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Abstract
In kidney exchange programmes patients with end-stage renal failure may exchange
their willing, but incompatible living donors among each other. National kidney
exchange programmes are in operation in ten European countries, and some of them
have already conducted international exchanges through regulated collaborations. The
exchanges are selected by conducting regular matching runs (typically every three
months) according to well-defined constraints and optimisation criteria, which may
differ across countries. In this work we give integer programming formulations for
solving international kidney exchange problems, where the optimisation goals and
constraints may be different in the participating countries and various feasibility cri-
teria may apply for the international cycles and chains. We also conduct simulations
showing the long-run effects of international collaborations for different pools and
under various national restrictions and objectives. We compute the expected gains of
the cooperation between two countries with different pool sizes and different restric-
tions on the cycle-length. For instance, if country A allows 3-way cycles and country
B allows 2-way cycles only, whilst the pool size of country A is four times larger
than the pool size of country B (which is a realistic case for the relation of Spain and
France, respectively), then the increase in the number of transplants will be about 2%
for country A and about 37% for country B.
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1 Introduction

When an end-stage kidney patient has a willing, but incompatible living donor, then
in many countries this patient can exchange his/her donor for a compatible one in
a so-called kidney exchange programme (KEP). The first national kidney exchange
programme was established in 2004 in the Netherlands in Europe (De Klerk et al.
2005). Currently there are ten countries with operating programmes in Europe (Biró
et al. 2018), the largest being the UK programme (Manlove and O’Malley 2014).

Typically thematching runs are conducted every threemonths on pools with around
50–300 patient-donor pairs. The so-called virtual compatibility graph represents the
patient-donor pairs with nodes and an arc represents a possible donation between the
corresponding donor and patient, that is found compatible in a virtual crossmatch test.
The exchange cycles are selected by well-defined optimisation rules, that can vary
across countries. The most important constraints are the upper limits on the length of
exchange cycles, for examples, two in France, three in the UK and Spain, and four in
the Netherlands (Biró et al. 2018). The main goal of the optimisation in Europe is to
facilitate asmany transplants as possible, i.e. tomaximise the number of nodes covered
in the compatibility graph by independent cycles. The corresponding computational
problem for cycle-length limits three or more is NP-hard, and the standard solution
technique used is integer programming (Abraham et al. 2007).

International kidney exchanges have already started in Europe between Austria and
Czech Republic (Böhmig et al. 2017) since 2016, between Portugal, Spain and Italy
since summer 2018, and between Sweden, Norway and Denmark in the Scandiatrans-
plant programme (STEP), built on the Swedish initiative (Andersson and Kratz 2016).
The Italy-Portugal-Spain collaboration is organised in a consecutive fashion, first the
national runs are conducted and then the international exchanges are sought for the
remaining patient-donor pairs. A related game-theoretical model has been studied in
(Carvalho et al. 2017). In the Scandinavian programme and in the Prague-Wien col-
laboration, the protocol is to find an overall optimum for the joint pool. In the latter
situation, the fairness of the solution for the countries involved can be seen as an impor-
tant requirement, which was studied in [13] with extensive long-term simulations by
proposing the usage of a compensation scheme among the countries.

A similar situation arises in the US kidney exchange problem, where the trans-
plant centres are the strategic agents (Ashlagi and Roth 2012, 2014; Ashlagi et al.
2015; Toulis and Parkes 2015). Most of the scientific studies focus on the problem of
incentivising the hospitals to register all of their patient-donor pairs, and not only the
hard-to-match ones, which often happens in practice as the majority of transplants are
still conducted within transplant centres, outside of the three national schemes (Agar-
wal et al. 2018). Novel suggestions of credit based schemes have also been studied
(Hajaj et al. 2015; Agarwal et al. 2018), and a similar system has been implemented in
the National Kidney Registry, which is the largest in the volume of transplants among
the three nationwide kidney exchange programme in the US.

In this study we focus on the collaboration of countries and a key aspect of this col-
laboration is the assumption that they all follow commonly agreed protocols. As such,
there is no need to incentivise countries to register their patient-donor pairs, unlike for
the American hospitals. We will however compare the consecutive and the joint pool
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scenarios in our simulations, as these are both used in practice. We will not consider
compensations, or any strategic issues, but wewill allow the countries to have different
constraints and goals with regard to the cycles and chains they may be involved in. In
particular, we will compare the benefits of the countries from international collabo-
rations when they have different upper bounds on their national cycles, and thus also
possible different constraints on the segments of the international cycles they are par-
ticipating in. As an example wemention the Austro-Czech cooperation, where Austria
requires to have all exchanges simultaneously, so they allow short national cycles and
short segments only, whilst in Czech Republic longer non-simultaneous cycles and
chains are also allowed. We formulate novel IP models for dealing with potentially
diverse constraints and goals in international kidney exchange programmes andwe test
two-country cooperation scenarios under different assumptions over their constraints,
the possibility of having chains triggered by altruistic donors, and the sizes of their
pools.

2 Model of international kidney exchanges

In a standard kidney exchange problem, we are given a directed compatibility graph
D(V , A), where the nodes V = {1, 2, . . . n} correspond to patient-donor pairs and
there is an arc (i, j) if the donor of pair i is compatible with the patient of pair
j . Furthermore we have a non-negative weight function w on the arcs, where wi, j

denotes the weight of arc (i, j), representing the value of the transplantation. In most
application the primary concern is to save as many patients as possible, so the weight
of each arc is simply equal to one. We will also focus on this case in our simulations.

Let C denote the set of cycles allowed in D, which are typically allowed to be of
length at most K . The solution of a classical kidney exchange problem is a set of
disjoint cycles of C, i.e., a cycle-packing in D. For cycle c ∈ C, let A(c) denote the
set of arcs in c and V (c) denote the set of nodes covered by c.1

In an international kidney exchange programmemultiple countries (N ) are involved
in the exchange, so the set of nodes is partitioned into V = V 1∪V 2∪· · ·∪V N , where
V k is the set of patient-donor pairs in country k. We have the following modifications
of the classical problem. Let Ak denote the arcs pointing to V k (so the donations to
patients in country k). Note that A = A1 ∪ A2 ∪ · · · ∪ AN . The weights of the arcs in
Ak should reflect the preferences of country k. (We may assume that these are scaled,
e.g., by having the same average scores in order not to bias the overall optimal solution
towards some countries.) Finally, let AN and AI denote the national and international
donations, i.e., A = AN ∪ AI .

In a global optimal solution, small cycles within the countries can have different
requirement than international cycles. Therefore we separate the two sets of cycles into

1 In addition, we can also consider altruistic donors, in which case we separate the node set into patient-
donor pairs Vp and altruistic donors Va , so V = Vp ∪ Va . The solution may contain exchange cycles
and chains triggered by altruistic donors. The latter can be conducted non-simultaneously, so different
restrictions may apply for them. In this paper we focus on cycles, but we note that one can reduce the
problem of finding chains to the problem of finding cycles by adding artificial patients to the altruistic
donors, who are compatible with all donors.
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C = CN ∪CI , where CN is the set of national cycles and CI is the set of international
cycles. We call the national parts of an international cycle segments, where a segment
is a path within a country, and the segments are linked by international arcs. An l-
segment is a path of length l − 1, with all the l nodes belonging to the same country.
Let S denote the set of all possible segments, and let Sk denote the set of segments
allowed in country k. For s ∈ S, let A(s) denote the set of (national) arcs and let V (s)
denote the set of nodes covered (in the same country). Note that a segment may also
consist of a single node, which corresponds to the case when an international donation
is immediately followed by another international donation.

We can have the following natural restrictions on the national and international
cycles.2 We may have upper limits on the

(C1) total length of an international cycle
(C2) length of national cycles for each country (possibly different)
(C3) length of segments in international cycles for each country (possibly different)
(C4) number of segments in a country within an international cycle
(C5) number of patient-donor pairs from a country in an international cycle
(C6) number of countries involved in an international cycle

3 Integer programming formulations

First we describe the two classical IP formulations of Abraham et al. (2007), the edge-
formulation and the cycle-formulation. We will build our general IP solutions on these
by using binary variables only.

3.1 Basic edge-formulation

We introduce a binary variable yi, j for each arc (i, j). Finding a maximum (value)
solution with cycles of length at most K can be

max
∑

i, j

wi, j yi, j (1)

such that

∑

i :(i, j)∈A

yi, j =
∑

i :( j,i)∈A

y j,i ∀ j ∈ V (2)

∑

j :(i, j)∈A

yi, j ≤ 1 ∀i ∈ V (3)

∑

(i, j)∈A(p)

yi, j ≤ K − 1 ∀p ∈ PK (4)

2 In addition we can also have different constraints for altruistic chains, and we may require that an
international chain may have to end in the same country where it started.
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wherePK denotes the set of K -length proper directed paths (i.e. which are not cycles),
and A(p) denotes the set of arcs in p.

3.2 Basic cycle-formulation

We introduce a binary variable xc for each cycle c ∈ C. The weight of a cycle c is
denoted by wc, which can be taken as the sum of the edge-weights in the cycle, or can
be defined differently.

max
∑

c∈C
wcxc (5)

such that

∑

c:i∈V (c),c∈C
xc ≤ 1 ∀i ∈ V (6)

One can use the cycle-formulation in our international setting after carefully search-
ing and selecting the potential national and international cycles.We used this technique
to solve the two-country problems, described in the last section. We defer the descrip-
tion of the cycle-search algorithm to the “Appendix”.

3.3 Linking the cycle-, segment-, and edge-variables

When the pre-selection of international cycles is complicated then we can use a mixed
formulation, where the national cycles are represented by binary variables, and the
international cycles are decomposed into allowable segments.We show how to link the
cycle and segment variablewith the edgevariables, and thus enforce various constraints
for different countries. Let zs be a binary variable of segment s ∈ S. Suppose that we
only work with national cycles CN with binary variables for all of them, but we do
not have variable for international cycles.

Besides the basic feasibility cycle-constraints (6) and edge-constraints (2), we need
the following sets of equations.

∑

j :(i, j)∈A

yi, j ≤
∑

c:i∈V (c)

xc +
∑

s:i∈V (s)

zs ≤ 1,∀i ∈ V (7)

The above condition (7) enforces that we can only cover a node by either a national
cycle or by a segment.

|A(c)| · xc ≤
∑

(i, j)∈A(c)

yi, j ∀c ∈ CN (8)

∑

(i, j)∈A(c)

yi, j − |A(c)| + 1 ≤ xc ∀c ∈ CN (9)
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Conditions (8) and (9) imply the inclusion of all the edge-variables in a national
cycle if and only if that cycle is selected in the solution.

Let e+(i) = ∑
( j,i)∈AI y j,i and let e−(i) = ∑

(i, j)∈AI yi, j two new indicator
variables showing whether node i is receiving or giving a kidney in an international
exchange. We set the following condition for each segment s with starting node u and
terminal node v.

(|A(s)| + 2) · zs ≤
∑

(i, j)∈A(s)

yi, j + e+(u) + e−(v) ∀s ∈ S (10)

∑

(i, j)∈A(s)

yi, j + e+(u) + e−(v) − |A(s)| − 1 ≤ zs ∀s ∈ S (11)

Conditions (10) and (11) imply the inclusion of all the edge-variables of a segment if
and only if that segment is selected as part of an international cycle in the solution.

3.4 Satisfying the special constraints

Here we give possible solutions for enforcing the requirements with IP formulations.
As we noted, by a careful cycle-search algorithm we can always satisfy all of the
conditions as long as the short upper bounds on the lengths of cycles exists. However,
if a country allows unbounded length cycles or chains then we shall use edge-variables
as well, combined with cycle and segment-variables. Furthermore, the usage of edge-
and segment-variables can also be useful to simplify the cycle-search algorithms and
rule out the infeasible cycles by edge-formulation constraints instead. Therefore, in
the following descriptionwe explain how to use the variants of the previously provided
edge-formulations for achieving the required conditions.

(C1) total length of an international cycle

In case we have only this requirement may use the basic edge-formulation to satisfy
this condition. However, if we also have restrictions on the national cycles then we
need an extended model that we will describe in the following point.

(C2) length of national cycles for each country

Regarding the edge-formulations, we may already need a more sophisticated formula,
in case the international cycle would allow a longer segment in a country than the
maximum length of the national cycles in that country. For this purpose, we can
introduce two new edge variables for each arc (i, j), ŷi, j and y̌i, j , where the former
denotes whether this edge is used in a national cycle and the latter denotes whether it
is used in an international cycle. We have yi, j = ŷi, j + y̌i, j , and for any arc in AI we
do not have ŷi, j , as this arc cannot be involved in a national cycle. We also have to
ensure consistency, so condition (2) should be written up separately for national and
international edge-variables for each node as follows.
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∑

i∈V
ŷi, j =

∑

i∈V
ŷ j,i ∀ j ∈ V (12)

∑

i∈V
y̌i, j =

∑

i∈V
y̌ j,i ∀ j ∈ V (13)

The reason behind this separation is to allow different upper bounds on the lengths
of the national and international cycles. For instance, if the international cycles have
upper bound K and in the meantime country k have upper bound Kk on the length of
its national cycles then we can achieve both by the following pair of conditions.

∑

(i, j)∈A(p)

y̌i, j ≤ K − 1 ∀p ∈ PK in D (14)

∑

(i, j)∈A(p)

ŷi, j ≤ Kk − 1 ∀p ∈ PKk
in Dk (15)

It is also important to note that after this separation we shall set the constraints
used for making the connections between the edge-, cycle- and segment-variables
accordingly. Namely, in the constraints for national cycles, (8) and (9), we shall replace
yi, j with ŷi, j , whilst in the constraints for segments, (10) and (11), we shall replace
yi, j with y̌i, j .

(C3) length of segments in international cycles for each country

To bound the length of national segments in international cycles, we can either search
the allowable segments and define segment variables for them, or we can satisfy these
constraints by using the international edge-variables. For instance if Lk is the upper
bound for the length of segments in country k then we need the following modified
edge-constraint.

∑

(i, j)∈A(p)

y̌i, j ≤ Lk ∀p ∈ PLk
in Dk (16)

(C4) number of segments in a country within an international cycle

Following the idea of Constantino et al. (2013) used for providing a compact for-
mulation for the basic problem, we propose to define layers in order to separate the
international cycles from each other. This will facilitate a simple way to set restrictions
for this and the final two points.

Suppose that we can have at most T international cycles in the solution (e.g.,
T ≤ |V |/2). For every t ∈ [1 . . . T ] we define binary edge-variables yti, j denoting
whether that edge is included in the t-th cycle. We set y̌i, j = ∑

t∈[1...T ] yti, j . We
replicate (2) for each layer, as follows.

∑

i∈V
yti, j =

∑

i∈V
ytj,i ∀ j ∈ V , t ∈ [1 . . . T ] (17)
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Now, we can restrict the number of segments from the same country k to be less
than or equal to λk with the following conditions.

∑

(i, j)∈AI∩Ak

yti, j ≤ λk ∀t ∈ [1 . . . T ] (18)

Note that the above formulation does not rule out the possibility of having multiple
international cycles in one layer, however, neither of them can have more than λk

segments in country k. Furthermore, if we want to enforce that an international cycle
can only have one segment from each country in a two-country programme thenwe can
simplify the constraints, as follows. We can separate the layers according to the nodes
from the first country that has outgoing arcs to the second country. Let the t-th such
node, i , have only variables yti, j for outgoing international transplants, which means
that this node can only be involved in an international cycle at the t-th layer. See more
about this idea at the end of this Section, where we describe the implementation of the
bounded-unbounded two-country case (i.e., Austria-Czech Republic collaboration) in
details.

(C5) number of patient-donor pairs from a country in an international cycle

By using again the above defined layers, we can easily set restrictions on the number
of pairs involved in an international cycle from one country. If this upper bound is βk

for country k then we can enforce this condition with the following constraints.

∑

(i, j)∈Ak

yti, j ≤ βk ∀t ∈ [1 . . . T ] (19)

(C6) number of countries involved in an international cycle

To achieve this restriction with edge-variables, we shall define a new indicator variable
for each country-layer pair, which shows whether this country is involved in an inter-
national cycle in that layer. Thus, let us define a binary variable btk for each country k
and layer t , which must be one if this country is involved in an international cycle at
this layer. This can be achieved with the following constraints.

∑

(i, j)∈AI∩Ak

yti, j ≤ btk · |V k | ∀k ∈ [1 . . . n], t ∈ [1 . . . T ] (20)

This implies that if there is an ingoing international transplant to country k at layer t
then btk must be equal to one (but otherwise it can be zero). If the number of countries
allowed in an international cycle is γ then we can enforce this condition with the
following constraint.

∑

k

btk ≤ γ ∀t ∈ [1 . . . T ] (21)
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Adding altruistic chains

We already noted that if we add the possibility of having altruistic chains, where their
lengths is similarly bounded as the cycles then we can simply treat them as cycles by
adding a dummy arc to the imaginary patient of the altruistic donor from all donors.
However, the length restrictions are different for the altruistic chains (which can be
reasonable, since these can be conducted non-simultaneously), in fact, they can even
be considered unbounded (aka. never ending chains (Rees et al. 2009)). In this case we
shall introduce new edge-variables corresponding to the possibility of conducting a
transplant in an altruistic chain. Furthermore, we may even separate them to variables
for national and international chains, if they have different restrictions.

An example: the case of Austria and Czech Republic

As an example, we describe the full IP-model for a problem setting that is representing
the cooperation between Austria and Czech Republic. Here Austria allows only short
national cycles and short segments, whilst Czech Republic allows unbounded national
cycles and unbounded segments in international cycles, and we require that every
international cycle has only one segment in each country. This IP formulation was
implemented and used in the simulations for the two-country cases, that we described
in Sect. 4.

Let V 1 denote the first country with bounded length cycles and segments (Austria)
and let V 2 denote the second country with unbounded length national cycles and
segments (Czech Republic). We introduce cycle and segment variables for V 1 (but
not for V 2) and we introduce edge-variables for A2 and AI (but not for the internal
edges in V 1). Furthermore, we introduce layers 1 . . . T , such that T is the number of
nodes in V 1 that has outgoing edge to V 2. For all the edges with edge variables yi, j we
introduce also the layer variables yti, j for every t ∈ [1 . . . T ], except the edges from
V 1 to V 2. For these edges we introduce only one layer variable, as follows. Suppose
that we order the nodes in V 1 that has outgoing edge to V 2 according to their indices
and let i be the t(i)-th node in this order. We will define one layer for each of these
nodes. We introduce a binary variable yt(i)i, j for every arc (i, j) ∈ AI , but these edges
will not have other layer variables. This will ensure that every international cycle has
only one segment in each country. Below we describe the complete IP formulation for
this special setting. Recall that all of our variables are binary.

max
∑

c∈C
|c|xc +

∑

(i, j)∈A

yi, j +
∑

s∈S
|s|zs

subject to:
∑

t∈[1...T ]
yti, j = yi, j ∀(i, j) ∈ A (22a)

∑

i∈V
yti, j =

∑

i∈V
ytj,i ∀t ∈ [1 . . . T ], j ∈ V (22b)

∑

j∈V
yi, j ≤ 1 ∀i ∈ V (22c)
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∑

c:i∈V (c)

xc +
∑

s:i∈V (s)

zs ≤ 1 ∀i ∈ V 1 (22d)

∑

j∈V 2

y j,i =
∑

s:s=(i,... )

zs ∀i ∈ V 1 (22e)

∑

i∈V 2

y j,i =
∑

s:s=(..., j)

zs ∀ j ∈ V 1 (22f)

∑

i ′∈V 2

yt( j)i ′,i +
∑

j ′∈V 2

yt( j)j, j ′ ≥ 2zs ∀i, j ∈ V 1, s = (i, . . . , j) (22g)

4 Simulations

We conduct long-term simulations with agents arriving and leaving the pool such as
in Santos et al. (2017), (e.g. with 3-months matching runs for 3 years). We restrict
our attention to maximising the size of the solutions, and do not consider scoring
methods or any other objective. We conduct the simulations for the two-country case,
as the effects of the cooperation for a country can already be tested on this simple
setting. The instances were generated by the web app developed by James Trimble
(https://jamestrimble.github.io/kidney-webapp/#/generator) using the Saidman gen-
erator parameter setting available in that application.

Cooperation policies:

We consider three basic policies for international cooperation:

(a) no cooperation: each country conducts its matching run separately.
(b) consecutive matching: each country conducts its national run first and then the

international run is conducted for the remaining pairs (as done in the Spanish–
Italian–Portuguese programme).

(c) merged pools: where the countries register all their pairs in a merged pool and
a global optimisation is conducted (e.g. Austria-Czech Republic and Sweden–
Norway–Denmark) while respecting local policy restrictions.

Differences between countries

Our main interest is to evaluate how the differences between the national pools and
the optimisation constraints effect the benefits of the countries involved in the collab-
oration.

Patient availability constraints:

1. size of pools: size ratios being 1:1, 3:4, 1:2, 1:4.

Local policy constraints:

2. different upper bounds on the length of the national cycles: 2:2, 2:3, 2:4, 3:3, 3:4,
4:4.
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International policy constraints:

3. the size of the international cycles: it is set to be the larger individual cycle bound.
4. the length of the segments in each country: it is set to one less than the individual

cycle bound
5. the number of segments in each country is unrestricted (the only case which allows

more than 2 segments is that of international 4-cycles, where we may allow 4
international transplants i.e. 4 segments)

In the summary tables we show how much each country is benefiting from the
cooperation, as compared to the baseline setting (no cooperation).

5 Case Study: Simulations involving two countries

To determine the benefits of international KEPs we conduct a case study involving two
countries which aim to develop a joint KEP and are concerned about the advantages
and disadvantages of cooperation between their KEPs. We compare the individual
benefits from the no cooperation case to the consecutive matching and merged pool
scenarios. We illustrate the differences between no cooperation and merged pools
cases with a small example in Fig. 1.

The simulation involves 20 instances each containing the compatibility information
for 1000 patient-donor pairs. For the sake of simplicity, although our model can handle
altruist donors (who start chains), for the case study we only consider the cyclic
exchanges among incompatible patient-donor pairs. The reason for this choice is to
be able to more clearly see the difference in cooperation (because adding chains may
dramatically increase the number of transplants in any given KEP stage). The length of
the considered time-frame for the simulated kidney exchange scenarios is 3 years with
matching runs scheduled every 3 months for each instance. Every agent is assigned
an uniformly distributed arrival time to the KEP and the patient-donor pairs stay in
the KEP for a maximum of 1 year (or 4 matching runs) after which they leave the
programme (which means that they opt for an alternative solution, such as having a
direct ABO-incompatible transplant after desensitisation or getting a deceased organ).

To understand the importance of the parameters of collaboration presented in Sect. 4
we conduct a sensitivity analysis by considering most of the combinations possible.
We illustrate the impact of both programme pool size and local policy constraints on
the cooperation of KEPs by:

1. examining the stage-by-stage amount of transplants and drop-out patients of the
programme in each country (see Fig. 2).

2. examining the total number of transplants resulting after 3 years for each participant
country (see Figs. 3, 4, 5, 6 and 7).

Technical information regarding the simulations

To find the maximum number of transplants for each KEP matching problem, the
state-of-the-art Gurobi solver was called from a Java implementation operating under
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Fig. 1 Graphical illustration of two cooperating countries, each permitting at most 3-cycles. Patient-donor
pairs are represented by arbitrarily labeled rectangles. Each circle configuration represents each country’s
PDP pool and arcs represent planned transplants. The top side showcases the no-cooperation scenario of
separate KEPs: 10/24 patients receive transplants in the left-side country, while 8/26 patients in the right-
side country receive transplants. In the bottom side the pools are merged and a single optimization stage is
performed for planning the transplants: the numbers are 12/24 (left) and 14/26 (right)

Ubuntu 16. More specifically, a total of 11520 KEP matching problems were solved
in order to obtain the comprehensive data briefly summarized in Figs. 2, 3, 4, 5, 6 and
7 and Tables 1 and 2. To achieve this, a single desktop computer (i7-7700K 4.5 GHz
processor and 8 GB RAM) has run for about 22h. Thus, the average is about 7 s for
solving each matching problem.

Explanation of the figures and tables

In the first row of Fig. 2 we consider a baseline scenario where two countries have the
same pool size (on average 41.6 patients arrive per stage or 500 during 3 years) and
same constraints (local and international cycle bound 3, no altruist donors).

Then, in the second rowof Fig. 2we demonstrate the effects of localKEPconstraints
on the matched pairs by only changing the local constraint in country 2 (now has
local cycle bound 2 and international cooperation can be done with 2-cycles and 3-
cycles with only one participant patient-donor pair in country 2). Note that the patient
compatibility and arrival time to the programme was not modified.
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Fig. 2 Plots detailing the amount of transplants during each stage of the KEP and separately for each
country (country 1 on the left side and country 2 on the right). The first three rows each containin two plots
showcasing a different scenario: (1:1 size, 3:3 bounds), (1:1 size, 3:2 bounds) and (2:1 size, 3:3 bounds),

respectively. The bottom row describes individual relative improvement merged transplants
local transplants for country 1

(left) and country 2 (right)
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Fig. 5 Country 1 has cycle bound 2, 100% pool size

In the third row of Fig. 2, we show the impact of pool size on the number of
transplants by only removing half of the patients inside the pool of country 2 (they
never register to the KEP). Note that the patient compatibility and arrival time to the
programme for the remaining patients was not modified.

Finally, the bottom row of Fig. 2 shows the relative improvement in the number of
transplants defined as: the number of transplants obtainable by merged KEP divided
by the number of transplants that would have been achieved by the respective country’s
local KEP.
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Fig. 7 Country 1 has cycle bound 4, 100% pool size

In every scenario the objective is simply to maximise the number of transplants.
There are three settings for collaboration: no cooperation (i.e. separate KEPs, baseline
scenario), consecutive matchings (each country runs a local KEP optimisation and
then the remaining patient pools enter a joint KEP) and full collaboration (a single
KEP for both countries).

Figs. 3, 4, 5, 6 and 7 describe the improvement resulting from merged KEP col-
laboration. We define as benefit of collaboration for each participating country the
following ratio: the number of transplanted patients belonging to a specific coun-
try obtained from merged collaboration over the number of transplants that can be
achieved without any collaboration (local KEP). In this context, a benefit of 1 means
no change, while 1.5 means that the number of transplants has increased by 50%.
These figures are a result of a sensitivity analysis experiment where the effects of
local country bounds and size limitations are explored. The information is also dis-
played in numeric format in Tables 1 and 2. The listed values represent the number of
performed transplants (for each country) measured at the end of the 3 year programme
and the values are averages of 20 instances (each instance runs for 12 KEP stages).

Experimental results discussion

Our experiments reveal the following observations:
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Table 1 Number of transplants in each country (average of 20 instances)

C1 C2 C1 C1 C1 C2 C2 C2
Bound Bound Local Consecutive Merged Local Consecutive Merged

2 2 236.3 244 247.5 235.7 243.9 251.2

2 3 236.3 239.45 250.65 268.2 271.2 295.15

2 4 236.3 238.7 246.9 271.25 273.6 304

3 2 265.3 269.1 295.35 235.7 240.3 250.75

3 3 265.3 267.35 273 268.2 269.95 277.65

3 4 265.3 267 266.7 271.25 272.7 287.85

4 2 269.05 272.05 306.45 235.7 239.5 244.15

4 3 269.05 270.05 288.15 268.2 269.45 266.55

4 4 269.05 270.1 275.4 271.25 272.05 279.6

Same sized pools, different policy constraints

1. On average, when countries collaborate, they do not lose out in terms of total
number of transplants after 3 years even without enforcing individual rationality
constraints.

2. The merged KEP generally shows much better improvement in the number of
transplants than the consecutive KEP for less restricted countries. The consecutive
KEP seems more significant (closer to the merged KEP results) for more restricted
cases (see 2:2 bound case in Table 1).

3. The size of the KEP pool is a significant factor and positively impacts all forms of
collaboration (see Figs. 5, 6 and 7 and row 3 in Fig. 2).

4. When a smaller country (in terms of KEP pool size) collaborates with a larger
country, the smaller country sees greater benefit than the larger country, while the
larger country usually does not lose transplants over what they can achieve by
themselves.

5. All things being equal, the partner with the larger KEP pool is preferred. However,
the restriction level of the partner is usually more significant to the benefit gained
from collaboration. For an example on how a smaller partner is preferred if they
are more restricted than an equally sized partner, refer to Fig. 6: the height (benefit)
at (bound, si ze) coordinates (2, 3

4 ) is greater than the benefit at (3,
4
4 ) for country

1 (left side).
6. Because of our policy to allow international cycles that are at most the length of the

larger cycle bound of the two partners, we arrive at an interesting observation. It
appears that it is better for a country to have a more restricted partner when they are
both the same size. That is because the more restricted partner will underutilise his
own KEP pool, allowing for international transplants that help the less restricted
country to achieve a better outcome in terms of the number of their own transplants.

6 Conclusion

We studied the multi-country kidney exchange problem, where the participating coun-
tries may have different constraints and objectives on their national cycles and chains
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Table 2 Number of transplants in each country (average of 20 instances). Country 1 has fixed pool size of
100% and cycle bound 3, Country 2 has varying pool size and varying policy constraints

C2 C2 C1 C1 C1 C2 C2 C2
Bound Size Local Consecutive Merged Local Consecutive Merged

2 1/4 265.3 270.3 270.7 47.3 50.45 64.75

2 2/4 265.3 270.85 276.15 105.2 109 127.8

2 3/4 265.3 268.8 286.25 172.3 176.65 191.45

2 4/4 265.3 269.1 295.35 235.7 240.3 250.75

3 1/4 265.3 269.1 268.2 54.9 56.8 67.8

3 2/4 265.3 269.1 272.1 121.1 123.25 133.3

3 3/4 265.3 267.9 275.1 196.6 198.45 205.45

3 4/4 265.3 267.35 273 268.2 269.95 277.65

4 1/4 265.3 268.3 262.75 56.15 58.1 75.65

4 2/4 265.3 268.65 265.95 123.7 125.75 143.2

4 3/4 265.3 267.15 264.8 200.1 202.25 219.55

4 4/4 265.3 267 266.7 271.25 272.7 287.85

and the parts of the international cycles and chains they are involved in. We formu-
lated IP-models to describe various reasonable conditions by extending the classical
cycle- and edge-formulation models with new segment variables and with constraints
linking the three types of variables. These formulations are particularly useful if some
participant country has no bounds of the lengths of the cycles or altruistic chains.

In the simulation part we tested the two-country scenario focusing on the depen-
dence of the countries’ benefits on the sizes of their pools, and their restrictions. The
simulations are realistic with regard to the current practices in Europe and can provide
interesting consideration for the decision makers. Let us take Spain as an example,
where three-way exchanges are allowed and consider its cooperation with another
European country supposing that they have the same pool size. If France is the other
country with cycle-length bound 2 then France will gain around 6%. For the UK with
cycle-bound 3 the gain is around 3.5%, and for the Netherlands with cycle-bond the
gain is around 6%.

We briefly described the way that altruistic chains can be treated in this frame-
work, but in a more extensive study one could consider the particular challenges and
constraints related to them. In a potential follow up paper one could also extend this
study by considering also the quality of the transplants, rather than only the number of
transplants, which is the primary, but not the only goal of the current kidney exchange
programmes.
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Appendix

Hereby we describe the cycle-search algorithm used in our simulations. An important
fact is that there very little data dependency, meaning that the code is highly par-
allelizable. In our implementation we simply parallelize by the outermost for loop,
distributing each i to a different worker thread and then collect the results back to the
main thread after each worker thread is finished. We use Java and Java Threads for a
simple and portable solution.

Algorithm CycleSearch(Set V ) adds cycle variables to the model that respect all the constraints. The
functions in bold are defined separately. Variable InternationalCycleLength is assumed to be a globally
available parameter.
1: for i ← 1, |V | do
2: for j ← i + 1, |V | do
3: if (i, j) ∈ A and ( j, i) ∈ A then
4: if IsValidCycle((i, j)) then
5: add cycle (i, j) to model

6: if InternationalCycleLength < 3 then
7: continue
8: for k ← j + 1, |V | do
9: if (i, j) ∈ A and ( j, k) ∈ A and (k, i) ∈ A then
10: if IsValidCycle((i, j, k)) then
11: add cycle (i, j, k) to model

12: if (i, k) ∈ A and (k, j) ∈ A and ( j, i) ∈ A then
13: if IsValidCycle((i, k, j)) then
14: add cycle (i, k, j) to model

15: if InternationalCycleLength < 4 then
16: continue
17: for � ← k + 1, |V | do
18: if (i, j) ∈ A and ( j, k) ∈ A and (k, �) ∈ A and (�, i) ∈ A then
19: if IsValidCycle((i, j, k, �)) then
20: add cycle (i, j, k, �) to model

21: if (i, j) ∈ A and ( j, �) ∈ A and (�, k) ∈ A and (k, i) ∈ A then
22: if IsValidCycle((i, j, �, k)) then
23: add cycle (i, j, �, k) to model

24: if (i, k) ∈ A and (k, j) ∈ A and ( j, �) ∈ A and (�, i) ∈ A then
25: if IsValidCycle((i, k, j, �)) then
26: add cycle (i, k, j, �) to model

27: if (i, k) ∈ A and (k, �) ∈ A and (�, j) ∈ A and ( j, i) ∈ A then
28: if IsValidCycle((i, k, �, j)) then
29: add cycle (i, k, �, j) to model

30: if (i, �) ∈ A and (�, j) ∈ A and ( j, k) ∈ A and (k, i) ∈ A then
31: if IsValidCycle((i, �, j, k)) then
32: add cycle (i, �, j, k) to model

33: if (i, �) ∈ A and (�, k) ∈ A and (k, j) ∈ A and ( j, i) ∈ A then
34: if IsValidCycle((i, �, k, j)) then
35: add cycle (i, �, k, j) to model
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Function IsValidCycle(Cycle c) returns Boolean: whether cycle variable must be added to model.
MaxCycleLengthcountry is a globally available parameter. The Country function returns the country affili-
ation of the PDP. Other functions are defined separately.
1: if IsLocal(c) and |c| ≤ MaxCycleLengthCountry(c1) then
2: return true
3: else if CheckCountries(c) and CheckSeg(c) then
4: return true
5: return false

Function IsLocal(Cycle c) returns Boolean: whether Cycle c is not an international cycle. The Country
function returns the country affiliation of the PDP.
1: for i ← 2, |c| do
2: if Country(c1) 
= Country(ci ) then
3: return false
4: return true

Function CheckCountries(Cycle c) returns Boolean: whether the country constraints are verified for
Cycle c. Variables that are not initialized here are assumed to be globally available parameters. The Country
function returns the country affiliation of the PDP.
1: for country ← 1,NumCountries do
2: Countcountry ← 0

3: for i ← 1, |c| do
4: country ← Country(ci )
5: Countcountry ← Countcountry + 1
6: if Countcountry > MaxCountcountry then
7: return false
8: participants ← 0
9: for country ← 1,NumCountries do
10: if Countcountry > 0 then
11: participants ← participants + 1

12: if participants > MaxParticipantCountries then
13: return false
14: return true
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Function CheckSeg(Cycle c) returns Boolean: whether the segment constraints are verified for Cycle c.
Variables that are not initialized here are assumed to be globally available parameters. TheCountry function
returns the country affiliation of the PDP.
1: for i ← 1, |c| do
2: NodeList.append(ci )

3: NodeList.append(c1)
4: seglength ← 0
5: for country ← 1,NumCountries do
6: NumSegmentscountry ← 0

7: for i ← 1, length(NodeList) − 1 do
8: source ← NodeListi
9: target ← NodeListi+1
10: if Country(source) = Country(target) then
11: seglength ← seglength + 1
12: if seglength > MaxSegmentLengthCountry(target) then
13: return false
14: else
15: seglength ← 0
16: NumSegmentsCountry(target) ← NumSegmentsCountry(target) + 1
17: if NumSegmentsCountry(target) > MaxSegmentsCountry(target) then
18: return false

References

Abraham DJ, Blum A, Sandholm T (2007) Clearing algorithms for barter exchange markets: enabling
nationwide kidney exchanges. In: Procedings of EC ’07: the 8th ACM conference on electronic
commerce. ACM, pp 295–304

AgarwalN,Ashlagi I,AzevedoE,FeatherstoneCR,KaradumanÖ(2018)Market failure in kidney exchange.
Technical report, National Bureau of Economic Research

Andersson T, Kratz J (2016) Pairwise kidney exchange over the blood group barrier. Lund University
Department of Economics Working Paper 2016:11

Ashlagi I, Fischer F, Kash IA, Procaccia AD (2015) Mix and match: a strategyproof mechanism for multi-
hospital kidney exchange. Games Econ Behav 91:284–296

Ashlagi I, Roth A (2012) New challenges in multihospital kidney exchange. Am Econ Rev 102(3):354–359
Ashlagi I, Roth AE (2014) Free riding and participation in large scale, multi-hospital kidney exchange.

Theor Econ 9(3):1
Biró P, Haase B et al (2018) Building kidney exchange programmes in Europe—an overview of exchange

practice and activities. Transplantation (to appear)
Böhmig GA, Fronek J, Slavcev A, Fischer GF, Berlakovich G, Viklicky O (2017) Czech–Austrian kidney

paired donation: first European cross-border living donor kidney exchange. Transpl Int 30(6):638–639
Carvalho M, Lodi A, Pedroso JP, Viana A (2017) Nash equilibria in the two-player kidney exchange game.

Math Program 161(1–2):389–417
Constantino Miguel, Klimentova Xenia, Viana Ana, Rais Abdur (2013) New insights on integer-

programming models for the kidney exchange problem. Eur J Oper Res 231(1):57–68
DeKlerkM, Keizer KM, Claas FHJ,Witvliet M, Haase-Kromwijk B,WeimarW (2005) The Dutch national

living donor kidney exchange program. Am J Transpl 5(9):2302–2305
HajajC,Dickerson J,HassidimA, SandholmT, SarneD (2015) Strategy-proof and efficient kidney exchange

using a credit mechanism. In: Proceedings of the 29th AAAI conference on artificial intelligence, pp
921–928

Klimentova X, Santos N, Pedroso JP, Viana A (2019) Fairness models for multi-agent kidney exchange
programs. Working paper

Manlove DF, O’Malley G (2014) Paired and altruistic kidney donation in the UK: algorithms and experi-
mentation. ACM J Experiment Algorithm 19(2):21 article 2.6

123



IP solutions for international kidney exchange programmes

Rees MA, Kopke JE, Pelletier RP, Segev DL, Rutter ME, Fabrega AJ, Rogers J, Pankewycz OG, Hiller J,
Roth AE, Sandholm T, Ünver MU, Montgomery RA (2009) A nonsimultaneous, extended, altruistic-
donor chain. New Engl J Med 360(11):1096–1101

Santos N, Tubertini P, Viana A, Pedroso JP (2017) Kidney exchange simulation and optimization. J Oper
Res Soc 12:1–12

Toulis P, Parkes DC (2015) Design and analysis of multi-hospital kidney exchange mechanisms using
random graphs. Games Econ Behav 91(Supplement C):360–382

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Radu-Stefan Mincu1 · Péter Biró2,3 ·Márton Gyetvai2,3 · Alexandru Popa1 ·
Utkarsh Verma4

1 Department of Computer Science, University of Bucharest, Bucharest, Romania

2 Institute of Economics, Hungarian Academy of Sciences, Budapest, Hungary

3 Department of Operations Research and Actuarial Sciences, Corvinus University of Budapest,
Budapest, Hungary

4 Department of Industrial Engineering and Operations Research, IIT, Bombay, India

123

http://orcid.org/0000-0003-2613-582X

	IP solutions for international kidney exchange programmes
	Abstract
	1 Introduction
	2 Model of international kidney exchanges
	3 Integer programming formulations
	3.1 Basic edge-formulation
	3.2 Basic cycle-formulation
	3.3 Linking the cycle-, segment-, and edge-variables
	3.4 Satisfying the special constraints
	(C1) total length of an international cycle
	(C2) length of national cycles for each country
	(C3) length of segments in international cycles for each country
	(C4) number of segments in a country within an international cycle
	(C5) number of patient-donor pairs from a country in an international cycle
	(C6) number of countries involved in an international cycle
	Adding altruistic chains

	An example: the case of Austria and Czech Republic

	4 Simulations
	Cooperation policies:
	Differences between countries

	5 Case Study: Simulations involving two countries
	Technical information regarding the simulations
	Explanation of the figures and tables
	Experimental results discussion

	6 Conclusion
	Acknowledgements
	Appendix
	References




