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are discussed briefly.

We allocate objects to agents as exemplified primarily by school choice. Welfare judgments of the object-
allocating agency are encoded as edge weights in the acceptability graph. The welfare of an allocation
is the sum of its edge weights. We introduce the constrained welfare-maximizing solution, which is the
allocation of highest welfare among the Pareto-efficient allocations. We identify conditions under which
this solution is easily determined from a computational point of view. For the unrestricted case, we for-
mulate an integer program and find this to be viable in practice as it quickly solves a real-world instance
of kindergarten allocation and large-scale simulated instances. Incentives to report preferences truthfully
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1. Introduction

We consider the allocation of objects to agents, such as school
seats to students, in the absence of monetary transfers. We take
as given that the assignment should reflect the agents’ prefer-
ences and operationalize this by restricting to Pareto-efficient al-
locations.! Typically, not all agents can receive their first choice
and the more popular objects have to be rationed. How they
are rationed reflects a welfare judgment on behalf of the object-
allocating agency, say in terms of what is fair or socially optimal.
For instance, costs of transportation may prohibit admitting a stu-
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! An allocation is Pareto-efficient if no other allocation leaves each agent at least
as well off and some agent better off. As an example, if we order the agents and
let them sequentially select their preferred object (among those that remain), then
the final allocation will be Pareto-efficient. This procedure is known as Serial Dicta-
torship.

https://doi.org/10.1016/j.ejor.2020.03.018

dent to a highly preferred but remote school or there may be ben-
efits to sending children on the same street to the same kinder-
garten even though the families’ preferences differ. We model this
in a simple yet surprisingly flexible way: assigning agent i object
a creates welfare w(i, a), and the welfare of an allocation is the
sum of these terms. We use tools of economics, computer science,
and operational research to address the following questions: Un-
der which conditions does a Pareto-efficient allocation maximize
welfare? When there is a trade-off between Pareto-efficiency and
welfare-maximization, how should the objects be allocated? And
finally, given that the problem can encompass a large number of
agents in practice, can we find a desirable solution efficiently from
a computational point of view?

In addressing these questions, we refer for the most part to
school choice (Abdulkadiroglu and Sénmez, 2003; Shi, 2016), but
the problem extends to a wide range of applications, some well-
known and some new within the field of OR. These include uni-
versity admission, resident allocation (Bronfman, Hassidim, Afek,
Romm, Shreberk, Hassidim, & Massler, 2015), dormitory room al-
location (Perach, Polak, & Rothblum, 2008), deceased organ dona-
tion, social housing, and refugee allocation (Andersson & Ehlers,
2017; Moraga & Rapoport, 2014; Delacrétaz, Kominers, & Teytel-
boym, 2016; Trapp, Teytelboym, Martinello, Andersson, & Ahani,
2018). Present in each of these applications is a centralized object-
allocating institution (a “planner”) with its own objective function
that should be taken into consideration in parallel with the agents’
preferences. We refer to Section 2 for more detailed examples on
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how the welfare levels w (the “edge weights”) can be set in order
to cover a wide variety of objectives.

For the particular application of school choice, we propose an
alternative to the priority-based approach that is most used in
practice (see Section 1.1). Essentially, whereas our edge weights
can be encoded with cardinal information, the ordinal priorities
cannot.? If one student is prioritized over another, then this may
show that the former lives closer to the school—but not how close,
or how much closer. To illustrate further, say two students prefer
school a to b and that student 1 lives next to b but also closest
to (but some distance away from) a. An allocation is then Pareto-
efficient as long as both students are assigned a school. By respect-
ing the distance-based priorities, student 1 is admitted to a, stu-
dent 2 to b, and both students require transportation. In contrast,
by setting the edge weight between 1 and b high, our optimal so-
lution will swap the assignment and thus reduces transportation
costs while retaining Pareto-efficiency.

For our first result, we rely on a recent finding by Saban and
Sethuraman (2015). They study the complexity of determining the
outcome obtained by Random Serial Dictatorship and derive, as a
byproduct, results on the decision problem termed SD FEASIBIL-
1Ty. This asks: For a given profile of preferences, an agent i, and
an object a, does there exist a serial dictatorship that assigns a
to i? Saban and Sethuraman (2015) show that SD FEASIBILITY is
NP-complete even in a restricted environment.> Using this result,
our Theorem 1 shows that deciding whether there exists a Pareto-
efficient, welfare-maximizing allocation is NP-complete with the
same restrictions imposed as in the result of Saban and Sethura-
man (2015). For these hard problems, relaxing the restrictions only
makes the problems yet harder: they remain NP-hard, but the re-
sults get weaker.

Unless the preferences or the edge weights take on a particu-
lar form, there is little reason to believe that there actually exists
a Pareto-efficient allocation that maximizes welfare. When there is
a conflict between these desiderata, we propose to select a con-
strained welfare-maximizing allocation. This is a Pareto-efficient al-
location of highest welfare among the Pareto-efficient allocations.
We label the problem of finding such an allocation CONSTRAINED-
WELFAREMAX. This is harder than deciding whether there exists
a Pareto-efficient, welfare-maximizing allocation, so CONSTRAINED-
WELFAREMAX is computationally tractable only under yet stronger
conditions. As a first step, we restrict attention to object-based
weights. Such weights w(i,a) depend only on the object a. For
school choice, this can be interpreted as the planner promoting
a particular school or topic of study. In Theorem 2, we show
that CONSTRAINEDWELFAREMAX is NP-hard even under object-based
weights and complete preferences.

The next result pertains to the case in which all agents rank
the objects acceptable to them in the same way. This is a plausible
restriction when there is an objective measure of quality on the
objects, such as some schools providing objectively better educa-
tion than others. If all agents rank the objects acceptable to them
in the same way, then the condition of common preferences is satis-
fied. Theorem 3 shows that deciding whether there exists a Pareto-
efficient, welfare-maximizing allocation is NP-complete even for
balanced problems with object-based weights and common pref-
erences. In addition, we derive a result that complements (Saban
& Sethuraman, 2015) on SD FEASIBILITY.

2 The same argument applies to preference intensity, which again is cardi-
nal information that cannot be encoded in ordinal preferences. On this topic,
Abdulkadiroglu, Che, and Yasuda (2015) introduce Choice-Augmented Deferred Accep-
tance, which allows agents to express richer preference information. In particular,
their agents report both a ranking over schools and a “target” school.

3 Specifically, it is NP-complete when agents have complete and strict preferences
and the problem is “balanced” with an equal number of agents and objects.

We then proceed to identify computationally tractable cases.
Theorem 4 shows that, for balanced problems with object-based
weights and complete preferences, all serial dictatorships yield
constrained welfare-maximizing allocations. Theorem 5 shows that
CONSTRAINEDWELFAREMAX is polynomial-time solvable under com-
mon and complete preferences using (Kuhn, 1955) Hungarian
method. There are other ways of combining the four conditions in-
troduced thus far, but the remaining cases can all be inferred from
Theorem 1 through 5 as summarized in Fig. 1.

We introduce three additional conditions, each on its own is
strong enough to make CONSTRAINEDWELFAREMAX tractable. The
first of these restricts to dichotomous preferences in which all
agents are indifferent between all objects acceptable to them. This
domain restriction is relevant when all objects are similar in qual-
ity. Under this condition, an allocation is Pareto-efficient if and
only if it is of maximum cardinality. Theorem 6 shows that, under
dichotomous preferences, a constrained welfare-maximizing allo-
cation can be found using the Hungarian method.

The next condition is aligned interests and implies that assign-
ing an agent a more preferred object leads to higher welfare. That
is, the interests of the planner, to assign higher-valued objects, is
aligned with the interests of the agents, to be assigned more pre-
ferred objects. Theorem 7 shows that, under aligned interests, each
welfare-maximizing allocation is Pareto-efficient. In consequence,
there exists a Pareto-efficient, welfare-maximizing allocation, and
we find it efficiently using the Hungarian method.

The final restriction is to agent-based weights, which are such
that the weight w(i, a) only depends on the agent i. Such weights
are plausible for instance in merit-based university admissions: the
objective is to admit the students with the highest grades, but it
is less important whereto they are admitted. Theorem 8 shows
that, under agent-based weights, there exists a Pareto-efficient,
welfare-maximizing allocation. Again, we find it efficiently using
the Hungarian method. We emphasize also that, for each of the
positive results of Theorem 4 through 8, we permit indifference
in the preferences, whereas the hardness results of Theorems 1, 2,
and 3 are obtained when restricting to strict preferences. Gener-
alizing by permitting indifference only makes these problems yet
harder. Therefore, our polynomial-time algorithms remain efficient
for strict preferences while our NP-hardness results still hold when
we allow indifferences.

Moving away from the computational aspects, Theorem 9 pro-
vides a still related finding: under positive and object-based
weights, each constrained welfare-maximizing allocation is of max-
imum cardinality. That is, there exists no way of allocating more
objects even if the constraints of Pareto-efficiency and welfare-
maximization are removed.

We also formulate an integer program (IP) to solve the general,
unrestricted problem. To do so, we use a novel characterization, in
the form of linear constraints, of Pareto-efficiency in the presence
of preference ties. Theorem 10 provides a link between Pareto-
efficiency and competitive equilibrium through a variation of the
well-known second welfare theorem. Theorem 11 summarizes the
IP formulation.

Finally, we consider the strategic properties of our solution con-
cept. Theorem 12 establishes a positive result when the prob-
lem is sufficiently restricted. That is, with some conditions on the
preferences and the weights, we can select constrained welfare-
maximizing allocations in a way that incentivizes the agents to re-
port preferences truthfully. However, we also show that relaxing
either of the conditions may allow for manipulation.

The paper is structured as follows. Next, we describe the related
literature. We introduce the model in Section 2 together with a se-
ries of examples and applications. In Section 3, we examine the
complexity of finding constrained welfare-maximizing allocations,
first through hardness results and then through tractable cases.
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Fig. 1. Complexity of CONSTRAINEDWELFAREMAX. Numbers refer to theorems, “H” to NP-hardness, and “P” to polynomial-time solvable cases. Parentheses indicate that the

case is covered by a stronger result.

In Section 4, we formulate the IP to solve CONSTRAINEDWELFARE-
Max. In Section 5, we examine the 2016 kindergarten allocation in
Harku, Estonia, with a focus on comparing the constrained welfare-
maximizing allocation with other solutions. We discuss incentives
issues in Section 6. We conclude in Section 7. Appendix A defines
all solutions referred to throughout the paper more formally. Fi-
nally, Appendix B contains a simulation study that serves both to
contrast the different solutions and to show that the integer pro-
gramming approach is viable in solving larger problems quickly.

1.1. Related literature

A focal point in the literature are the stable (also known as
justified envy-free and non-wasteful) allocations. Stable alloca-
tions refuse an agent a preferred object only if the object is as-
signed a higher-priority agent. Such an allocation can be computed
through the Deferred Acceptance algorithm (DA; Gale & Shapley,
1962), which may be adapted to handle priority ties (Erdil & Er-
gin, 2008).* These solutions have a particular structure as shown
through the so called Rural Hospitals’ theorem (Roth, 1984a; 1986;
Gale & Sotomayor, 1985). First, the same students are allocated in
every stable allocation. Second, a school that fails to fill its seats at
one stable allocation is assigned the same students at every stable
allocation. Nowadays, DA may be the most used procedure in col-
lege admission and school choice programs around the world (for
specific cases, see Abdulkadiroglu, Pathak, & Roth, 2005a; Abdulka-
diroglu, Pathak, Roth, & Sonmez, 2005b; for a recent survey, see
Bir6, 2017). Not only is DA stable, but it also selects the student-
optimal allocation among the stable allocations and it gives stu-
dents incentives to report preferences truthfully. A recent devel-
opment is to allow agents to report preferences only over a well-
designed “menu” of schools (Ashlagi & Shi, 2016; Shi, 2015). In this
way, the outcome of DA becomes closer to optimal from the point
of view of the planner (in this case, the city of Boston) in as far
as cutting down busing costs. Taken to its extreme, if the menus
only contain a single school, then the planner can implement any
allocation.

The second leading procedure is Top Trading Cycles (TTC;
Shapley & Scarf, 1974; Abdulkadiroglu and Sénmez, 2003), for
instance used in New Orleans (Abdulkadiroglu, Che, Pathak, Roth,
& Tercieux, 2017). Like DA, TTC cannot be manipulated, but in con-
trast to DA, TTC is Pareto-efficient but not stable. Serial Dictatorship
is another non-manipulable way of achieving a Pareto-efficient

4 The problem with ties is quite different from the strict case and there are sev-
eral different notions of stability, such as weak, strong, and super stability. In the
economics literature, focus has mainly been on weak stability. Weakly stable allo-
cations always exist, but they may differ in size. Moreover, the problem of finding
a weakly stable allocation of maximum size is NP-hard (Manlove, Irving, Iwama,
Miyazaki, & Morita., 2002).

allocation, used in Amsterdam’s school choice (de Haan, Gautier,
Oosterbeek, & Van der Klaauw, 2018) and for residence allocation
in Israel until 2014 (Bronfman et al., 2015). It is equivalent to TTC
when schools share priorities. Another Pareto-efficient solution is
Immediate Acceptance, which was used in Boston (Abdulkadiroglu
and Sonmez, 2003) and is still used in many applications. Its ma-
nipulability is considered its main issue, although it has still some
desirable properties in regards to the expected utilitarian welfare
(Abdulkadiroglu, Che, & Yasuda, 2011). Finally, simple first-come
first-served systems are sometimes used for course allocation,
for example in almost every university in Hungary. Fig. 2 sum-
marizes these approaches; see also Appendix A for more formal
definitions.

The model of matching with contracts is an important exten-
sion that is well-studied for two-sided matching problems such as
the match of doctors to hospital residency programs (see, for in-
stance, Cechlarova & Fleiner, 2005; Fleiner, 2003; Hatfield & Mil-
grom, 2005). The extension is meaningful also in our allocation
setting as it allows to assign objects to agents under different con-
tractual terms. To illustrate, consider the Hungarian college admis-
sions. Most programs can be attended under two possible con-
tracts: either the student pays a fee or the state finances the stud-
ies (see Bird, 2011). There is still a trade-off as stricter rules apply
to the state-funded contracts: the student has to graduate in a cer-
tain time and work in Hungary for some time thereafter. If she fails
to meet these requirements, she has to pay back the funding with
interest. Therefore, some students prefer to pay the tuition fee over
taking part in the “free” state-funded programs (see also Shorrer &
Sovago, 2018). For our purposes, contracts are easy to include in
the model but actually add very little. This is due to the strong
implication of Pareto-efficiency: each agent is assigned her object
under her most preferred contract. Otherwise, changing the terms
of her contract is a Pareto-improvement. In particular, if we, for
each agent and object, remove all contracts but the preferred one,
then the set of Pareto-efficient allocations is unchanged. Thus, find-
ing a constrained welfare-maximizing allocation in a model with
contracts is no more difficult than finding one when there is just
a single contract for each agent-object pair, which is equivalent to
the simpler model without contracts.

A new application of operational research, receiving consid-
erable attention following the 2015 European migrant crisis, is
refugee allocation. While the larger problem of assigning refugees
to countries is likely to be resolved using other criteria (Bansak,
Hainmueller & Hangartner, 2017; Moraga and Rapoport, 2014), the
assignment within countries can be viewed as an allocation prob-
lem in line with our stylized model. Specifically, we may think of
the refugees as our agents and of the various locations that they
can be resettled to as our objects (Delacrétaz et al., 2016) or turn
things around and view citizens looking to host refugees as agents
while treating the refugees as objects (Andersson & Ehlers, 2017).
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Fig. 2. The most common ways of taking preferences into account is by selecting a stable or a Pareto-efficient allocation. In parallel, welfare factors can be accounted for
through priorities, or, as we are proposing, a linear welfare function. Here, “CWM” denotes the constrained welfare-maximizing solution.

Our edge weights can then encode, as Bansak, Ferwerda, Hain-
mueller, Dillon, Hangartner, Lawrence, and Weinstein (2018) put
it, that “there are synergies between places and people” and that
“certain characteristics will make a refugee a better match for a
particular location”. For instance, the edge weights can be deter-
mined using the data-driven algorithm provided by Bansak et al.
(2018) to represent the probability that a refugee will find em-
ployment within a location (see also Mossaad, Ferwerda, Lawrence,
Weinstein, & Hainmueller, 2018; Bansak, Hainmueller, & Hangart-
ner, 2016; Trapp et al., 2018). Once the infrastructure is in place
to allow refugees to express their preferences in a safe and cred-
ible way, our IP can readily be used to find a welfare-maximizing
refugee resettlement.

Lastly, we summarize some of the existing complexity results.
Abraham, Cechlarova, Manlove,and Mehlhorn (2005) provide the
first NP-hardness results by showing that finding a minimum size
Pareto-efficient allocation is computationally hard. For two-sided
matching, Irving, Leather, and Gusfield (1987) showed that find-
ing an optimal stable matching for a linear welfare function is a
tractable problem. In contrast, if the objective is to find an optimal
allocation (say with respect to size or welfare) that is “as stable as
possible” in that it minimizes the number of blocking pairs, then
the problem is NP-hard (Bird, Manlove, & Mittal, 2010). We refer to
Manlove (2013) for a comprehensive survey of related complexity
results.

Regarding the optimization techniques used to tackle the above
described computationally hard cases, integer programs have re-
ceived significant attention in recent years. They have been used
in more general settings such as allocation of papers to review-
ers (Garg, Kavitha, Kumar, Mehlhorn, & Mestre, 2010) or for course
allocation (Othman, Sandholm, & Budish, 2010), later implemented
at Wharton College (Budish, Cachon, Kessler, & Othman, 2016). Fur-
ther examples include the resident allocation problem with cou-
ples motivated by the US and Scottish applications (Bir6, Manlove,
& McBride, 2014) and the college admission problem with lower
and common quotas (Agoston, Biré, & McBride, 2016). Other OR
techniques, based on Scarf's lemma (Scarf, 1967), have also been
proposed for the problem of matching with couples (Bir6, Fleiner,
& Irving, 2016) and in other many-to-one stable matching settings
such as Nguyen, Nguyen, and Teytelboym (2019).

There are different reasons for why integer programming tech-
niques had not been used to solve these problems until recently.
First, the heuristic algorithms based on DA perform relatively
well in practice, as illustrated by the US resident allocation pro-
gram with couples (Roth & Peranson, 1999). Secondly, the prob-
lem sizes are relatively large (around 40,000 residents in the US,
and 100,000 students in the Hungarian higher education admis-
sion scheme), and this large input size can be challenging for the
IP solvers. However, new studies within computer science and OR
show that even such large problems can be tractable with the IP
approach (see, for instance, Firat, Briskorn, & Laugier, 2016). As an
example, the NP-hard problem of having lower quotas for univer-
sity programs was solved for a real 2008 instance of the Hungarian
college admissions after a careful preprocessing and by using ad-
vanced IP techniques (Agoston et al., 2016). We believe that our IP
formulation for a special problem setting can be equally useful in

a
2.2 \9
1 = b

Fig. 3. Students and schools for Example 1. Edge weights represent distances.

practice and serve as a starting point when considering more gen-
eral problems.

2. Model

There is a finite set of agents N={1,2,...} and objects A=
{a,b,...}. A problem is balanced if there are as many agents as
there are objects. Agent i has preference R; over objects accept-
able to her, A;CA, and not being assigned an object, ¢. She finds
a at least as good as b whenever a R; b. The strict relation is de-
noted P; and the indifference relation I;. For each ae€A;, a P, 9. The
bipartite acceptability graph (NUA, E) has an edge (i, a) e E when-
ever a is acceptable to i. An allocation x<E is an independent edge
set (matching). If (i, a)ex, then i is assigned object x; =a. If i is
not assigned an object, then x; = ¢. The set of allocations is X. An
allocation is Pareto-efficient if no allocation leaves each agent at
least as well off and some agent better off. Thus, x X is Pareto-
efficient if there is no yeX such that, for each ieN, y; R; x;, and,
for some jeN, y; P; x;. The social welfare of assigning agent i ob-
ject aeA; is represented by the weight w(i,a) > 0 on the edge (i,
a)eE. The welfare of xe X is W(x) = 3_; g)ex W(i, @). An allocation
x € X is welfare-maximizing if it creates the highest welfare among
all allocations: for each y € X, W(x) > W(y). A Pareto-efficient alloca-
tion is constrained welfare-maximizing if it creates the highest wel-
fare among the Pareto-efficient allocations.

Next, we illustrate the model through two examples in the con-
text of school choice.

Example 1 (Distance-based school choice). In a school choice
problem, the agents are students and the objects are seats at
schools. A school with several seats is thus treated as several dis-
tinct objects which we assume students to be indifferent between.
Typically, the student assignment has to respect some priorities,
say to favor students closer to the school. We offer a different im-
plementation of this through the edge weights inspired by a re-
cent court case in Lund, Sweden (see Andersson, 2017, “Perceived
issues”).

More students top-ranked school a than it had seats for, so its
seats were assigned to the students living closest. Student 1 had
2.2 kilometers walking distance to her preferred school a and 3.2
kilometer to her assigned school b. Hence, the walking distance for
1 increased by one kilometer when she was placed at b rather than
at a. In contrast, student 2 was assigned to a but would only have
had to walk 250 meters further had she been placed at b. See Fig. 3
for an illustration.

The parents argued that student 1 should be given higher pri-
ority at a as 1 would lose more from being placed elsewhere. Two
courts (Forvaltningsrdtten and Kammarrdtten) have ruled in favor
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Fig. 4. Students and schools in Example 2. An edge weight of 1 represents walk-
zone priority. For the sake of readability, we have left out the remaining zero-
weight edges.

of the parents. One interpretation is that the judges considered the
rejection of 1 at a fair from the perspective of the distance-based
priorities, but that the allocation suggested by the parents was bet-
ter from the planner’s perspective as it reduced the total travel dis-
tance.

Example 2 (Walk zones in school choice). School choice priori-
ties are typically coarse with many ties. For instance, all students
within the school’s walk zone may be equally prioritized. As an ex-
ample, say that there are four students and four schools, each with
a single seat. Each student prefers school a to b to c to d, so any
complete allocation is Pareto-efficient. Walk-zone priority is given
to student 1 at schools a and b, to 2 at ¢, and to 3 at d; see Fig. 4.

Before running an algorithm like Deferred Acceptance or Top
Trading Cycles, the priority ties are often broken randomly. This
may give student 2 priority at school b (over 3 and 4) and 3 pri-
ority at c. Then both algorithms select the allocation {(1, a), (2, b),
(3, ¢), (4, d)}, which sends only student 1 to a walk-zone school.
On the other hand, if we use the edge weights to indicate whether
the student is within the school’s walk zone, then the allocation
{(1, b), (2, ¢), (3, d), (4, a)} is welfare-maximizing. It assigns all but
student 4 to a walk-zone school. Hence, this reduces transportation
costs while retaining Pareto-efficiency.

To finish this section, we want to stress that we can take
many different objectives into account through the edge weights.
In Example 1, we showed how one can minimize total walking
distance, while we in the introduction discussed having weights
represent the probabilities that refugees find employment at dif-
ferent locations. Next, we will see that many more objectives can
be achieved through our solution concept.

Maximizing the number of agents assigned acceptable objects. As
in Example 2, we may want to maximize the number of agents
assigned to suitable places. Further examples are refugee alloca-
tion (Andersson & Ehlers, 2017), kindergarten allocation (Veski,
Bird, Pdder, & Lauri, 2017), and timetable scheduling. In our model,
this objective can be achieved through uniform weights (see
Theorem 9).

Assigning important agents or positions. We may want to guar-
antee the allocation of a particularly important group of agents
or objects. A practical example is (re-)allocation in the US Navy
(Yang, Giampapa, & Sycara, 2003). This objective can be achieved
by putting large weights on the edges incident with the important
nodes in the graph (compare the set A° in Theorem 5).

Reallocation with initially assigned objects. In many applications
agents either own or are initially assigned objects and the task
is to reallocate the objects in a desirable way. Two examples are
teacher reallocation in France (Combe, Tercieux, & Terrier, 2018)
and kidney exchange (Roth, Sénmez, & Unver, 2004). In these set-
tings, one typically has to ensure that no agent receives an ob-
ject less preferred than the one she is initially assigned. This is
achieved in our model by putting large weights on the edges link-
ing the agents to their initial assignments and their more preferred
objects.

Affirmative action in school choice by minority reserves. In many
school choice and college admission systems, there are distribu-
tional goals over the composition of the students. This is some-

times enforced by so-called minority reserves, meaning that stu-
dents with a particular background or ethnicity have priority for
some school seats. Real-world examples include school choice in
the US (Abdulkadiroglu and Sénmez, 2003) and college admissions
in India (Aygiin & Turhan, 2017; Sonmez & Yenmez, 2019) and
Brazil (Aygiin & B6, 2017). This objective can be achieved in our
model by putting large weights on the edges linking minority stu-
dents to the school seats reserved for the minority students. As an
example, a school with 100 seats that wants to admit 20 students
with a particular socio-economic background can link 20 copies of
its seats with high-weight edges to students qualifying for the af-
firmative action policy.

3. Complexity of constrained welfare-maximization

In this section, we study the complexity of finding a con-
strained welfare-maximizing allocation. We denote this problem
CONSTRAINEDWELFAREMAX, and we show that it is NP-hard even
under strong conditions. However, we also identify restrictions un-
der which the problem is tractable. Throughout, all hardness re-
sults restrict to strict preferences whereas the positive results per-
mit indifference. Moreover, the hard problems are stated in their
most restricted form and imply NP-hardness for all less restricted
settings.

3.1. Hardness results

For our first result, suppose that a single edge has non-zero
weight. That is, there is an agent i and an object a such that
w(i,a) > 0 and otherwise the weights are zero. An allocation is
then welfare-maximizing if and only if it assigns a to i. Further-
more, say preferences are strict and complete (A; = A); an alloca-
tion is then Pareto-efficient if and only if it is obtained through
a serial dictatorship (Abdulkadiroglu and Sénmez, 1998). Hence,
there exists a Pareto-efficient, welfare-maximizing allocation if and
only if there exists a serial dictatorship that assigns a to i. This
problem, deciding whether such a serial dictatorship exists, is
known as SD FeasiBiLITY and shown by Saban and Sethuraman
(2015), Theorem 2) to be NP-complete for balanced problems.
Theorem 1 follows immediately.

Theorem 1. Deciding whether there exists a Pareto-efficient, welfare-
maximizing allocation is NP-complete even for balanced problems
with complete preferences in which a single edge has non-zero weight.

Proof. Checking Pareto-efficiency (Manlove, 2013, Section 6.2.2.1)
and welfare-maximality of an allocation (the Hungarian method of
Kuhn, 1955) can be done in polynomial time (even for unbalanced
problems with indifferences and incomplete preferences). Hence,
the problem is in NP. To show NP-hardness of our problem, we
reduce from SD FEASIBILITY as described above. O

Corollary 1 is an immediate implication of Theorem 1.

Corollary 1. CONSTRAINEDWELFAREMAX is NP-hard even for balanced
problems with complete preferences.

Proof. By contradiction, if we easily could find a constrained
welfare-maximizing allocation, then we just need to check whether
it assigns a to i. If it does, then there exists a Pareto-efficient,
welfare-maximizing allocation. If it does not, then no such alloca-
tion exists. But Theorem 1 shows that this is NP-complete. O

This construction shows that a polynomial-time approxima-
tion algorithm that finds a “good” but not necessarily constrained
welfare-maximizing allocation cannot give a meaningful worst-
case welfare-guarantee. That is, the welfare-difference between the
constrained welfare-maximizing allocation and a second-best allo-
cation can be arbitrarily large, w(i, a) — 0. Indeed, neither of the
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cases shown to be NP-hard in Theorems 1, 2 and 3 permits a
meaningful polynomial-time approximation.”

We proceed to derive related results by imposing different re-
strictions. Generally, edge weights can depend on both the agent
and the object, but for the upcoming results it suffices to re-
strict attention to object-based weights. That is, the social wel-
fare of assigning an object to an agent depends only on the object.
Theorem 2 shows that the NP-hardness result extends to the case
of object-based weights and complete preferences.

Definition 1 (Object-based weights). For each {i, j}JcN and
acAinA;, w(i, a) = w(j, a).

Theorem 2. CONSTRAINEDWELFAREMAX is NP-hard even under object-
based weights and complete preferences.

Proof. We reduce from the problem of assigning objects in a
Pareto-efficient way but to as few agents as possible. Finding such
a minimum size Pareto-efficient allocation is NP-hard (Abraham
et al., 2005).

Extend an arbitrary instance Z = (N,A,E,R,w) to Z* = (N,AU
A*,E*,R*,w*) such that the properties required in the statement
of Theorem 2 are satisfied for Z*. In particular,

» Add objects A* such that |A*| = |N|;

o Complete the preferences through a complete acceptability
graph: E* = N x (AUA*);

 New preference R} extends R;: the acceptable objects A; at 7 are
in the same order at the top of R}, followed by A* in any order,
followed by the unacceptable objects of Z;

e The object-based weights are w*(i,a)=0 for aeA and
w*(i,a) = 1 for ae A*.

In this way, Z* is guaranteed to have at least as many objects
as agents.

Let x* be a constrained welfare-maximizing allocation in Z*. By
Pareto-efficiency, as each of the |N| agents i prefers at least |A*| =
|N| objects in Z* to those unacceptable in Z, x} € A; U A*. Define the
corresponding allocation x in Z such that x; = xf if X7 € A; and x; =
@ if x¥ € A*. As x* is Pareto-efficient in Z*, x is Pareto-efficient in Z.
The welfare W(x*) is the number of assigned A*-object in x*, so the
number of unassigned agents in x. Therefore, if we can efficiently
find the constrained welfare-maximizing x* in Z*—that is, a Pareto-
efficient allocation that assigns the most A*-objects—then we can
efficiently find a minimum size Pareto-efficient allocation in Z. But
this is NP-hard. O

In some applications, there may exist an objective ranking of
the objects (Alpern & Katrantzi, 2009). That is, agents’ preferences
are derived from a common preference - on A and whenever an
agent compares two objects, she does so in accordance with the
common preference.

Definition 2 (Common preference - on A). For each ieN and {a,
b}cA;, aRib < azb.

Even if preferences are common in the sense that acceptable
objects are compared in the same way, an object may be accept-
able to some agents but not to others. Theorem 3 and its immedi-
ate corollary show that CONSTRAINEDWELFAREMAX remains NP-hard
even with object-based weights and common preferences.

Theorem 3. Deciding whether there exists a Pareto-efficient, welfare-
maximizing allocation is NP-complete even for balanced problems
with object-based weights and common preferences in which a sin-
gle edge has non-zero weight.

5 For Theorem 3, this follows by the same logic as for Theorem 1 as there again is
only one non-zero weight. For Theorem 2, inapproximability can be shown through
a construction similar to the one used in the proof of Theorem 2.

Table 1
Preferences over acceptable objects.

i i i3 i i dg  d7 iy g

a az as a az as aq as az
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Fig. 5. Acceptable pairs are connected by an edge.

Proof. We reduce from the NP-complete ExAcT-3-COVER decision
problem (Garey & Johnson, 1979). An instance of EXACT-3-COVER is
as follows. We are given C = {cq, ..., c3,} and B = {By, ..., Bn} such
that, for each B, € B, By = {c{, c5.c}} € C. We wish to determine
whether there is B’ € B such that each object in C is included in
exactly one B, € B'. That is, is there a partition of C into n ele-
ments of B? Next, we transform this instance of EXAcT-3-COVER
into its corresponding object allocation problem with preferences
in which a single edge has non-zero weight. The size of the lat-
ter problem is not much larger than the original one (polynomial
size in m + n). We show that the instance of EXAcT-3-CoVER has a
feasible solution if and only if the non-zero weighted edge can be
included in a Pareto-efficient allocation.

Define the total order > on C and, without loss, assume that
each By = {c!, c§. 4} is labeled accordingly: c{ >¢ ¢ >c c§. For each
By = {c}, c5.c4} € B, we create a subproblem (“gadget”) G, that in-
cludes objects B, and A; = {a!,...aj} and agents N, = {i{, ....i5}.
For k+#¢, N,NN, = A, nA; = A, N C = ¢. Moreover, no object in Ay
is acceptable to an agent in N,. We label the objects in A, “gadget-
specific’—they are only part of one gadget, and they are only ac-
ceptable to agents within this gadget. In contrast, the objects in C
can be part of multiple gadgets and acceptable to any agent. We
label them “common” objects. Preferences for an arbitrary gadget
G, are in Table 1 (as all gadgets are symmetric, we drop the ¢'s).
Fig. 5 shows the associated acceptability graph.

Let Ag = {a;, ....ag'} be the objects of “type” a§ and define the
total order >, on Ag. Add further a set No of n agents who top-
rank the objects in Ap according to >,, followed by the objects in
C according to > (. Add also a special agent i* and a special object
a* such that i* top-ranks Ap according to >4, then C according
to >, and last a*. Hence, a* is only acceptable to i*. All in all,
the object allocation problem contains agents N=NoUN;U---U
Np U {i*} and objects A=CUA;U---UAp U {a*}. (To ensure that
the problem is balanced, add 2n agents who find no object accept-
able.) Observe that there is a common preference = on A: let -
rank the gadget-specific objects as a; > --- > dg in order >, and
above the common objects, and then rank the common objects as
in >, and last rank a*. The object-based weights are such that
the only non-zero weight is w(i*, a*) > 0. Hence, we wish to de-
cide whether there exists a Pareto-efficient allocation that assigns
a* to i*.

In order to assign a* to i* in a Pareto-efficient way, all objects
in Ag and C must also be assigned. Consider an arbitrary gadget G,.
There is only one Pareto-efficient way of assigning aj to ig: namely,
through x, = {(i{. a9). ..., (i§. a§)}. Alternatively, we can assign the
common objects c§, c§, c§ through y,:

ye={(i5. ). (15 ¢5). (15 ¢3). (i3, @), ... (ig. @), (i, a%) }.

We can then assign aj to an agent in Np.
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Suppose that there exists a solution B’ € B to the instance of
EXAcT-3-CoVER. Define its corresponding allocation x as follows. For
each B, € B/, include the edges of y, in x together with an edge
(J, ag) for some jeNy. For each B, ¢ B/, include x, in x. Finally,
include the edge (i*, a*) in x. Then x is a constrained welfare-
maximizing allocation. It covers the common objects C and n ob-
jects in Ag in n gadgets, and then covers the remaining m — n ob-
jects in Ap in the remaining m —n gadgets. In this way, we can
assign a* to i* in a Pareto-efficient way.

In contrast, if there is no solution to the instance of EXAcT-3-
COVER, then we require more than n gadgets to cover C, leaving
too few agents to cover Ag. O

Corollary 2. CONSTRAINEDWELFAREMAX is NP-hard even for balanced
problems with object-based weights and common preferences.

Corollary 3 is immediate from the proof of Theorem 3 and com-
plements (Saban & Sethuraman, 2015)) result on SD FEASIBILITY for
the case of common but incomplete preferences.

Corollary 3. SD FEASIBILITY is NP-complete even for balanced prob-
lems with common but incomplete preferences.

3.2. Tractable cases

We proceed to conditions under which CONSTRAINEDWELFARE-
MAX is tractable. Theorem 4 shows that, in a sufficiently restricted
setting, we can use a Serial Dictatorship to find a constrained
welfare-maximizing allocation.

Theorem 4. CONSTRAINEDWELFAREMAX is polynomial-time solvable
for balanced problems with object-based weights and complete pref-
erences.

Proof. As the problem is balanced and the preferences com-
plete, all objects are assigned at every Pareto-efficient alloca-
tion. As weights are object-based, every Pareto-efficient allocation
creates the same welfare. The problem of finding a constrained
welfare-maximizing allocation is then reduced to finding a Pareto-
efficient allocation. This can be done efficiently through Serial
Dictatorship. O

A natural counterpart to common preferences is “common ac-
ceptability”: an object is acceptable to one agent whenever it is ac-
ceptable to all agents. However, an object that is not acceptable to
anyone adds little to the problem, so we consider only the special
case of complete preferences. When both common and complete,
preferences are “the same” for all agents. Next, Theorem 5 shows
that the Hungarian method can be used to find a constrained
welfare-maximizing allocation when all agents have the same pref-
erence. Compared to Theorem 4, there is now a trade-off between
Pareto-efficiency and welfare-maximization as the highest-valued
objects may be the least liked.

Theorem 5. CONSTRAINEDWELFAREMAX is polynomial-time solvable
under common and complete preferences.

Proof. Let A°CA be the maximal set of at most |N| objects such
that a=b and beA° imply aeA°. Pareto-efficiency implies that all
objects in A° must be assigned. To ensure that this is done, first ad-
just the weights by adding a large-enough constant K> 0 to w(i, a)
for each ie N and aA°.

If |A°| <|N| <|A|, then we need to assign some of the objects
outside A° as well. Let A*CA be the minimal set of at least |N|
objects such that a=b and beA* imply aA*. In the acceptability
graph, cut all edges to objects not in A*. This ensures that only ob-
jects in A* are assigned in the reduced problem. Apply the Hungar-
ian method to find a matching of maximum weight in the reduced

graph. This is a constrained welfare-maximizing allocation in the
original problem. O

In addition, CONSTRAINEDWELFAREMAX is also tractable when
all agents are indifferent between all objects acceptable to them.
Such dichotomous preferences are a special case of common pref-
erences.

Definition 3 (Dichotomous preferences). For each ieN and {a,
b}gA,-, a Ii b.

Theorem 6. CONSTRAINEDWELFAREMAX is polynomial-time solvable
under dichotomous preferences.

Proof. It is immediate that an allocation of maximum cardinal-
ity is Pareto-efficient under dichotomous preferences. To show the
converse, suppose for contradiction that x € X is Pareto-efficient but
that y e X is of larger cardinality than x. Then, in the symmetric dif-
ference between x and y, (x\y)uU(y\x), there is an alternating path
that starts and ends with an edge in y. Updating x by assigning
the objects along the path as in y allows one more agent to re-
ceive an object without another agent becoming unassigned. This
is a Pareto-improvement, contradicting that x is Pareto-efficient.
Next, add a constant K> 0 to all edge weights. For a sufficiently
large K, the weights are such that an allocation of larger cardinal-
ity has higher welfare than a smaller allocation. Hence, a welfare-
maximizing allocation in the new problem must be of maximum
cardinality and therefore Pareto-efficient. In particular, the alloca-
tion is constrained welfare-maximizing in the original problem. O

Furthermore, CONSTRAINEDWELFAREMAX is tractable when as-
signing a more preferred object leads to higher social welfare. Un-
der this condition, the planner’s interests are aligned with the
agents’ and the edge weights numerically represent the prefer-
ences.

Definition 4 (Aligned interests). For each ie N and {a, b}<A;, aR;
b < w(i,a) >w(,b).

Theorem 7. Under aligned interests, each welfare-maximizing alloca-
tion is Pareto-efficient.

Proof. Suppose that xeX is welfare-maximizing but Pareto-
dominated by yeX. Hence, for each ieN, y;R;x;, and, for
some jeN, y; P x;. Under aligned interests, y; R; x; <= w(i,y;) =
w(i,x;) and y; P; x; < w(j,y;) > w(j, ;). But then W(x) < W(y),
contradicting that x is welfare-maximizing. O

Hence, under aligned interests, finding a constrained welfare-
maximizing allocation is reduced to finding a welfare-maximizing
allocation. This can be done efficiently using the Hungarian
method.

Given the weights w, let M(w) € X be the set of welfare-
maximizing allocations. There can be several such allocations from
which we can make a particular selection through a small-enough
perturbation of the edge weights. To do so, let A>0 be the
welfare-difference between the welfare-maximizing x € M(w) and
a second-best allocation:

A=W(x)— max W(y).

yeX\M(w)

Define the perturbed weights m such that 7 (i,a) =w(i,a) +
8(i,a), 8(i, @)=0, and X(j4cpd(i, a)<A. It is immediate that
M(m) € M(w): the welfare of an allocation outside M(w) has
increased by less than A, so its welfare must remain smaller
than that of those in M(w). This intuition will be used to prove
Theorem 8.

Theorem 8 shows that there exists a Pareto-efficient, welfare-
maximizing allocation when the edge weights depend only on the
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agent. Moreover, the allocation can be found efficiently by apply-
ing the Hungarian method to a particular perturbed problem. In
contrast to Theorem 7, welfare-maximizing allocations need now
not be Pareto-efficient: for instance, permuting who gets what at
a Pareto-efficient, welfare-maximizing allocation does not reduce
welfare but may turn the allocation inefficient.

Definition 5 (Agent-based weights). For each ieN and {a, b}CA;,
w(i,a) = w(i, b).

Theorem 8. Under agent-based weights, there exists a Pareto-
efficient, welfare-maximizing allocation.

Proof. Create the perturbed 7 as follows from the agent-based w.
Add a small amount to w(i, a) for i's least preferred object a; then
add a slightly larger amount to w(i, b), i's second least preferred
object; and so on. Then M(r) € M(w) and m satisfies aligned in-
terests. By Theorem 7, each x e M(7r) is Pareto-efficient. O

Finally, we derive an additional result under positive and
object-based weights. Theorem 9 shows that each constrained
welfare-maximizing allocation is of maximum cardinality. That is,
it assigns the maximum number of objects. Thus, though Pareto-
efficiency may imply a loss in welfare, it can be obtained without
a loss in terms of the size of the allocation.

Theorem 9. Under positive and object-based weights, each con-
strained welfare-maximizing allocation is of maximum cardinality.

Proof. Let x<X be a constrained welfare-maximizing allocation. As
a first step, break ties “in favor of x”. That is, if agent i is indifferent
between objects a and x;, then replace i's preference R; by R; such
that x; P/ a. Indifferences that do not pertain to x are broken arbi-
trarily. Replacing the preferences with ties R with the strict pref-
erences R’ (weakly) shrinks the set of Pareto-efficient allocation.
However, as ties are broken in favor of x, x remains Pareto-efficient.
Moreover, welfare is unchanged, so x remains constrained welfare-
maximizing. Furthermore, the acceptability graph is unchanged, so
the set of allocations and their cardinalities is unchanged.

To obtain a contradiction, assume that there is y € X of larger
cardinality than x. Then, in the symmetric difference between x
and y, (x\y)U(y\x), there is an alternating path that starts and
ends with an edge in y. Label the agents and objects of this path
i1, ay, ..., i, a,. Without loss, assume that ay, is i,’s most preferred
object among those unassigned at x. Swap the objects along this
path to create zeX: specifically, set z; = ay, z;, = ap, and so on,
and otherwise zj = x;. As weights are object-based and positive,
W(z) =W (x) +w(in, ap) > W(x). If z is Pareto-efficient, then this
contradicts that x is constrained welfare-maximizing. Hence, z fails
one of the following conditions (Abraham et al., 2005; see also
Manlove, 2013, Section 6.2.2.1):

e Maximality (no unassigned object is acceptable to an unas-
signed agent);

o Trade-in-free (no agent prefers an unassigned object to her as-
signed object);

o Coalition-free (no group of agents can exchange their assigned
objects in a Pareto-improving way).

There are fewer unassigned agents and objects at z than at x.
Therefore, as x is Pareto-efficient and hence maximal, z is also
maximal. If z is not coalition-free, then make it so by repeatedly
performing Pareto-improving exchanges. As this does not change
the set of assigned objects and the weights are object-based, wel-
fare is unchanged. Assume that z is adjusted in this way until it is
coalition-free.

Then, it only remains that z is not trade-in-free: some agent
prefers an unassigned object to her assigned object. As x is Pareto-
efficient, x is trade-in-free. Hence, agent j € N\ {iy, ..., in} cannot

prefer an unassigned object to her assigned object z;, which either
remains x; or has improved further when making z coalition-free:
thus, z; R; x; and there are fewer, in terms of set inclusion, unas-
signed objects (namely, a,). Agent i; does not prefer an unassigned
object at x when she is unassigned, hence they are not acceptable
to her, so no unassigned object at z is acceptable to her. For iy,
zj, = an is chosen specifically as her most preferred unassigned ob-
ject at x (or improved further to make z coalition-free), so she can-
not be upset. Hence, for some 1 <k <n, i, prefers some unassigned
object b to her assigned object at z. Again, without loss, suppose
that b is i;’s most preferred unassigned object at x. Shorten the
path to iy, ayq, ..., i, b and repeat the argument.

After a finite number of repetitions, the path no longer can
be shortened. Neither the first nor the last agent of the path
is upset, so if and when the path only consists of two agents,
the corresponding ze X is Pareto-efficient. As noted, W(z) > W(x),
a contradiction. O

4. Integer programming and competitive equilibrium

In this section, we provide a method for finding a constrained
welfare-maximizing allocation in the general, unrestricted prob-
lem. Though this method is guaranteed to find a solution, it may,
in the worst case, require an exhaustive search through the entire
set of allocations.

To formulate the unrestricted problem as an integer program,
we will need to describe Pareto-efficiency through a set of linear
constraints. For this purpose, introduce a price pq € {0, ..., |A|} for
each object a. Together with an allocation x, (x, p) is a competitive
equilibrium (Gale, 1960) if the following conditions hold:

1. Each unassigned object a has price zero: a € A\ Uix; = pg =
0;

2. Each object b preferred to the assigned object a is more ex-
pensive: b P, a = x; = pq < Pp;

3. Each object b equally good as the assigned object a is no
cheaper: bl; a =x; = pq < pp-

Theorem 10 is a variation on the well-known second welfare
theorem. While similar conclusions have been established in re-
lated models (for instance, Roth and Postlewaite, 1977, Theorem 1),
we are not aware of any results that cover the case of Theorem 10.

Theorem 10. Allocation x € X is Pareto-efficient if and only if there
are prices p € {0, ..., |A|}* such that (x, p) is a competitive equilib-
rium.

Proof. Construct the directed envy-graph (A, SUT) as follows (see
Aziz, Bir6, Lang, Lesca, & Monnot, 2016; Abraham et al., 2005;
Cechlarova, Eirinakis, Fleiner, Magos, Manlove, Mourtos, Ocelakova,
& Rastegari, 2016). Each object acA is a node. The two types of
arcs (directed edges) S and T represent strict preference and ties,
respectively. If the agent assigned object a prefers object b, so
b P, a = x;, then include an arc (a, b) €S (that is, an arc from a to b).
Similarly, if b I; a = x;, then include an arc (a, b) € T. Furthermore, if
both object a and agent i are unassigned, then include an arc (a,
b)eS for each beA;. Note that, if aeA;, then this creates a self-
loop in the graph (x is not maximal). Finally, if object a is unas-
signed and there is b P, x;, then include an arc (a, b) €S. Again, if
a=>b, then there is a self-loop (x is not trade-in-free). Then, the
following conditions are equivalent:

A. Allocation x is Pareto-efficient;

B. There is no directed cycle in the envy-graph that contains at
least one strict-preference arc;

C. There are prices p such that (x, p) is a competitive equilib-
rium.
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We proceed to show this equivalence in three steps.

A = B. This is immediate. If there is such a directed cycle, then
swapping the objects along the cycle is a Pareto-improvement.

B = C. Remove the S-arcs and partition the nodes A into the
strongly connected components Ay, ...,An, of the sub-graph (A, T).
Hence, objects a and b belong to the same class A, if and only if
there is a path of T-arcs from a to b (and from b to a). There is
no S-arc between two objects in the same class: if {a, b}<A, but
(a, b) €S, then there is a directed cycle with a strict-preference arc
starting from (a, b) and continuing on the T-path from b back to
a, a contradiction. Next, create a new directed graph (A*, (§* UT*))
by replacing each strongly connected component A, of (A, T) by a
single node a; € A* = {ay,...,an} and include an arc (ai, a,)eS*
whenever there is ae A, and beA,, a#b, such that (a, b)eS. Oth-
erwise, if there is ae A, and beA, such that (a, b)eT, include an
arc (ay, a,)eT*. Hence, connect two components if they contain
objects connected in the envy-graph.

Suppose, to derive a contradiction, that (A*, S*UT*) has a di-
rected cycle C. If C consists of T*-arcs only, then the nodes of
the corresponding components are strongly connected. Hence, they
should belong to the same component; this is a contradiction to
the design of (A*, S*UT*). If C instead includes an S*-arc, then the
envy-graph contains a forbidden cycle. Hence, there are no directed
cycles in (A*, S*UT*). It is then well-known that there exists a
topological order p on A* such that (a, a;)eS*=p(a;) <p(a;) and
(ay, a¢)eT*=p(ay) <p(ag). As there are at most |A| nodes a, € A*,

we can fit each p(a,) in {0, ..., |A|}. We extend this to a weak topo-
logical order on the original objects A by setting p, = p(a,) for ev-
ery acAy.

Finally, we show that (x, p) is a competitive equilibrium. First,
each unassigned object makes out its own component and has no
incoming arcs. Therefore, its price can be set to zero. Second, if
agent i prefers object b to x; = a, so (a, b) €S, then pq < py. Third,
if agent i is indifferent between b and x; = a, then p, <p,, as re-
quired.

C = A. To derive a contradiction, suppose that x is not Pareto-
efficient. First, suppose that there is an improving path that ends
with an unassigned object. This object must have price zero. Fur-
thermore, the agent i who wants to exchange x; for the unassigned
object must be indifferent between them: otherwise, the price of x;
is negative. This continues along the cycle, all the way to the first
agent: at each step, the agent is indifferent between the object that
she is assigned at x and the object that she “points to” in the cycle.
Then no agent is better off (in the strict sense), a contradiction to
it being an improving path.

Suppose instead that there is a Pareto-improving exchange. As
we move through the cycle, the objects’ prices must be non-
decreasing: this as each agent “points” to an object at least as good
as the one they are assigned at x. But as we move through the cy-
cle, we eventually end up where we started, so prices cannot in-
crease either. Hence, all prices are equal. But then, again, no agent
is better off in the strict sense. O

Theorem 10 allows us to reformulate the problem of con-
strained welfare-maximization: we want to find the allocation of
highest welfare among those that can be supported by some prices
in a competitive equilibrium. We proceed to formulate the corre-
sponding integer program. Let the binary decision variables x € {0,
1)E indicate assignment: for each edge (i, a)eE, xi; €{0, 1} is such
that agent i is assigned object a whenever x;, = 1. Let the integer
decision variables p € {0, ..., |A]}* denote prices. The objective is
to maximize welfare:

Wx) = Y xaw(i,a). (M

(i,a)eE

We introduce some additional variables to help formulate the
constraints. Let the binary decision variables c indicate whether an
agent/object is covered in the allocation. For agent i and object a,

=) Xq and Co=) Xq. (2)

aeh; ieN

Let the binary variables s and t be derived from the preference
data. In particular, say agent i is assigned object a but finds object
b at least as good. If this is in the strict sense, b P, a, then s,, = 1;
if this is through a tie, b [; a, then ty, = 1:

Sap = ina and Loy = ina- (3)
ieN: ieN:
bP.a bl;a
To complete the formulation, we introduce the constraints. No
agent ie N receives more than one object and no object acA is
assigned to more than one agent:

<1 and c¢;<1. (4)

A Pareto-efficient allocation is necessarily maximal. Therefore, for
each edge (i, a) eE, at least one of i and a is covered in the alloca-
tion:

Ci+Ca=1. (5)

The remaining constraints ensure that (x, p) is a competitive equi-
librium. First, object a <A has zero price if it is unassigned:

CalAl = pa. (6)

If ¢g=0, then p, =0 as p,>0; if ¢ =1, then the constraint is
always satisfied as pq <|A|. Second, if the agent assigned a prefers
b, then b should be more expensive than a. For each {a, b}CA,

(1 =sap) (Al +1) + pp = pa + 1. (7)

If sy =1, then pp > pa+1, SO pp>pa; if s =0, then the con-
straint is always satisfied as |A|>p, and p, > 0. Third, if the agent
instead is indifferent between a and b, then b should be no cheaper
than a:

(1 —tap)|Al + Py = Pa. (8)
This completes our formulation. Theorem 11 follows immediately.

Theorem 11. Let (x*, p*) € {0, 1}E x {0, ..., |A|}* maximize (1) sub-
ject to (2) through (8). Then {(i,a) € E | x;, =1} is a constrained
welfare-maximizing allocation.

We can extend the integer program to incorporate that some
object is available in multiple copies, say to capture quotas in
school choice. If we instead treat (some of) the seats symmetri-
cally, then we can modify the program as follows.

Let g, € N denote the quota of object a. The previously binary
variables ¢, s, and t will now be integer-valued and we adjust the
corresponding constraints as follows. Eq. (4) is replaced by cq <qq.
Furthermore, we introduce new indicator variables fg, S, and
to replace cq, Sgp, and tg, in the formulas in the following way.
We introduce f; €{0, 1} to indicate whether a is fully assigned:
Ca < qa < fa=0. This is achieved through the following con-
straints:

faQa<ca and fo+qq>=co+1.

Egs. (5) and (6) are replaced by c; + fa > 1 and fy|A| > pq, respec-
tively. We also introduce §;, € {0, 1} to indicate whether s, is pos-
itive. To do so, add the constraints $,, <s,, and $;;|N| > sz Re-
place sy, by §y, in Eq. (7). Finally, make the analogous change for
typ: introduce its indicator fy, together with the two associated
constraints, and replace ty, by f,, in Eq. (8).
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Table 2

Results for the 2016 kindergarten allocation in Harku, Estonia.

Stable Pareto-efficient

DA 1A TTC CWM OPDA WM
Rank Pref. Dist. Pref. Dist. Pref. Dist.  Pref. Dist.  Pref. Dist.  Pref. Dist.
1 102 103 123 95 102 98 106 102 98 104 80 102
2 23 26 6 29 20 24 23 32 22 24 30 29
3 5 3 1 3 6 5 4 3 9 6 14 8
4 8 7 7 7 11 7 4 6 9 6 10 6
5 5 4 9 11 4 4 6 6 7 5 6 7
6 7 2 5 3 6 3 8 1 6 2 8 0
7 2 7 1 4 3 11 1 2 1 5 4 0
Average rank  1.82 1.8 1.63 191 1.85 2 1.74 164 186 175 216 1.6
Average distance 3398 3810 3789 3171 3319 3024
Blocking agents 0 21 34 26 31 45
Swaps in post-TTC 2 0 0 0 14 37

5. Estonian kindergarten allocation

In this section, we examine the 2016 kindergarten allocation in
Harku, Estonia (see Veski et al., 2017) in which each of 152 chil-
dren were to be assigned one out of 155 seats across seven kinder-
gartens. The data contains the families’ stated preferences and the
travel distances to the various kindergartens. In roughly 81% of the
cases, a closer school is preferred (hence, aligned interest is at least
partly satisfied). The edge weight between family i and kinder-
garten a is w(i,a) = D — d(i, a), where D is the maximum distance
in the data and d(i, a) is the distance between i and a. This en-
sures that edge weights are non-negative and higher for students
living closer. We examine the stable Deferred Acceptance (DA; the
student- and school-proposing versions yield the same allocation)
and the Pareto-efficient Immediate Acceptance (IA) and Top Trad-
ing Cycles (TTC). We give priority to families living closer to the
kindergarten and break ties randomly. We contrast these solutions
with the constrained welfare-maximizing solution (CWM), the un-
restricted welfare-maximizing solution (WM), and Optimal Priority
Deferred Acceptance (OPDA, see Appendix A). Table 2 shows the re-
sults which we discuss next (see Diebold and Bichler, 2017, for a
similar comparison of algorithms).

For each solution, we determine the number of families as-
signed their top-ranked kindergarten, their second-highest ranked
kindergarten, and so on. Similarly, we count the number of fam-
ilies assigned their closest kindergarten, second closest, and so
on. IA stands out by assigning most families their top choice but
also fewest families their closest kindergarten. OPDA, DA, CWM,
and WM assign most families to close kindergartens. This is con-
firmed by the average ranks for which IA and CWM/WM stand
out with regard to the preferences and distances, respectively.
By construction, WM minimizes the average distance. Imposing
Pareto-efficiency (CWM) increases the average distance by roughly
150 meters, but CWM still performs considerably better than the
priority-based solutions. The final two rows capture instability and
inefficiency. CWM reduces the number of blocking families com-
pared to TTC and WM. At CWM, a majority of blocking fami-
lies prefer a more distant kindergarten to the one at which they
are assigned. Moreover, there is an unpopular kindergarten that
never fills its seats and many of the children placed there have
justified envy. For the final row, we first determine the respec-
tive solutions and then apply TTC to find Pareto-improving swaps
or cycles (so the final allocation is Pareto-efficient). DA only re-
quires two families to swap assignments for the allocation to
be Pareto-efficient, whereas OPDA and WM require much greater
changes.

The case study also shows that CWM is operational in practice:
even though the IP used to solve CWM contains more than 1,000
variables and constraints, the solution is obtained within seconds.
Simulated problems many times the size of the case study are also
solvable in reasonable time (see Appendix B); turning to commer-
cial solvers and using more sophisticated techniques (Firat et al.,
2016) would likely push the boundary yet further.

While the improvement that CWM provides in terms of social
welfare is important, as shown by the court case of Example 1 and
the Boston school choice redesign to reduce busing costs, the solu-
tion may also have some drawbacks. Specifically, it is well-known
that solutions such as DA, TTC, and OPDA incentivize truthful re-
porting of preferences (Abdulkadiroglu and Sénmez, 2003) while
IA is manipulable. Next, we examine the strategic properties of
CWM and address whether it is realistic to expect agents to state
their true preferences when the solution is used to allocate the
objects.

6. Incentives

An agent’s preference is typically private information that she
reveals to the planner. In this section, we examine whether we
can select constrained welfare-maximizing allocations in such a
way that no agent ever benefits from misstating her preference.
We first find a positive result when the problem is sufficiently re-
stricted, and then show that manipulation is possible if these re-
strictions are relaxed. For now, we take as given that the weights
are set independently of the reported preferences.

To derive a positive result, we refer back to Theorem 4: for bal-
anced problems with object-based weights and complete prefer-
ences, Serial Dictatorship can be used to efficiently find a desirable
allocation. As Serial Dictatorship is not manipulable, we can select
constrained welfare-maximizing allocations in a non-manipulable
way under these restrictions. Note that this considers only manip-
ulations achieved by shuffling the preference list (that is, all ob-
jects are always acceptable).

Next, we relax each of the three conditions, one at a time. First,
Example 3 shows a beneficial manipulation when there are more
objects than there are agents.

Example 3. Let N = {1,2}, A={a,b,c}, and R; =R, be such that
aP; b P c. Edge weights are object-based with w(i,b) > w(i, c).
Then x = (a,b) and y = (b, a) are constrained welfare-maximizing.
Without loss, suppose that x is selected. Then agent 2 benefits
from reporting R, such that aP)cP)b: the unique constrained
welfare-maximizing allocation at (R, R}) is y.
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Second, we relax complete preferences. For the positive result,
we considered only manipulations achieved by shuffling the pref-
erence list. That is, agents could not alter whether an object was
acceptable or not. Example 4 shows that the result is overturned
when agents can state that some object is unacceptable.

Example 4. Let N={1,2}, A={a, b}, and R; =R, be such that
a P; b. Edge weights are object-based. Then x = (a, b) and y = (b, a)
are constrained welfare-maximizing. Without loss, suppose that x
is selected. Then agent 2 benefits from stating that b is unac-
ceptable: the unique constrained welfare-maximizing allocation is
then y.

Third, Example 5 shows that an agent may manipulate if
weights no longer are object-based.

Example 5. Let N={1,2,3}, A={a,b,c}, and R; =R, =R3 be
such that a P; b P; c. The unique non-zero edge weight is w(3,¢c) =
1. Then x=(a,b,c) and y=(b,a,c) are constrained welfare-
maximizing. Without loss, suppose that x is selected. Then agent
2 benefits from reporting R/, such that a P, ¢ P; b: the unique con-
strained welfare-maximizing allocation at (Ry, R}, R3) is y.

These findings are summarized in Theorem 12.

Theorem 12. Under object-based weights, complete preferences, and
with at least as many agents as objects, a constrained welfare-
maximizing allocation can be selected in a non-manipulable way. Re-
laxing either of these conditions may allow beneficial manipulation.

Whereas we so far have assumed that the weights are set inde-
pendent of the reported preferences, we would actually encourage
the practitioner to do otherwise (see also Chiarandini, Fagerberg,
and Gualandi, 2017, for a comprehensive study of weighting pref-
erences). For instance, in practice we may be limited to allocations
which include every agent. Such a constraint may clearly distort in-
centives as a simple option then is to report only the agent’s most
preferred object. This strategy may backfire if too many agents
adopt it, but otherwise it is an easy way to ensure one’s top choice.
A more interesting approach is to encourage agents to report com-
plete preferences, which would make it easier to find everyone an
object. The designer may announce that, whenever an agent re-
ports a complete preference, then the agent’s edge weights are in-
creased. Not only does this give incentives to report complete pref-
erences, but it also reduces the possibilities of agents manipulating
by truncating their preferences. Formally, once the weights depend
on the stated preferences, the preference revelation game is very
different. Depending on how it is set up, it may now either be
easier or even impossible to manipulate.® For large problems in
which it is impractical to report complete preferences, a natural
alternative is to require agents to report preferences of (at least) a
particular length. A possible manipulation may then be to fill the
reported preference with objects the agent is unlikely to get: the
agent top-ranks her favorite object and then lists only very popular
objects or objects bad with respect to the objective of the planner
(such as far-away schools).

Even if a mechanism is manipulable in theory, it does not
necessarily mean that it will be manipulated in practice. And
conversely, laboratory experiments have shown that, even for a
provably non-manipulable solution such as DA, experimental sub-
jects do not always report preferences truthfully (Chen & Son-
mez, 2006). There are some new theoretical concepts for ad-
dressing this behavior, such as strategy-proofness in the large

6 Taken to its extreme, once preferences influence weights, any solution can be
obtained as welfare-maximizing. For instance, to select the outcome of DA, then
we can set the weights to 0 or 1 depending on whether the agent is assigned the
object under DA. However, for all intents and purposes, this completely removes
the intended interpretation of “welfare maximization”.

(Azevedo & Budish, 2019) and obvious strategy-proofness (Li,
2017). Moreover, in line with the conclusions of Chiarandini et al.
(2017), the NP-hardness of the problem and the random selec-
tion among constrained welfare-maximizing solutions may make it
harder for agents to manipulate. To get a better understanding of
the manipulability of our solution, a more thorough Bayesian ap-
proach may be more realistic (but also more challenging) to use,
where we instead would consider the expected gains of manipula-
tion.

How would one manipulate the constrained welfare-
maximizing solution? In some cases, manipulation is counter-
intuitive (an agent may manipulate by reversing her preference),
but we can find a simple strategy by returning to the Estonian
kindergarten allocation of Section 5. In this case study, there is
one unpopular kindergarten that fails to fill its seats. By Pareto-
efficiency, no child is therefore assigned somewhere less preferred
than the unpopular kindergarten. Therefore, a child living relatively
far from the unpopular kindergarten and relatively close to her
preferred kindergarten is often able to guarantee herself her first
choice by ranking the unpopular kindergarten second. Among the
46 families not assigned their most preferred choice, a majority
are able to get their first choice by following this strategy (we
manipulate for one family at a time, keeping all other families’
preferences unchanged) but there are also some for whom it
does not pay off and the child instead is placed at the unpopular
kindergarten.

In summary, for understanding the actual manipulability of
CWM, one would need to further study its properties through so-
phisticated theoretical models and also test its practical manipula-
bility through laboratory and field experiments.

7. Concluding remarks

We have studied the problem of finding a constrained welfare-
maximizing allocation, that is, a Pareto-efficient allocation of high-
est welfare. This problem is NP-hard even under strong condi-
tions, but we have also identified settings in which the problem is
polynomial-time solvable. For the general problem, we formulated
an integer program. We used this program to solve a real-world
instance of kindergarten admissions in which edge weights repre-
sent travel distance, and it was quick to determine the solution.
However, there are still many open questions left to study.

Implicit throughout has been that Pareto-efficiency takes prece-
dence over welfare. (Under aligned interests or agent-based
weights, the order is irrelevant: we can attain Pareto-efficiency and
welfare-maximization simultaneously.) That is, the planner wants
to select the Pareto-efficient allocation of highest welfare. A differ-
ent approach is to define a measure of how Pareto-efficient an allo-
cation is and then select a welfare-maximizing allocation of “high-
est Pareto-efficiency”. This is left for future research.

Also outside the scope of the current paper, an interesting ex-
tension is to equip objects with “standard” priorities over agents
and, say, find the stable allocation of highest welfare. Extending
the model is unlikely to overturn the negative results but can be
interesting for the positive results. For instance, an extension of the
condition imposed in Theorem 7, aligned interests, is to align the
added priorities with the edge weights.

Another extension is to allow agents to receive multiple objects.
In this case, it is already challenging to elicit the preferences of the
agents over the bundles, as the number of bundles is exponential
in the number of objects. This is often resolved by eliciting ordi-
nal or cardinal preferences over single objects, and then extending
this to preferences over bundles through, for instance, responsive-
ness or additivity. However, in the cardinal setting it can already
be computationally hard to decide whether an allocation is Pareto-
efficient (Aziz et al., 2016). But in line with our positive results in
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Section 3, finding constrained welfare-maximizing solutions may
be still tractable under some conditions.

Appendix A. Solutions: Definitions and algorithms

In this section, we provide more formal definitions of the solu-
tions referred to throughout the paper. For the reader interested
in learning more, we refer to the excellent surveys by Manlove
(2013) and Haeringer (2017).

We adopt the terminology of Section 5 and refer to agents as
students and objects as seats at schools. We impose some restric-
tions compared to the model introduced in Section 2. First, every
school is acceptable to every student. Second, students have strict
preferences over schools (no indifferences). Third, each school a
has q, seats (its “quota”) and there are sufficiently many seats in
total to assign every student. Finally, weights represent the dis-
tances between the students and the schools as in Section 5.

Most of the mechanisms are priority-based in the sense that
students have different priorities at different schools. We examine
two types of priorities. First, “distance-based pri