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Abstract: It can be stated that in the fine chemical industries, especially in the pharmaceutical industry,
large amounts of liquid waste and industrial waste solvents are generated during the production
technology. Addressing these is a key issue because their disposal often accounts for the largest
proportion of the cost of the entire technology. There is need to develop regeneration processes that
are financially beneficial to the plant and, if possible, reuse the liquid waste in the spirit of a circular
economy, in a particular technology, or possibly elsewhere. The distillation technique proves to be a
good solution in many cases, but in the case of mixtures with high water content and few volatile
components, this process is often not cost-effective due to its high steam consumption, and in the
case of azeotropic mixtures there are separation constraints. In the present work, the membrane
process considered as an alternative; pervaporation is demonstrated through the treatment of
low alcohol (methanol and ethanol) aqueous mixtures. Alcohol-containing process wastewaters
were investigated in professional process simulator environment with user-added pervaporation
modules. Eight different methods were built up in ChemCAD flowsheet simulator: organophilic
pervaporation (OPV), hydrophilic pervaporation (HPV), hydrophilic pervaporation with recirculation
(R-HPV), dynamic organophilic pervaporation (Dyn-OPV), dynamic hydronophilic pervaporation
(Dyn-HPV), hybrid distillation-organophilic pervaporation (D + OPV), hybrid distillation-hydrophilic
pervaporation (D + HPV), and finally hybrid distillation-hydrophilic pervaporation with recirculation
(R-D + HPV). It can be stated the last solution in line was the most suitable in the terms of composition,
however distillation of mixture with high water content has significant heat consumption. Furthermore,
the pervaporation supplemented with dynamic tanks is not favourable due to the high recirculation
rate in the case of tested mixtures and compositions.

Keywords: process wastewater; ethanol-water separation; methanol-water separation; pervaporation;
hybrid operation

1. Introduction

Nowadays, one of the most important problems is the protection of the quality and quantity
of our water resources. Unlimited amounts of water have been available since man’s appearance.
On the other hand, water demand is increasing day by day, as the population, cultural and social
needs are also increasing, as well as the rapid industrial development that is taking place. Pollution of
natural waters is mainly caused by industrial plants and agricultural activities. Industrial wastewater
is causing increasing difficulties, which is why regulations for wastewater treatment are also becoming
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more stringent to protect the environment. These rules force emitters to reduce emissions of various
industrial pollutants, to recycle, and use valuable by-products and waste using new technology.
Separation of various organic substances used in industry, such as alcohol, from process wastewater is
an important task of environmental protection.

Separation of liquid waste mixtures is a field that has been significantly and thoroughly studied
not only for environmental engineering but also for other engineering sciences. Liquid mixtures
are often non-ideal, with very different behaviour from the ideal. In many cases, they form an
azeotrope that cannot be separated by conventional distillation methods. Separation of non-ideal
azeotrope-containing mixtures is often complex and serious challenge. Therefore, there is need
for hybrid process that can efficiently and economically separate azeotropic mixtures, such as
pressure change, extractive, homogeneous azeotropic and heterogeneous azeotropic distillation [1–9],
hybrid distillation-pervaporation process [10–15] extractive heterogeneous azeotropic distillation
(EHAD) [16–18] and hydrophilic or organophilic pervaporation (HPV, OPV) [19–24]. It can be mentioned
that volatile organic compounds (VOCs) [25,26] can be separated from wastewater by pervaporation
membranes and distillation processes, e.g., ethyl acetate-ethanol [27,28], acetone-butanol-ethanol [29],
isobutanol [30,31], isopropanol [32–35], tetrahydrofuran (THF) [36], ethanol [37–39], methanol [35,40].

The hybrid distillation-pervaporation process is considered as a clean technology and it has
potential savings in energy because of reduced thermal and pressure requirements. This process
allows using the heat of the distillation to increase the efficiency of the pervaporation process and
leads consequently to potential savings in energy costs [41]. So, this hybrid separation process is
energetically more efficient compared to conventional distillation.

Tusel and Ballweg [42] examined a system combining distillation column followed by two
pervaporation units with different types of hydrophilic membrane. The first step was a ‘high flux-low
selectivity’ membrane to split the azeotrope mixtures. The second step was a ‘low flux-high
selectivity’ membrane as a polishing. In this separation process, the pervaporation membrane
modules were operated at 72 ◦C, 3 bars. The feed at 15 ◦C contained 8.8% by weight ethanol
and 12,720 kg/h. Ethanol was concentrated from 8.8 w% to 99.8 w%. The ethanol flow was
1103 kg/h. In addition to the hybrid distillation-pervaporation process, pervaporation can also
be combined with other systems to separate mixtures, e.g., pervaporation-crystallization (PC)
process [43], pervaporation-microfiltration-osmotic distillation three-stage hybrid process [44],
reverse osmosis-pervaporation hybrid process [45].

Pervaporation is a membrane operation where a phase change occurs. In the last ten years,
pervaporation has been considered one of the most dynamically developing membrane separation
operations. The main advantage of pervaporation is the energy-saving operation. The pervaporation
requires lower energy consumption than other technologies, in many cases 50–70% less [46]. Further,
this is an environmentally friendly operation because not require to use of additional chemicals or
materials [47]. The pervaporation membrane can be used to separate azeotropic mixtures. Nowadays,
within the more stringent requirements of sustainable development, the environmentally friendly
technology of pervaporation can provide a concrete response and a real solution for many separation
processes, even on a larger, industrial scale [48–51]. The pervaporation process is used to dehydrate
organic compounds [52–56], to remove small amounts of undesirable organic compounds from
water-organic mixture [56–59], and to separate organic compounds from an organic mixture [60–63].
The water-alcohol separation was first used to study and apply the pervaporation process in the
chemical industry [64,65]. The main future trends can be structured in two research strategies [66]:

Approach I.: Improving the predictive power of mass flow models in pervaporation to extrapolate
its operational performance under other conditions. These models can be implemented in the general
simulation and optimization phase of hybrid processes that integrate pervaporation with other
separation units (pervaporation-distillation).

Approach II.: Simulation and optimization of hybrid processes, calculation of the required
membrane performance. Empirical or semiempirical simple models can then be used under the
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selected operating conditions to obtain the information needed to achieve the required membrane
performance (effect of temperature, material, microstructure, etc.).

The ethanol-water mixture can be considered as a minimum boiling point homogeneous azeotropic.
Figure 1 shows the equilibrium diagram of the ethanol-water mixture. The azeotropic composition
depends on the pressure. By changing the pressure, the azeotropic nature of the system may cease.
The ethanol-water mixture has a so-called ethanol content of 95.63 w% azeotropic point at 1 bar [48].
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Pervaporation of ethanol-water mixtures using hydrophilic zeolite NaA membranes was reported
by Shah et al. [68]. The total flux for the ethanol-water mixture was found to vary from 2 to 0.05 kg/m2/h
at 60 ◦C as the feed solvent concentration was increased from 0 to 100 w%. The zeolite membranes
exhibit high selectivities (separation factors between 1000 and 5000) over the entire range of ethanol
concentrations [68]. Pervaporation separation of alcohol-water mixtures includes ethanol-water with
PDMS/PTEE membrane has also been studied by Zhang et al. [69]. The PDMS/PTEE membrane was
made of polydimethylsiloxane (PDMS) cross-linked with n-heptane on a polytetrafluoroethylene
(PTFE) membrane substrate with a thickness of approximately 50 µm. The feed at 30 ◦C was 2 w%
ethanol with a separation factor value of 10.

The methanol-water mixture is considered a near-ideal zeotropic mixture, typical mixtures
of homologues. The most important property of an ideal solution is additivity: mass, volume,
and components can be calculated by simple summation. It does not change during the formation
of the mixture, and the properties of the finished mixture can be calculated by simple summation,
taking into account the mixing ratio. The ideal and near-ideal mixture is more easily separated than the
azeotropic mixture. Figure 2 shows the vapour-liquid equilibrium diagram of methanol-water mixture.
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Liu et al. have studied the membrane pervaporation of water from a methanol-water mixture with
a polyvinyl alcohol (PVA) and nanometer SiO2 membrane [71]. In their study, PVA/SiO2 membranes
were used to separate mixtures of methanol-water over the complete concentration range of 70–98%.
For the 98% mixture at 60 ◦C, the separation factor is up to 1458 together with a permeate flux up
to 325 g/(m2

·h). The evaluation of PDMS (PERVAP-1060) membrane to separate methanol from
aqueous solutions has been performed by Kujawski [72]. PERVAP-1060 is one of the organophilic
membranes, which also showed prospective potential in selective and transport properties. In his
work, the operating temperature was set at 30 ◦C together with the feed methanol concentration of
5 w%. The calculated permeate methanol concentration was 24 w% with a separation factor of 5.

Pervaporation and hybrid distillation-pervaporation process are widely regarded as an attractive
and efficient technology for various separation processes, therefore several combinations were examined
to select the most efficient. The aim of this work is to model the hybrid distillation-pervaporation,
hydrophilic and organophilic pervaporation processes in the ChemCAD professional flowsheet
simulator. The main novelty of research is the investigation of pervaporation in a dynamic model
environment too. The UNIQUAC thermodynamic model was used for modelling distillation processes.
The separation of the binary alcohol-water mixtures was studied, the near-ideal methanol-water mixture
and the homogeneous azeotropic ethanol-water mixture with minimum boiling point. This study
aimed to compare the separation methods with the collected data, taking into account different aspects,
indicating the obtained values.

2. Materials and Methods

The aim of the alcohol-water (ethanol-water and methanol-water) separation of the given
composition was to achieve the purest possible products. Eight different methods were investigated in
ChemCAD flowsheet simulator, which is listed in Table 1.
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Table 1. Studied methods.

Method Abbreviation

Organophilic pervaporation OPV
Hydrophilic pervaporation HPV

Hydrophilic pervaporation with recirculation Recirc HPV
Dynamic organophilic pervaporation Dyn OPV

Dynamic hydronophilic pervaporation Dyn HPV
Hybrid distillation-organophilic pervaporation D + OPV
Hybrid distillation-hydrophilic pervaporation D + HPV

Hybrid distillation-hydrophilic pervaporation with recirculation Recirc D + HPV

2.1. Modelling Schemes

The alcohol-water mixture separation methods are shown in Figures 3–9. The hydrophilic
pervaporation membrane procedure is presented in Figure 3, the recirculating hydrophilic pervaporation
procedure is presented in Figure 4. In Figures 5 and 6, the dynamic organophilic pervaporation
method and dynamic hydrophilic pervaporation method are shown respectively. The hybrid
distillation-organophilic pervaporation method and hybrid distillation-hydrophilic pervaporation
method is shown in Figures 7 and 8. And finally, the recirculation hybrid distillation-hydrophilic
pervaporation method is presented in Figure 9. From hydrophilic systems, water can be obtained
in principle as a permeate product and ethanol as a retentate product. The recirculation cases were
also examined.
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2.2. Membrane Characteristics, Feed Data

In this paper, the properties of pervaporation membrane are adopted from the experiments
performed by the Environmental and Process Engineering Research Group of BME, shown in Tables 1–4.
Equation (1) shows the equation of developed Rautenbach model [73,74] on which the pervaporation
calculation is based:

Ji =
1

1 +
{
[ Di· exp(B·xi1)]

(pi0·γi)

} · [Di· exp(B·xi1)
]

γi
·

(
pi1 − pi3

pi0

)
i = (1, . . . , k) (1)

Table 2. Hydrophilic pervaporation membrane parameters of ethanol-water mixture (PERVAP™ 1210
type membrane) [74].

Pervaporation Units Value Unit

Permeate pressure 0.008 bar
Inlet pressure drop 0.1 bar

Permeability 108 kmol/m2 hbar

Transport
coefficient

Water 0.000202
kmol/m2 hEthanol 0.0000193

Activity energy Water 77,877 kJ/kmol
Ethanol 128,572

Parameter “B”
Water 2.63 -

Ethanol −8.68

Table 3. Organophilic pervaporation membrane parameters for ethanol-water mixture (PERVAP™
4060 type membrane) [75].

Pervaporation Units Value Unit

Permeate pressure 0.008 bar
Inlet pressure drop 0.1 bar

Permeability 108 kmol/m2 hbar

Transport
coefficient

Water 0.026
kmol/m2 hEthanol 0.077

Activity energy Water 31,363 kJ/kmol
Ethanol 33,090

Parameter “B”
Water −0.73 -

Ethanol −0.04
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Table 4. Hydrophilic pervaporation membrane parameters for methanol-water mixture (PERVAP™
1510 type membrane) [70].

Pervaporation Units Value Unit

Permeate pressure 0.008 bar
Inlet pressure drop 0.1 bar

Permeability 108 kmol/m2 hbar

Transport
coefficient

Water 0.167
kmol/m2 hMethanol 0.00018

Activity energy Water 23,498 kJ/kmol
Methanol 30,795

Parameter “B”
Water −6.51 -

Methanol −2.4

Three different polymer membranes were experimentally examined for application of membrane
flowsheet models. PERVAP™ 1210 (Table 2) and PERVAP™ 1510 (Table 4) are hydrophilic pervaporation
membranes to separate ethanol-water or methanol-water mixtures. PERVAP™ 4060 (Tables 3–5) is an
organophilic pervaporation membrane used to separate the alcohol-water mixtures. The experimental
results have published in [70,74–76]. Tables 2–5 summarize the optimized parameters of experimental
investigations. These parameters were used to build up the semi-empirical model (see Equation (1))
in the ChemCAD flowsheet program. The other major pervaporation models in the literature is the
following: solution–diffusion model, total solvent volume fraction model and poreflow model [74].

Table 5. Organophilic pervaporation membrane parameters of methanol-water mixture (PERVAP™
4060 type membrane) [76].

Pervaporation Units Value Unit

Permeate pressure 0.008 bar
Inlet pressure drop 0.1 bar

Permeability 108 kmol/m2 hbar

Transport
coefficient

Water 0.00246
kmol/m2 hMethanol 0.0458

Activity energy Water 44,170 kJ/kmol
Methanol 45,646

Parameter “B”
Water 1.19 -

Methanol −5.64

Tables 6 and 7 show the distillation column and dynamic tank parameters. In the Table 8, feed
parameters are also shown. The feed at 20 ◦C, 1 bar contains 0.02 m/m alcohol (ethanol or methanol)
and 0.98 m/m water.

Table 6. Distillation column parameters.

Parameters

Thermodynamic model UNIQUAC
Column type SCDS

Column material Carbon steel
Plate type Valve, SS304

Plate material Carbon steel
Distillation product ethanol (or methanol) target min. 0.9 m/m

Bottom product water 0.9999 m/m
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Table 7. Dynamic tank parameters.

Parameters Value Unit

Dynamic tank

diameter 5 m
cylinder height 10 m

pressure 1 bar
initial fluid level 1 2 m
initial fluid level 2 10−10 m

Time 600 min

Table 8. Feed characteristics of hydrophilic and organophilic pervaporation membrane modelling.

Characteristics Value Unit

Feed pressure 1 bar
Feed temperature 20 ◦C

Feed flow 1000 kg/h

Feed
composition

Water 0.98 m/m
Ethanol (or methanol) 0.02 m/m

2.3. Pervaporation System

In the first step, the optimization of the pervaporation membrane was performed (according to
Figure 3). First of all, the type of pervaporation membrane was decided: hydrophilic pervaporation
method (HPV) or organophilic pervaporation (OPV). In these analyses, the same input parameters
were applied, a mixture of given mass flow and composition, 1000 kg/h liquid flow, water-alcohol in
0.98 and 0.02 m/m (see Table 8). The effective size of membrane area was set as changing variable.
In each module, the surface area was 40 m2 of the pervaporation membrane. The feed flow into each
membrane unit was kept at 70 ◦C by using heat exchanger. The feed pressure was kept at 3 bar using
pump. The recirculation case was also investigated (see Figure 6).

2.4. Hybrid Distillation-Pervaporation System

In the next step, hybrid distillation-pervaporation system was simulated, see Figure 4. It is similar
to the previous model, the first step was choosing the type of pervaporation membrane. A standard
size column with 10 theoretical plates was modelled and the mixture was pumped into the fifth plate.
The 1000 kg/h input of the corresponding alcohol-water composition, see Table 8, was maintained.
The recirculation case was also performed (see Figure 7).

2.5. Dynamic Pervaporation System

The flowsheet of dynamic pervaporation system can be seen in Figure 5. Table 7 summarizes the
parameters of dynamic tank. Vertical, flat-bottomed tank was used with the following dimensions,
5 m diameter, 10 m height, the liquid in the tank was 2 m high. The liquid in the tank was passed
through a pervaporation membrane apparatus with a uniform flow of 1000 kg/h of the appropriate
composition after the pressure has been increased to 3 bar by pumping and the liquid is heated to
70 ◦C and its operation was adiabatic. The vapour was separated on the stages (at 0.008 bar pressure)
and the product was combined, compressed, condensed, and collected in another tank. The liquid
exiting of pervaporation was expanded and recycled into the starter at the pressure of feed condition.
The simulation time was set at 10 h with 1-min increments each step.

3. Results and Discussion

The detailed results and data of each investigated model are presented in the Supplementary Part.
The results of three systems, 1 × 40 m2, 5 × 40 m2, and 10 × 40 m2 effective membrane area are shown
in Figures 10–13. The graphs are with a standard error of ± 0.05%. Water is obtained from hydrophilic
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systems as permeate product and ethanol or methanol as retentate product. In the case of organophilic
systems, products are obtained in reverse order. It is expected to give higher purity of ethanol and
water using a hydrophilic membrane than an organophilic one, due to the higher separation efficiency.
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3.1. Water Purity

The available water purity in the case of ethanol-water mixture is shown in the Figure 10 and
the results of methanol-water binary mixture can be seen in Figure 11. Inferring from ethanol-water
mixture selection systems, it can be said in general that the higher the number of pervaporation
membranes in the system, the better the quality of water composition can be reached. The D+HPV and
D+HPV recirculation methods provide the purest water (maximum achievable purity: 0.99999 m/m
water). With the D+HPV method, ethanol-water separation is the most efficient way to separate water,
followed by the D+HPV recirculation method, followed by the HPV, dynamic HPV method, and much
worse with the organophilic membrane. In the case of the hydrophilic membrane, the water component
is better separated on the permeate side.

In the methanol-water case, the D+HPV and D+HPV with recirculation methods provide even
better water purity results. It can be observed, the more the number of pervaporation membranes that
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are in the system, the water composition quality is better. However, the HPV method simulation results
of the methanol-water mixture show poorer water purity than in the case of the ethanol-water mixture.
This observation can be explained by the fact that pervaporation is mainly used for the separation
of azeotropic mixtures where a small amount of undesirable component has to be removed from the
liquid mixture. Methanol dehydration process has a significantly lower separation factor value than
ethanol dehydration, therefore distillation is a better recommended solution for methanol purification.

3.2. Ethanol and Methanol Purity

The available alcohol product purities of the three different systems are summarized in Figures 12
and 13. As it can be seen, in the case of very dilute aqueous solutions, pervaporation alone is not
suitable for enriching the alcohol content. The D+HPV and D+HPV recirculation methods provide
good quality of both water and alcohol. After the distillation process, min. 90 w% of ethanol is
obtained as the distillate product and 99.999 w% aqueous mixture as the bottom product. In the
case of hydrophilic pervaporation membrane, the distillate product has further flowed through
the pervaporation membranes. Hence, the better purity of alcohol is obtained compared with any
other methods.

If we compare the results from the D+HPV or D+HPV recirculation systems with the results of
Tusel and Ballweg [42], it can be seen that the ethanol quality increases from 2% to 99.6% (while the
obtained product of Tusel et al. was 99.8% ethanol). However, the amount of ethanol obtained is
979.936 kg/h from 1000 kg/h input flow (accounting for 98% of the input mass amount), whereas using
the system of Tusel et al., the amount of ethanol obtained was 1103 kg/h from 12,720 kg/h input
(accounting for 8.7% of the input mass amount). The quality of ethanol or methanol obtained from
the D+HPV or D+HPV recirculation system is greater than 99%. Therefore, it can be said that,
compared with the published results of Zhang et al. [69], Liu et al. [71] and Tusel and Ballweg [42],
the results obtained from the D+HPV and D+HPV recirculation systems are better in the product
purity aspect.

On the other hand, the product purity hybrid D+HPV’s are better than the
pervaporation-crystallization (PC) process [43], pervaporation–microfiltration–osmotic distillation
hybrid process (PV+MF+OD) [44], reverse osmosis pervaporation-hybrid process (RO+PV) [45]. In the
case of PC simulation [43], the feed flow rate was set at 500 kg/h containing ethanol (75 w%)/water
(24 w%)/sodium pyruvate (1 w%) ternary mixture. The feed temperature and pressure were kept
at 55–60 ◦C and 1 bar respectively. The feed mass was 14 kg. The products were obtained: 2.35 kg,
100 w% water accounting for 16.8% of the input mass amount and 8.3 kg, 4.42 w% water.

3.3. Heat Consumptions

In this section, the heat consumption of each method is analysed and summarized. The results are
collected in Table 9. The heat consumption is calculated from the heat exchanger in the pervaporation
systems, dynamic tank, and the heat requirements of the distillation column. The heat requirements for
separation of the ethanol-water mixture and methanol-water mixture is nearly equal e.g., for D+HPV
method with one pervaporation membrane unit the heat consumption for separation of ethanol-water
is 325.86 MJ/h while in case of the methanol-water mixture is 325.83 MJ/h, see Table 9. The positive
sign in Table 9 means the heat is given to the system and inversely the negative value means the heat
is provided by the system. The more the membrane surface area increases, the more the amount of
heat consumption also increases. The total heat consumptions in the cases of D+HPV and D+HPV
with recirculation processes are positive, while for the other methods they are negative. From the
simulation results, it is clear that the heat consumption in pervaporation methods is the smallest one,
follows by hybrid distillation and pervaporation systems, respectively. There is a huge difference
between the heat consumption using dynamic system compared to the others. Since in the dynamic
system, the circulating flow is indeed extremely big compared to the input flow, and in some cases,
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the total flow is almost from the circulating e.g., Dyn HPV method the circulating flow is more than
90% of the total flow. Examining these results, the effectiveness of the dynamic system is questionable.

Table 9. Total heat consumptions of ethanol-water and methanol-water methods.

Methods
Total Heat Consumptions (MJ/h)

Ethanol-Water Methanol-Water

1 × 40 m2 5 × 40 m2 10 × 40 m2 1 × 40 m2 5 × 40 m2 10 × 40 m2

OPV −7.00 −177.73 −207.12 −7.47 −219.14 −248.12
HPV −8.47 −37.54 −68.54 −0.34 −2.64 −3.29

Recirc HPV −0.22 −0.28 −0.34 −0.21 −1.99 −2.00
Dyn OPV −75763.30 −73057.06 −73389.00 −75904.13 −73030.71 −73247.39
Dyn HPV −1.85 × 106

−1.79 × 106
−1.73 × 106

−9.96 × 106
−9.96 × 106

−9.96 × 106

D + OPV −6.66 −173.07 −202.19 −7.25 −215.19 −243.90
D + HPV 325.86 325.65 325.55 325.83 324.36 324.24

Recirc D + HPV 326.30 326.71 326.63 326.32 325.41 325.32

4. Conclusions

In summary, hydrophilic pervaporation membranes are much better suited for the separation of
methanol-water and ethanol-water than organophilic pervaporation membranes. In the case of the
hydrophilic membranes, the hybrid distillation-hydrophilic pervaporation system is the best solution
for separating ethanol, methanol, and water, followed by a pervaporation process and a dynamic
pervaporation process, respectively. In this present work, the pervaporation method with dynamic
feed and product tanks were investigated in ChemCAD flowsheet environment for the first time. It can
be stated that this solution is also capable of separating binary alcohol-water mixtures, however further
investigation is needed to reduce the heat consumption and improve the recycle rate.
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Nomenclature

Ji Partial flux [kg⁄(m2h)]
Di Transport coefficient of component i [kmol⁄(m2h)]
Q0 Permeability coefficient of the porous support layer of the membrane [kmol⁄(m2hbar)]
pi0 Pure i component vapour pressure [bar]
pi1 Partial pressure of component i on the vapor phase membrane side [bar]
pi3 Partial pressure of component i. on the vapour phase membrane side [bar]
γi Average activity coefficient of component i
xi1 Concentration of component i in the feed [m⁄(m%)]
Ei Activation energy of component i. in Equation (1) for temperature dependence of the transport

coefficient [kJ⁄mol]
B Constant in pervaporation model [-]
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