y j P j x j ⇐⇒ w ( j, y j ) > w ( j, x j ) . But then W ( x ) < W ( y ),

ontradicting that x is welfare-maximizing. �

Hence, under aligned interests, finding a constrained welfare-

aximizing allocation is reduced to finding a welfare-maximizing

llocation. This can be done efficiently using the Hungarian

ethod. 

Given the weights w, let M(w ) ⊆ X be the set of welfare-

aximizing allocations. There can be several such allocations from

hich we can make a particular selection through a small-enough

erturbation of the edge weights. To do so, let �> 0 be the

elfare-difference between the welfare-maximizing x ∈ M(w ) and

 second-best allocation: 

= W (x ) − max 
y ∈ X\ M(w ) 

W (y ) . 

efine the perturbed weights π such that π(i, a ) = w (i, a ) +
(i, a ) , δ( i , a ) ≥ 0, and �( i , a ) ∈ E δ( i , a ) < �. It is immediate that

(π ) ⊆ M(w ) : the welfare of an allocation outside M(w ) has

ncreased by less than �, so its welfare must remain smaller

han that of those in M(w ) . This intuition will be used to prove

heorem 8 . 

Theorem 8 shows that there exists a Pareto-efficient, welfare-

aximizing allocation when the edge weights depend only on the
 finding Pareto-efficient allocations of highest welfare, European 
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rium. 
agent. Moreover, the allocation can be found efficiently by apply-

ing the Hungarian method to a particular perturbed problem. In

contrast to Theorem 7 , welfare-maximizing allocations need now

not be Pareto-efficient: for instance, permuting who gets what at

a Pareto-efficient, welfare-maximizing allocation does not reduce

welfare but may turn the allocation inefficient. 

Definition 5 (Agent-based weights) . For each i ∈ N and { a , b } ⊆A i ,

w (i, a ) = w (i, b) . 

Theorem 8. Under agent-based weights, there exists a Pareto-

efficient, welfare-maximizing allocation. 

Proof. Create the perturbed π as follows from the agent-based w .

Add a small amount to w (i, a ) for i ’s least preferred object a ; then

add a slightly larger amount to w (i, b) , i ’s second least preferred

object; and so on. Then M(π ) ⊆ M(w ) and π satisfies aligned in-

terests. By Theorem 7 , each x ∈ M ( π ) is Pareto-efficient. �

Finally, we derive an additional result under positive and

object-based weights. Theorem 9 shows that each constrained

welfare-maximizing allocation is of maximum cardinality. That is,

it assigns the maximum number of objects. Thus, though Pareto-

efficiency may imply a loss in welfare, it can be obtained without

a loss in terms of the size of the allocation. 

Theorem 9. Under positive and object-based weights, each con-

strained welfare-maximizing allocation is of maximum cardinality. 

Proof. Let x ∈ X be a constrained welfare-maximizing allocation. As

a first step, break ties “in favor of x ”. That is, if agent i is indifferent

between objects a and x i , then replace i ’s preference R i by R ′ 
i 

such

that x i P 
′ 
i 

a . Indifferences that do not pertain to x are broken arbi-

trarily. Replacing the preferences with ties R with the strict pref-

erences R ′ (weakly) shrinks the set of Pareto-efficient allocation.

However, as ties are broken in favor of x , x remains Pareto-efficient.

Moreover, welfare is unchanged, so x remains constrained welfare-

maximizing. Furthermore, the acceptability graph is unchanged, so

the set of allocations and their cardinalities is unchanged. 

To obtain a contradiction, assume that there is y ∈ X of larger

cardinality than x . Then, in the symmetric difference between x

and y , ( x �y ) ∪ ( y �x ), there is an alternating path that starts and

ends with an edge in y . Label the agents and objects of this path

i 1 , a 1 , . . . , i n , a n . Without loss, assume that a n is i n ’s most preferred

object among those unassigned at x . Swap the objects along this

path to create z ∈ X : specifically, set z i 1 = a 1 , z i 2 = a 2 , and so on,

and otherwise z j = x j . As weights are object-based and positive,

 (z) = W (x ) + w (i n , a n ) > W (x ) . If z is Pareto-efficient, then this

contradicts that x is constrained welfare-maximizing. Hence, z fails

one of the following conditions ( Abraham et al., 2005 ; see also

Manlove, 2013 , Section 6.2.2.1): 

• Maximality (no unassigned object is acceptable to an unas-

signed agent); 
• Trade-in-free (no agent prefers an unassigned object to her as-

signed object); 
• Coalition-free (no group of agents can exchange their assigned

objects in a Pareto-improving way). 

There are fewer unassigned agents and objects at z than at x .

Therefore, as x is Pareto-efficient and hence maximal, z is also

maximal. If z is not coalition-free, then make it so by repeatedly

performing Pareto-improving exchanges. As this does not change

the set of assigned objects and the weights are object-based, wel-

fare is unchanged. Assume that z is adjusted in this way until it is

coalition-free. 

Then, it only remains that z is not trade-in-free: some agent

prefers an unassigned object to her assigned object. As x is Pareto-

efficient, x is trade-in-free. Hence, agent j ∈ N \ { i , . . . , i n } cannot
1 

Please cite this article as: P. Biró and J. Gudmundsson, Complexity of

Journal of Operational Research, https://doi.org/10.1016/j.ejor.2020.03.01
refer an unassigned object to her assigned object z j , which either

emains x j or has improved further when making z coalition-free:

hus, z j R j x j and there are fewer, in terms of set inclusion, unas-

igned objects (namely, a n ). Agent i 1 does not prefer an unassigned

bject at x when she is unassigned, hence they are not acceptable

o her, so no unassigned object at z is acceptable to her. For i n ,

 i n = a n is chosen specifically as her most preferred unassigned ob-

ect at x (or improved further to make z coalition-free), so she can-

ot be upset. Hence, for some 1 < k < n , i k prefers some unassigned

bject b to her assigned object at z . Again, without loss, suppose

hat b is i k ’s most preferred unassigned object at x . Shorten the

ath to i 1 , a 1 , . . . , i k , b and repeat the argument. 

After a finite number of repetitions, the path no longer can

e shortened. Neither the first nor the last agent of the path

s upset, so if and when the path only consists of two agents,

he corresponding z ∈ X is Pareto-efficient. As noted, W ( z ) > W ( x ),

 contradiction. �

. Integer programming and competitive equilibrium 

In this section, we provide a method for finding a constrained

elfare-maximizing allocation in the general, unrestricted prob-

em. Though this method is guaranteed to find a solution, it may,

n the worst case, require an exhaustive search through the entire

et of allocations. 

To formulate the unrestricted problem as an integer program,

e will need to describe Pareto-efficiency through a set of linear

onstraints. For this purpose, introduce a price p a ∈ { 0 , . . . , | A |} for

ach object a . Together with an allocation x , ( x , p ) is a competitive

quilibrium ( Gale, 1960 ) if the following conditions hold: 

1. Each unassigned object a has price zero: a ∈ A \ ∪ i x i ⇒ p a =
0 ; 

2. Each object b preferred to the assigned object a is more ex-

pensive: b P i a = x i ⇒ p a < p b ; 

3. Each object b equally good as the assigned object a is no

cheaper: b I i a = x i ⇒ p a ≤ p b . 

Theorem 10 is a variation on the well-known second welfare

heorem. While similar conclusions have been established in re-

ated models (for instance, Roth and Postlewaite, 1977 , Theorem 1),

e are not aware of any results that cover the case of Theorem 10 .

heorem 10. Allocation x ∈ X is Pareto-efficient if and only if there

re prices p ∈ { 0 , . . . , | A |} A such that ( x , p ) is a competitive equilib-

ium. 

roof. Construct the directed envy-graph ( A , S ∪ T ) as follows (see

ziz, Biró, Lang, Lesca, & Monnot, 2016; Abraham et al., 2005;

echlárová, Eirinakis, Fleiner, Magos, Manlove, Mourtos, Oceláková,

 Rastegari, 2016 ). Each object a ∈ A is a node. The two types of

rcs (directed edges) S and T represent strict preference and ties,

espectively. If the agent assigned object a prefers object b , so

 P i a = x i , then include an arc ( a , b ) ∈ S (that is, an arc from a to b ).

imilarly, if b I i a = x i , then include an arc ( a , b ) ∈ T . Furthermore, if

oth object a and agent i are unassigned, then include an arc ( a ,

 ) ∈ S for each b ∈ A i . Note that, if a ∈ A i , then this creates a self-

oop in the graph ( x is not maximal). Finally, if object a is unas-

igned and there is b P i x i , then include an arc ( a , b ) ∈ S . Again, if

 = b, then there is a self-loop ( x is not trade-in-free). Then, the

ollowing conditions are equivalent: 

A. Allocation x is Pareto-efficient; 

B. There is no directed cycle in the envy-graph that contains at

least one strict-preference arc; 

C. There are prices p such that ( x , p ) is a competitive equilib-
 finding Pareto-efficient allocations of highest welfare, European 
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We proceed to show this equivalence in three steps. 

A ⇒ B. This is immediate. If there is such a directed cycle, then

wapping the objects along the cycle is a Pareto-improvement. 

B ⇒ C. Remove the S -arcs and partition the nodes A into the

trongly connected components A 1 , . . . , A m 

of the sub-graph ( A , T ).

ence, objects a and b belong to the same class A � if and only if

here is a path of T -arcs from a to b (and from b to a ). There is

o S -arc between two objects in the same class: if { a , b } ⊆A � but

 a , b ) ∈ S , then there is a directed cycle with a strict-preference arc

tarting from ( a , b ) and continuing on the T -path from b back to

 , a contradiction. Next, create a new directed graph ( A 

∗, ( S ∗ ∪ T ∗))

y replacing each strongly connected component A � of ( A , T ) by a

ingle node a � ∈ A 

∗ = { a 1 , . . . , a m 

} and include an arc ( a k , a � ) ∈ S ∗

henever there is a ∈ A k and b ∈ A � , a  = b , such that ( a , b ) ∈ S . Oth-

rwise, if there is a ∈ A k and b ∈ A � such that ( a , b ) ∈ T , include an

rc ( a k , a � ) ∈ T ∗. Hence, connect two components if they contain

bjects connected in the envy-graph. 

Suppose, to derive a contradiction, that ( A 

∗, S ∗ ∪ T ∗) has a di-

ected cycle C . If C consists of T ∗-arcs only, then the nodes of

he corresponding components are strongly connected. Hence, they

hould belong to the same component; this is a contradiction to

he design of ( A 

∗, S ∗ ∪ T ∗). If C instead includes an S ∗-arc, then the

nvy-graph contains a forbidden cycle. Hence, there are no directed

ycles in ( A 

∗, S ∗ ∪ T ∗). It is then well-known that there exists a

opological order p on A 

∗ such that ( a k , a � ) ∈ S ∗⇒ p ( a k ) < p ( a � ) and

 a k , a � ) ∈ T ∗⇒ p ( a k ) ≤ p ( a � ). As there are at most | A | nodes a � ∈ A 

∗,

e can fit each p ( a � ) in { 0 , . . . , | A |} . We extend this to a weak topo-

ogical order on the original objects A by setting p a = p(a � ) for ev-

ry a ∈ A � . 

Finally, we show that ( x , p ) is a competitive equilibrium. First,

ach unassigned object makes out its own component and has no

ncoming arcs. Therefore, its price can be set to zero. Second, if

gent i prefers object b to x i = a, so ( a , b ) ∈ S , then p a < p b . Third,

f agent i is indifferent between b and x i = a, then p a ≤ p b , as re-

uired. 

C ⇒ A. To derive a contradiction, suppose that x is not Pareto-

fficient. First, suppose that there is an improving path that ends

ith an unassigned object. This object must have price zero. Fur-

hermore, the agent i who wants to exchange x i for the unassigned

bject must be indifferent between them: otherwise, the price of x i 
s negative. This continues along the cycle, all the way to the first

gent: at each step, the agent is indifferent between the object that

he is assigned at x and the object that she “points to” in the cycle.

hen no agent is better off (in the strict sense), a contradiction to

t being an improving path. 

Suppose instead that there is a Pareto-improving exchange. As

e move through the cycle, the objects’ prices must be non-

ecreasing: this as each agent “points” to an object at least as good

s the one they are assigned at x . But as we move through the cy-

le, we eventually end up where we started, so prices cannot in-

rease either. Hence, all prices are equal. But then, again, no agent

s better off in the strict sense. �

Theorem 10 allows us to reformulate the problem of con-

trained welfare-maximization: we want to find the allocation of

ighest welfare among those that can be supported by some prices

n a competitive equilibrium. We proceed to formulate the corre-

ponding integer program. Let the binary decision variables x ∈ {0,

} E indicate assignment: for each edge ( i , a ) ∈ E , x ia ∈ {0, 1} is such

hat agent i is assigned object a whenever x ia = 1 . Let the integer

ecision variables p ∈ { 0 , . . . , | A |} A denote prices. The objective is

o maximize welfare: 

 (x ) = 

∑ 

(i,a ) ∈ E 
x ia w (i, a ) . (1)
Please cite this article as: P. Biró and J. Gudmundsson, Complexity of
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We introduce some additional variables to help formulate the

onstraints. Let the binary decision variables c indicate whether an

gent/object is covered in the allocation. For agent i and object a ,

 i = 

∑ 

a ∈ A i 
x ia and c a = 

∑ 

i ∈ N 
x ia . (2)

et the binary variables s and t be derived from the preference

ata. In particular, say agent i is assigned object a but finds object

 at least as good. If this is in the strict sense, b P i a, then s ab = 1 ;

f this is through a tie, b I i a, then t ab = 1 : 

 ab = 

∑ 

i ∈ N: 
b P i a 

x ia and t ab = 

∑ 

i ∈ N: 
b I i a 

x ia . (3)

To complete the formulation, we introduce the constraints. No

gent i ∈ N receives more than one object and no object a ∈ A is

ssigned to more than one agent: 

 i ≤ 1 and c a ≤ 1 . (4) 

 Pareto-efficient allocation is necessarily maximal. Therefore, for

ach edge ( i , a ) ∈ E , at least one of i and a is covered in the alloca-

ion: 

 i + c a ≥ 1 . (5) 

he remaining constraints ensure that ( x , p ) is a competitive equi-

ibrium. First, object a ∈ A has zero price if it is unassigned: 

 a | A | ≥ p a . (6)

f c a = 0 , then p a = 0 as p a ≥ 0; if c a = 1 , then the constraint is

lways satisfied as p a ≤ | A |. Second, if the agent assigned a prefers

 , then b should be more expensive than a . For each { a , b } ⊆A , 

(1 − s ab )(| A | + 1) + p b ≥ p a + 1 . (7)

f s ab = 1 , then p b ≥ p a + 1 , so p b > p a ; if s ab = 0 , then the con-

traint is always satisfied as | A | ≥ p a and p b ≥ 0. Third, if the agent

nstead is indifferent between a and b , then b should be no cheaper

han a : 

(1 − t ab ) | A | + p b ≥ p a . (8)

his completes our formulation. Theorem 11 follows immediately. 

heorem 11. Let (x ∗, p ∗) ∈ { 0 , 1 } E × { 0 , . . . , | A |} A maximize (1) sub-

ect to (2) through (8) . Then { (i, a ) ∈ E | x ∗
ia 

= 1 } is a constrained

elfare-maximizing allocation. 

We can extend the integer program to incorporate that some

bject is available in multiple copies, say to capture quotas in

chool choice. If we instead treat (some of) the seats symmetri-

ally, then we can modify the program as follows. 

Let q a ∈ N denote the quota of object a . The previously binary

ariables c , s , and t will now be integer-valued and we adjust the

orresponding constraints as follows. Eq. (4) is replaced by c a ≤ q a .

urthermore, we introduce new indicator variables f a , ˜ s ab , and 

˜ t ab 

o replace c a , s ab , and t ab in the formulas in the following way.

e introduce f a ∈ {0, 1} to indicate whether a is fully assigned:

 a < q a ⇐⇒ f a = 0 . This is achieved through the following con-

traints: 

f a q a ≤ c a and f a + q a ≥ c a + 1 . 

qs. (5) and (6) are replaced by c i + f a ≥ 1 and f a | A | ≥ p a , respec-

ively. We also introduce ˜ s ab ∈ { 0 , 1 } to indicate whether s ab is pos-

tive. To do so, add the constraints ˜ s ab ≤ s ab and ˜ s ab | N| ≥ s ab . Re-

lace s ab by ˜ s ab in Eq. (7) . Finally, make the analogous change for

 ab : introduce its indicator ˜ t ab together with the two associated

onstraints, and replace t by ˜ t in Eq. (8) . 
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Table 2 

Results for the 2016 kindergarten allocation in Harku, Estonia. 

Stable Pareto-efficient 

DA IA TTC CWM OPDA WM 

Rank Pref. Dist. Pref. Dist. Pref. Dist. Pref. Dist. Pref. Dist. Pref. Dist. 

1 102 103 123 95 102 98 106 102 98 104 80 102 

2 23 26 6 29 20 24 23 32 22 24 30 29 

3 5 3 1 3 6 5 4 3 9 6 14 8 

4 8 7 7 7 11 7 4 6 9 6 10 6 

5 5 4 9 11 4 4 6 6 7 5 6 7 

6 7 2 5 3 6 3 8 1 6 2 8 0 

7 2 7 1 4 3 11 1 2 1 5 4 0 

Average rank 1.82 1.8 1.63 1.91 1.85 2 1.74 1.64 1.86 1.75 2.16 1.6 

Average distance 3398 3810 3789 3171 3319 3024 

Blocking agents 0 21 34 26 31 45 

Swaps in post-TTC 2 0 0 0 14 37 
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5. Estonian kindergarten allocation 

In this section, we examine the 2016 kindergarten allocation in

Harku, Estonia (see Veski et al., 2017 ) in which each of 152 chil-

dren were to be assigned one out of 155 seats across seven kinder-

gartens. The data contains the families’ stated preferences and the

travel distances to the various kindergartens. In roughly 81% of the

cases, a closer school is preferred (hence, aligned interest is at least

partly satisfied). The edge weight between family i and kinder-

garten a is w (i, a ) = D − d(i, a ) , where D is the maximum distance

in the data and d ( i , a ) is the distance between i and a . This en-

sures that edge weights are non-negative and higher for students

living closer. We examine the stable Deferred Acceptance (DA; the

student- and school-proposing versions yield the same allocation)

and the Pareto-efficient Immediate Acceptance (IA) and Top Trad-

ing Cycles (TTC). We give priority to families living closer to the

kindergarten and break ties randomly. We contrast these solutions

with the constrained welfare-maximizing solution (CWM), the un-

restricted welfare-maximizing solution (WM), and Optimal Priority

Deferred Acceptance (OPDA, see Appendix A ). Table 2 shows the re-

sults which we discuss next (see Diebold and Bichler, 2017 , for a

similar comparison of algorithms). 

For each solution, we determine the number of families as-

signed their top-ranked kindergarten, their second-highest ranked

kindergarten, and so on. Similarly, we count the number of fam-

ilies assigned their closest kindergarten, second closest, and so

on. IA stands out by assigning most families their top choice but

also fewest families their closest kindergarten. OPDA, DA, CWM,

and WM assign most families to close kindergartens. This is con-

firmed by the average ranks for which IA and CWM/WM stand

out with regard to the preferences and distances, respectively.

By construction, WM minimizes the average distance. Imposing

Pareto-efficiency (CWM) increases the average distance by roughly

150 meters, but CWM still performs considerably better than the

priority-based solutions. The final two rows capture instability and

inefficiency. CWM reduces the number of blocking families com-

pared to TTC and WM. At CWM, a majority of blocking fami-

lies prefer a more distant kindergarten to the one at which they

are assigned. Moreover, there is an unpopular kindergarten that

never fills its seats and many of the children placed there have

justified envy. For the final row, we first determine the respec-

tive solutions and then apply TTC to find Pareto-improving swaps

or cycles (so the final allocation is Pareto-efficient). DA only re-

quires two families to swap assignments for the allocation to

be Pareto-efficient, whereas OPDA and WM require much greater

changes. 
Please cite this article as: P. Biró and J. Gudmundsson, Complexity of
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The case study also shows that CWM is operational in practice:

ven though the IP used to solve CWM contains more than 1,0 0 0

ariables and constraints, the solution is obtained within seconds.

imulated problems many times the size of the case study are also

olvable in reasonable time (see Appendix B ); turning to commer-

ial solvers and using more sophisticated techniques ( Firat et al.,

016 ) would likely push the boundary yet further. 

While the improvement that CWM provides in terms of social

elfare is important, as shown by the court case of Example 1 and

he Boston school choice redesign to reduce busing costs, the solu-

ion may also have some drawbacks. Specifically, it is well-known

hat solutions such as DA, TTC, and OPDA incentivize truthful re-

orting of preferences ( Abdulkadiro ̆glu and Sönmez, 2003 ) while

A is manipulable. Next, we examine the strategic properties of

WM and address whether it is realistic to expect agents to state

heir true preferences when the solution is used to allocate the

bjects. 

. Incentives 

An agent’s preference is typically private information that she

eveals to the planner. In this section, we examine whether we

an select constrained welfare-maximizing allocations in such a

ay that no agent ever benefits from misstating her preference.

e first find a positive result when the problem is sufficiently re-

tricted, and then show that manipulation is possible if these re-

trictions are relaxed. For now, we take as given that the weights

re set independently of the reported preferences. 

To derive a positive result, we refer back to Theorem 4 : for bal-

nced problems with object-based weights and complete prefer-

nces, Serial Dictatorship can be used to efficiently find a desirable

llocation. As Serial Dictatorship is not manipulable, we can select

onstrained welfare-maximizing allocations in a non-manipulable

ay under these restrictions. Note that this considers only manip-

lations achieved by shuffling the preference list (that is, all ob-

ects are always acceptable). 

Next, we relax each of the three conditions, one at a time. First,

xample 3 shows a beneficial manipulation when there are more

bjects than there are agents. 

xample 3. Let N = { 1 , 2 } , A = { a, b, c} , and R 1 = R 2 be such that

 P 1 b P 1 c. Edge weights are object-based with w (i, b) > w (i, c) .

hen x = (a, b) and y = (b, a ) are constrained welfare-maximizing.

ithout loss, suppose that x is selected. Then agent 2 benefits

rom reporting R ′ 
2 

such that a P ′ 
2 

c P ′ 
2 

b: the unique constrained

elfare-maximizing allocation at (R 1 , R 
′ ) is y . 

2 
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Second, we relax complete preferences. For the positive result,

e considered only manipulations achieved by shuffling the pref-

rence list. That is, agents could not alter whether an object was

cceptable or not. Example 4 shows that the result is overturned

hen agents can state that some object is unacceptable. 

xample 4. Let N = { 1 , 2 } , A = { a, b} , and R 1 = R 2 be such that

 P 1 b. Edge weights are object-based. Then x = (a, b) and y = (b, a )

re constrained welfare-maximizing. Without loss, suppose that x

s selected. Then agent 2 benefits from stating that b is unac-

eptable: the unique constrained welfare-maximizing allocation is

hen y . 

Third, Example 5 shows that an agent may manipulate if

eights no longer are object-based. 

xample 5. Let N = { 1 , 2 , 3 } , A = { a, b, c} , and R 1 = R 2 = R 3 be

uch that a P 1 b P 1 c. The unique non-zero edge weight is w (3 , c) =
 . Then x = (a, b, c) and y = (b, a, c) are constrained welfare-

aximizing. Without loss, suppose that x is selected. Then agent

 benefits from reporting R ′ 
2 

such that a P ′ 
2 

c P ′ 
2 

b: the unique con-

trained welfare-maximizing allocation at (R 1 , R 
′ 
2 , R 3 ) is y . 

These findings are summarized in Theorem 12 . 

heorem 12. Under object-based weights, complete preferences, and

ith at least as many agents as objects, a constrained welfare-

aximizing allocation can be selected in a non-manipulable way. Re-

axing either of these conditions may allow beneficial manipulation. 

Whereas we so far have assumed that the weights are set inde-

endent of the reported preferences, we would actually encourage

he practitioner to do otherwise (see also Chiarandini, Fagerberg,

nd Gualandi, 2017 , for a comprehensive study of weighting pref-

rences). For instance, in practice we may be limited to allocations

hich include every agent. Such a constraint may clearly distort in-

entives as a simple option then is to report only the agent’s most

referred object. This strategy may backfire if too many agents

dopt it, but otherwise it is an easy way to ensure one’s top choice.

 more interesting approach is to encourage agents to report com-

lete preferences, which would make it easier to find everyone an

bject. The designer may announce that, whenever an agent re-

orts a complete preference, then the agent’s edge weights are in-

reased. Not only does this give incentives to report complete pref-

rences, but it also reduces the possibilities of agents manipulating

y truncating their preferences. Formally, once the weights depend

n the stated preferences, the preference revelation game is very

ifferent. Depending on how it is set up, it may now either be

asier or even impossible to manipulate. 6 For large problems in

hich it is impractical to report complete preferences, a natural

lternative is to require agents to report preferences of (at least) a

articular length. A possible manipulation may then be to fill the

eported preference with objects the agent is unlikely to get: the

gent top-ranks her favorite object and then lists only very popular

bjects or objects bad with respect to the objective of the planner

such as far-away schools). 

Even if a mechanism is manipulable in theory, it does not

ecessarily mean that it will be manipulated in practice. And

onversely, laboratory experiments have shown that, even for a

rovably non-manipulable solution such as DA, experimental sub-

ects do not always report preferences truthfully ( Chen & Sön-

ez, 2006 ). There are some new theoretical concepts for ad-

ressing this behavior, such as strategy-proofness in the large
6 Taken to its extreme, once preferences influence weights, any solution can be 

btained as welfare-maximizing. For instance, to select the outcome of DA, then 

e can set the weights to 0 or 1 depending on whether the agent is assigned the 

bject under DA. However, for all intents and purposes, this completely removes 

he intended interpretation of “welfare maximization”. 

i  

n  

t  

n  

b  

e  

Please cite this article as: P. Biró and J. Gudmundsson, Complexity of

Journal of Operational Research, https://doi.org/10.1016/j.ejor.2020.03.01
 Azevedo & Budish, 2019 ) and obvious strategy-proofness ( Li,

017 ). Moreover, in line with the conclusions of Chiarandini et al.

2017) , the NP-hardness of the problem and the random selec-

ion among constrained welfare-maximizing solutions may make it

arder for agents to manipulate. To get a better understanding of

he manipulability of our solution, a more thorough Bayesian ap-

roach may be more realistic (but also more challenging) to use,

here we instead would consider the expected gains of manipula-

ion. 

How would one manipulate the constrained welfare-

aximizing solution? In some cases, manipulation is counter-

ntuitive (an agent may manipulate by reversing her preference),

ut we can find a simple strategy by returning to the Estonian

indergarten allocation of Section 5 . In this case study, there is

ne unpopular kindergarten that fails to fill its seats. By Pareto-

fficiency, no child is therefore assigned somewhere less preferred

han the unpopular kindergarten. Therefore, a child living relatively

ar from the unpopular kindergarten and relatively close to her

referred kindergarten is often able to guarantee herself her first

hoice by ranking the unpopular kindergarten second. Among the

6 families not assigned their most preferred choice, a majority

re able to get their first choice by following this strategy (we

anipulate for one family at a time, keeping all other families’

references unchanged) but there are also some for whom it

oes not pay off and the child instead is placed at the unpopular

indergarten. 

In summary, for understanding the actual manipulability of

WM, one would need to further study its properties through so-

histicated theoretical models and also test its practical manipula-

ility through laboratory and field experiments. 

. Concluding remarks 

We have studied the problem of finding a constrained welfare-

aximizing allocation, that is, a Pareto-efficient allocation of high-

st welfare. This problem is NP-hard even under strong condi-

ions, but we have also identified settings in which the problem is

olynomial-time solvable. For the general problem, we formulated

n integer program. We used this program to solve a real-world

nstance of kindergarten admissions in which edge weights repre-

ent travel distance, and it was quick to determine the solution.

owever, there are still many open questions left to study. 

Implicit throughout has been that Pareto-efficiency takes prece-

ence over welfare. (Under aligned interests or agent-based

eights, the order is irrelevant: we can attain Pareto-efficiency and

elfare-maximization simultaneously.) That is, the planner wants

o select the Pareto-efficient allocation of highest welfare. A differ-

nt approach is to define a measure of how Pareto-efficient an allo-

ation is and then select a welfare-maximizing allocation of “high-

st Pareto-efficiency”. This is left for future research. 

Also outside the scope of the current paper, an interesting ex-

ension is to equip objects with “standard” priorities over agents

nd, say, find the stable allocation of highest welfare. Extending

he model is unlikely to overturn the negative results but can be

nteresting for the positive results. For instance, an extension of the

ondition imposed in Theorem 7 , aligned interests, is to align the

dded priorities with the edge weights. 

Another extension is to allow agents to receive multiple objects.

n this case, it is already challenging to elicit the preferences of the

gents over the bundles, as the number of bundles is exponential

n the number of objects. This is often resolved by eliciting ordi-

al or cardinal preferences over single objects, and then extending

his to preferences over bundles through, for instance, responsive-

ess or additivity. However, in the cardinal setting it can already

e computationally hard to decide whether an allocation is Pareto-

fficient ( Aziz et al., 2016 ). But in line with our positive results in
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Fig. A.6. Students and schools in Example 6 . 

e  

f  

t  

p  

a  

f  

p  

d

 

m  

a  

s  

t  

t  

d  

k  

o  

i  

T  

a  

a  

l  

o  

c  

m  

f  

t

 

s  

o  

a  

p  

w  

a  

t  

a  

D  

o  

P  

b

 

t  

f  

f  

d  

i  

a  

t  

a  

s  

i  

A  

s  

c  

m  

c  

e  

e  

r  

7 We are grateful to Philippe Jehiel for suggesting this mechanism to us. 
Section 3 , finding constrained welfare-maximizing solutions may

be still tractable under some conditions. 

Appendix A. Solutions: Definitions and algorithms 

In this section, we provide more formal definitions of the solu-

tions referred to throughout the paper. For the reader interested

in learning more, we refer to the excellent surveys by Manlove

(2013) and Haeringer (2017) . 

We adopt the terminology of Section 5 and refer to agents as

students and objects as seats at schools. We impose some restric-

tions compared to the model introduced in Section 2 . First, every

school is acceptable to every student. Second, students have strict

preferences over schools (no indifferences). Third, each school a

has q a seats (its “quota”) and there are sufficiently many seats in

total to assign every student. Finally, weights represent the dis-

tances between the students and the schools as in Section 5 . 

Most of the mechanisms are priority-based in the sense that

students have different priorities at different schools. We examine

two types of priorities. First, “distance-based priorities” give higher

priority to students living closer to schools. Second, “distance-

based priorities adjusted by allocation x ” prioritize students as-

signed to the school under x to those not and otherwise prioritize

on distance. As an example, suppose that students i , j , and k live

10 0, 20 0, and 10 0 0 meters from school a . Distance-based priori-

ties yield the order i , j , k with student i given the highest prior-

ity. Suppose further that the allocation x assigns both students j

and k , but not i , to school a . Adjusting the distance-based priori-

ties to x then results in the order j , k , i . In what follows, priori-

ties are adjusted for two reasons. First, by adjusting priorities to

x and then executing Top Trading Cycles , we obtain a measure of

how far from Pareto-efficient x is. Second, by adjusting priorities

to the welfare-maximizing allocation, we can study solutions that

“lie between” the original solution (say, Deferred Acceptance ) and

the welfare-maximizing solution. This will be used to define the

new Optimal Priority Deferred Acceptance . 

Top Trading Cycles . This mechanism is defined using a directed

bipartite graph. Nodes are given by the students and schools. Each

student has an outgoing arc to her most preferred school; each

school has an outgoing arc to the student with highest priority at

the school. The graph contains at least one cycle. Each student in

the cycle is assigned to the school she points to and then removed

from the graph. Similarly, school a is removed from the graph once

it has filled its quota q a . In succeeding rounds, students previously

pointing to school a point to their most preferred school among

those that remain in the graph. Schools redirect their arcs simi-

larly to the remaining student with highest priority. If there are

several cycles at some stage, the cycles not selected remain cycles

in the subsequent round. Therefore, the outcome is independent of

the order in which the cycles are selected. 

In Section 5 and Appendix B , we report values on “swaps in

post-TTC”. These are computed as follows. We adjust priorities (as

described above) to whichever allocation that we are examining,

and we then execute Top Trading Cycles . Whenever we process a

cycle of at least two students, we keep track of how many stu-

dents change schools. The number of “swaps in post-TTC” is the

total number of changes across all cycles. 

Immediate Acceptance. In this mechanism, students “propose” to

their most preferred schools. If a school can seat all its proposers,

then it does so. A school receiving more proposal than it has seats

“immediately accepts” the proposals from the students with high-

est priority and rejects the others. All rejected students proceed to

propose to their most preferred school that still has vacant seats

(“Immediate Acceptance with Skips” in Harless, 2019 ). 

Deferred Acceptance . This operates as Immediate Acceptance with

the exception that the allocation is not made final until at the
Please cite this article as: P. Biró and J. Gudmundsson, Complexity of

Journal of Operational Research, https://doi.org/10.1016/j.ejor.2020.03.01
nd of the algorithm. Students again propose to their most pre-

erred schools. Each school then tentatively accepts proposers up

o its quota. Rejected students proceed to propose to their most

referred school that has not yet rejected them. Each school then,

gain, tentatively accepts proposers up to its quota—choosing both

rom those newly proposing and those tentatively accepted in the

revious round. In this way, a school may tentatively accept a stu-

ent at first only to reject the student at a later stage. 

Optimal priority deferred acceptance . 7 This mechanism is imple-

ented in two steps. First, we compute the welfare-maximizing

llocation and adjust the priorities on the basis of it. That is to say,

tudents assigned school a under the welfare-maximizing alloca-

ion are prioritized over those not; otherwise, students are priori-

ized on distance. From a practical perspective, this step can be un-

ertaken as soon as the geographical distribution of the students is

nown (for larger cities, the distribution likely only changes slowly

ver time). The allocation can then be announced to the students

n the form of “catchment areas” (compare Fig. B.7 in Appendix B ).

hat is, we announce to the students that there has been an initial

ssignment according to the catchment areas. Students are guar-

nteed seats at their respective schools, but if they prefer to re-

ocate elsewhere, they are given the option to submit preferences

ver preferred schools. At that point, Deferred Acceptance is exe-

uted and identifies Pareto-improvements over the initial assign-

ent. Put succinctly, Optimal Priority Deferred Acceptance is De-

erred Acceptance executed on the instance with priorities adjusted

o the welfare-maximizing allocation. 

The mechanism results in an allocation that is stable with re-

pect to the adjusted priorities. Recall that a stable allocation is

ne that refuses a student a preferred school only if all its seats

re assigned to higher-priority students. In this case, if student i

refers school a over her assignment, then a is filled with students

ho all either are from a ’s catchment area or who live closer to

 than i does. It is immediate that Optimal Priority Deferred Accep-

ance , alike Deferred Acceptance , cannot be manipulated. Moreover,

s both finding the welfare-maximizing allocation and executing

eferred Acceptance can be done in polynomial time, we quickly

btain the solution. Among its drawbacks, the solution is neither

areto-efficient nor stable with respect to the original distance-

ased priorities. 

Alternatively, the solution can be implemented by first having

he students report their preferences, then adjusting the priorities

or the welfare-maximizing allocation, and finally executing De-

erred Acceptance . In this case, it is important that the preferences

o not affect the welfare-maximizing allocation. Specifically, even

f student i reports school a as unacceptable, i should still be

llowed to be assigned to a when the welfare-maximizing alloca-

ion is determined. If not, if we look for the welfare-maximizing

llocation that assigns students to acceptable schools only, then

tudents will be able to manipulate the solution. This is illustrated

n Example 6 , which also shows that Optimal Priority Deferred

cceptance may unnecessarily leave students unassigned. To

ummarize, provided that the welfare-maximizing allocation is

omputed independently of the reported preferences, it does not

atter for the solution and its strategic properties whether we

ollect preferences before or after we determine priorities. How-

ver, the benefit of first determining priorities is that it assigns

ach student a guaranteed school. The students then only need to

eport schools preferred to the guaranteed school. In the Estonian
 finding Pareto-efficient allocations of highest welfare, European 
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Fig. B.7. Illustration of a simulated instance with 560 students and eight schools, each with 70 seats. Large markers are schools, small markers of the same color are students 

assigned to the different schools. In the left figure, the inner circle is the student’s assigned school under the welfare-maximizing solution; the outer circle is the assigned 

school under OPDA. In the right figure, the inner circle is the student’s most preferred school while the outer circle again is the student’s assignment under OPDA. 
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ase, 80 out of 152 families need not report anything—they are

ssigned their preferred school under WM. Out of the remaining

2 families, 30 only have to report their top choice. In contrast, if

e collect preferences first, then all students may have to report

omplete preferences. 

xample 6. Consider students 1 and 2 together with schools a and

 arranged along a line as in Fig. A.6 . The parents of 1 work “to the

ight” and only accept dropping of 1 at school b . Hence, a is unac-

eptable. The parents of 2 work “to the left” and prefer b slightly

ver a . Still, a remains acceptable. We assume further that 1 lives

loser to b than 2 does. 

Consider first the welfare-maximizing solution that ignores the

cceptability constraints. It selects the allocation {(1, a ), (2, b )}.

hen we adjust priorities accordingly and execute Deferred Accep-

ance , student 2 prefers and has highest priority at b . Hence, we

ssign 2 to b . As Deferred Acceptance does not assign students to

nacceptable schools, student 1 remains unassigned. Hence, Opti-

al Priority Deferred Acceptance selects {(2, b )}. 

Consider next the welfare-maximizing solution that only as-

igns students to acceptable schools. Assuming this is set up to

nclude a large cost to leaving a student unassigned, it selects the

llocation {(1, b ), (2, a )}, which also is the output of the following

xecution of Deferred Acceptance . Hence, Optimal Priority Deferred

cceptance selects {(1, b ), (2, a )}. 

Consider finally the case when student 1 prefers school b but is

illing to accept both schools. The welfare-maximizing allocation

ill then be as in the first case, {(1, a ), (2, b )}, which also will

e the final output of Optimal Priority Deferred Acceptance . In this

ay, if the first step of Optimal Priority Deferred Acceptance is set

p to only assign students to acceptable schools, then student 1

an manipulate by reporting that a is unacceptable. 

ppendix B. Simulations 

We run a simulation study to further compare the different

olutions. 8 Each instance is composed of 10 0 0 students and 10

chools with 100 seats each. Every student is acceptable to ev-

ry school, so all solutions output complete allocations in which

o student is left unassigned. Geographical coordinates for the

tudents and schools are drawn randomly within the unit cir-

le through a distance (uniformly from [0,1]) and angle (uni-
8 The simulations are run in Python 3 with the free open source software PuLP 

sing its default CBC solver. 
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ormly from 0 to 360 degrees) from the center. School priorities

re distance-based, giving higher priority to student living closer

measured by the Euclidean distance). Weights are set up as in

ection 5 : the edge weight between student i and school a is

 (i, a ) = D − d(i, a ) , where D is the maximum distance in the data

nd d ( i , a ) is the distance between i and a . Finally, each school is

ssigned a quality level uniformly from [0,1]. 

Student preferences are derived through a linear combination of

chool quality κ , distance d , and a random noise term ε. The utility

hat student i derives from being assigned to school a is positively

ffected by the quality of a and negatively by the distance: 

 (i, a ) = ακ · κ(a ) − αd · d(i, a ) + αn · ε(i, a ) . 

he parameters ακ , αd , and αn control how much weight is put

n quality, distance, and the random noise, respectively. As an ex-

mple, with αd = 1 and ακ = αn = 0 , preferences are completely

istance-based and we obtain the case of aligned interests . If in-

tead ακ = 1 and αd = αn = 0 , we obtain the case of common pref-

rences . Finally, with ακ = αd = 0 and αn = 1 , preferences are un-

orrelated with distance and school quality. 

In Table B3 , we report the simulation results for three different

arameters settings, in each case averaged across 100 instances.

he top rows labelled “distance” refer to primarily distance-based

references with parameters αd = 3 / 5 and ακ = αn = 1 / 5 . The

iddle rows, “quality”, refer to primarily quality-based prefer-

nces with parameters αd = αn = 1 / 5 and ακ = 3 / 5 . For the final

ows, “random”, we set αd = ακ = αn = 1 / 3 . Among the results in

able B3 , we wish to highlight the following: 

1. The average distance is very similar for CWM and OPDA

under all three parameter settings and always considerably

better than for DA, IA, and TTC. This is in some contrast to

Section 5 , in which OPDA and DA produced similar results

while CWM significantly reduced the average distance. 

2. The average preference ranks are considerably worse than

in Section 5 . That is, in the Estonian case study, more stu-

dents are assigned their top schools. The fraction of block-

ing agents is considerably higher here than in Section 5 . To

explain for instance the high number for TTC under quality-

based preferences, imagine that student i living close to pop-

ular school a wishes to go elsewhere—possibly to the distant

school b . In the cycle that assigns i to b , a student j living

close to b may get assigned to the popular school a . Due

to the limited number of seats at a , a lot of students living

closer to a than i does will not be assigned to a and there-

fore block the allocation. 
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Table B3 

Results for the simulations. 

Stable Pareto-efficient 

DA IA TTC CWM OPDA WM 

Distance Average preference rank 2.16 2.09 2.15 1.93 2.05 2.12 

Average distance rank 2.27 2.31 2.34 1.76 1.74 1.7 

Average distance 36,758 36,922 37,351 31,580 31,443 31,203 

Blocking agents 0 154 195 402 434 460 

Swaps in post-TTC 11 0 0 0 112 158 

Quality Average preference rank 4.17 3.89 4.08 4.1 4.27 4.37 

Average distance rank 2.5 2.82 2.83 1.84 1.81 1.74 

Average distance 39,072 42,274 42,331 32,565 32,375 31,745 

Blocking agents 0 422 606 642 639 649 

Swaps in post-TTC 73 0 0 0 166 213 

Random Average preference rank 2.76 2.56 2.69 2.68 2.96 3.38 

Average distance rank 2.59 2.84 3.03 2 1.98 1.77 

Average distance 39,772 42,283 44,272 33,788 33,549 31,904 

Blocking agents 0 246 488 535 554 609 

Swaps in post-TTC 80 0 0 0 239 372 
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3. As in Section 5 , the average preference rank is often low-

est for IA. Among the other solutions, CWM typically as-

signs students to more preferred schools than OPDA does.

Still, OPDA is an improvement over WM. 

4. The average distance rank is almost identical for CWM and

OPDA. 

5. In terms of number of Pareto-improving swaps, OPDA is an

improvement over WM but considerably worse than DA. 

Figure B.7 graphically illustrates the relation between WM,

OPDA, and the students’ preferred schools for a simulated instance.

In the left figure, comparing WM and OPDA, we can note the

Pareto-improving swaps between the blue schools as well as the

yellow and dark schools. These students live closer to the school

they are assigned under WM but prefer the more distant school

that they are assigned under OPDA. In the right figure, we see

that the pink school is of high quality. Therefore, students who live

close to it also are likely to prefer it. Confirming this intuition, WM

and OPDA coincide for the pink school in the left figure. 
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