
A static analysis method for safe
comparison functors in C++∗

Bence Babatia, Norbert Patakib

aDepartment of Programming Languages and Compilers
Eötvös Loránd University, Budapest, Hungary

babati@caesar.elte.hu
bELTE Eötvös Loránd University, Budapest, Hungary

Faculty of Informatics, 3in Research Group, Martonvásár, Hungary
patakino@elte.hu

Submitted: March 17, 2020
Accepted: December 12, 2020

Published online: December 17, 2020

Abstract

The C++ Standard Template Library (STL) is the most well-known and
widely used library that is based on the generic programming paradigm.
STL takes advantage of C++ templates, so it is an extensible, effective and
flexible system. Professional C++ programs cannot miss the usage of the STL
because it increases quality, maintainability, understandability and efficacy
of the code.

However, the usage of C++ STL does not guarantee perfect, error-free
code. Contrarily, incorrect application of the library may introduce new types
of problems. Unfortunately, there is still a large number of properties that
are tested neither at compilation-time nor at run-time. It is not surprising
that in implementations of C++ programs so many STL-related bugs may
occur.

It is clearly seen that the compilation validation is not enough to exclude
STL-related bugs. For instance, the mathematical properties of user-defined
sorting parameters are not validated at compilation phase nor at run-time.
Contravention of the strict weak ordering property results in weird behavior

∗The research has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations Grounding
Innovation in Informatics and Infocommunications).

Annales Mathematicae et Informaticae
52 (2020) pp. 5–18
doi: https://doi.org/10.33039/ami.2020.12.003
url: https://ami.uni-eszterhazy.hu

5

that is hard to debug. In this paper, we argue for a static analysis tool
which finds erroneous implementation of functors regarding the mathematical
properties. The primary goal is to support Continuous Integration pipelines,
using this tool during development to overcome debugging efforts.

Keywords: C++, static analysis, STL, generic programming, functor

MSC: 68N19 Other programming techniques

1. Introduction

The C++ Standard Template Library (STL) is a widely-used, handy library based
on the generic programming paradigm [2]. On one hand, the library provides
convenient, suitable containers (e.g. list) and algorithms (e.g. find) that make
easier stock-in-trade [19]. On the other hand, STL introduces many new kinds of
bugs which are hard to detect and fix, such as invalid iterators, weird effect of the
remove algorithm and writing uninitialized memory via copy algorithm, etc. [16]

STL provides four standard sorted associative containers, these are set, map,
multiset and multimap [8]. These containers are able to work together with user-
defined orders via functor types [21]. In this case, the user-defined functor has
to implement strict weak ordering, but this property is not validated neither at
compilation time nor at runtime [15]. If someone uses a functor which does not
fulfill the strict weak ordering rules, the container becomes inconsistent because
same values are not considered to be equal [14]. Let us consider the following code:

struct Comp
{

bool operator()(int a, int b) const
{

return a >= b;
}

};
// ...
std::set<int, Comp> s;
s.insert(3);
s.insert(3);
std::cout << s.size();

// Prints 2 that is weird because same value inserted twice
// into the set. Correctly, 1 should be printed.

std::cout << s.count(3); // prints 0 in spite of it is contained

This phenonmenon is weird, the root cause is hard to find. Compilers should
emit error (or warning at least) diagnostics, but the problem is not detected at
all. Strict weak order property should be an axiom according to modern generic
constraint approach in C++. However, these axioms are not validated by the
compiler [22]. Therefore, our aim is to develop a tool based on static analysis that
detects problematic functors.

6 B. Babati, N. Pataki

This tool is based on a recently popular software, called Clang. Clang is a stan-
dard compliant C/C++/Objective-C compiler, furthermore, it provides a static
analyzer, as well. It is open source and based on the LLVM compiler infrastruc-
ture. It is mainly developed by the community, there are many contributors, also
it is supported by big companies as well [3].

The Clang architecture is well designed and modular which makes it possible
to use it as a library [17]. The users can use the end products, like Clang as a
compiler or build their own tools on top of its libraries. It provides an API for
third-parties to use its internal structures and analyze the source code in a high-
level way. Its libraries provide a wide scale of features related to compilation and
analysis, for example tokenizer or AST visitor. Many useful static analysis tools
have been developed based on Clang (e.g. [1, 4, 10]). Clang’s another significant
advantage is the evolving approach regarding the C++ standards, so users do not
need to take care of parsing of newly introduced language elements and can focus
on their actual goal. That makes Clang powerful and very popular recently.

The rest of this paper is organized as follows: the related work is discussed in
Section 2, the technical details of our Clang-based solution are presented in Section
3 and decision logic is explained in Section 4. Our approach is evaluated and results
are shown in Section 5. Finally, the paper is concluded in Section 6.

2. Related Work

A comprehensive description of STL-related bugs can be found in [14] including the
ordering functor types’ mathematical properties, as well. However, many problems
have been presented, but no tool support was proposed to avoid the erroneous
situations. Compilation time validation of the STL typically uses two different
approaches: template metaprogramming (e.g. [18]) and static analysis (e.g. [4, 9]).
These methods do not help to find the problematic ordering functor types in C++
source, the functors’ statefulness is analyzed exclusively [10]. Model checking of
STL containers also misses the validation of user-defined comparisons [6].

On the other hand, C++ functors are analyzed previously, a limited, lightweight,
runtime approach has been developed [15]. This approach has runtime overhead
and does not deal with comprehensive evaluation.

Another direction in functors’ usage is a transparent version of the functor
templates [12]. The paper presents a refactoring tool which makes the usage of
functors safer, but this tool does not deal with the mathematical properties.

The constraints and concepts [22] have been included officially in the C++20
standard version. These let the users to define compile time expectations on the
template parameters. For example, it can be checked pragmatically that a given T
template parameter type has operator() member function or not. However, the
beforehand presented STL-related issue is more complex, it requires to check the
implementation of the given functions as well.

A static analysis method for safe comparison functors in C++ 7

3. Our Approach

3.1. Technical Background
The previously depicted theoretical problem may appear sometimes. However, the
compiler cannot warn about it at all. In order to detect this kind of problem,
a brand new tool has been developed. Its purpose is to find misuses of ordered
associative containers related to the given issue. Many faulty functor classes can be
caught in suspicious context, although, the tool has limitations which are described
at the end of this section.

The implementation uses Clang’s libraries and framework to analyze the C++
source code. It takes advantage of Clang’s architecture including the built-in ab-
stract syntax tree (AST) and its visitors. AST is comprehensively used in our tool
to extract information from the source code.

3.2. High-level Overview
This section presents a high-level overview and describes how our tool works in a
nutshell [5]. As it was mentioned above, it works on the source code itself and it
does not require to execute the binary.

That means, it can only rely on compile time information which are given in
the source code. The original compiler arguments are very essential regarding
the reproducible compilation process. These arguments or flags may affect the
whole compilation process, for instance preprocessor macros often depend on the
compilation arguments.

In general, let us see what is the idea behind the analysis and how the workflow
looks like. This solid outline will highlight the main points of the analysis and how
it is performed to gather the necessary information from the source code.

The main problem is related to the associative containers and the regarding
user-defined ordering functors. At the beginning, every instantiation of associated
containers has to be found which uses a custom functor for comparing objects.
The functor classes only can be identified at usage places, because the instantiated
assiative container is the evidence of the given functor must meet certain require-
ments. The beforehand found instantiations each has a functor whose type is a
suspect of misusage.

These marked types are analysed in the next step. The tool retrieves the type
of comparison functor and tries to find the proper operator() for the given usage.
Two cases are possible, the definition is not available, for instance it is defined
in another translation unit, it will be skipped. This case is rare because most of
comparisons have short implementation, so they are typically inline methods in the
class. Another case, when the definition of candidate operator() is available, it
can be analyzed in order to extract the expressions which are used to compare two
objects. From one function, multiple expressions can be collected, for example the
return value depends on a condition. The following code snippet presents this case:

8 B. Babati, N. Pataki

bool ExampleComp::operator()(int lhs, int rhs) const
{

if (lhs > 0 && rhs > 0)
{

return lhs < rhs;
}
else
{

return lhs * 2 <= rhs + 1;
}

}

These collected expressions are evaluated later in order to decide whether they
meet the requirement of strict weak ordering rules. The details of the proposed
analysis method can be seen below.

3.2.1. Analyzing AST

In our tool, Clang libraries are in-use to parse the source code and build internal
structures. Clang performs every low level action (tokenizing, parsing, etc.) that
lets us to concentrate on our aim by defining a higher level analysis based on the
built structures.

The main and worth to mention data structure of them is the abstract syntax
tree, AST. It represents the source code in an abstract way, contains all the data
about the parsed source files. In Clang, it is a little bit more than a syntax tree,
because it contains some semantic information as well.

To collect data from abstract syntax trees, they can be visited by AST visitors.
Custom AST visitors need to be implemented in order to use the Clang hierarchy
and AST visitor interface. AST visitors can extract the relevant information from
the AST and capture any kind of context within the AST, for example, all function
declarations can be visited.

The proposed tool is mostly built on AST visitors. These visitors can be used
to find container instantiations, types, member functions, expressions and many
other source-based constructs. More precisely three different kinds of visitors have
been declared. Each has different tasks on different part of the AST. These visitors
work together and built on each other.

The following paragraphs detail these AST visitors and the presented order is
the same as the order of processing. That means in the analysis logic, the visitor
which finds associate container instantiations is used before the visitor which parses
the body of member functions.

Usage finder visitor The original issue can occur only when someone uses
std::map, std::multimap, std::set or std::multiset with custom compari-
son objects. The first task is to find template instantiations of previously listed

A static analysis method for safe comparison functors in C++ 9

types and inspect them in order to find those which are using custom comparison
types other than the default std::less.

Although, std::less can be specialized for used defined types, in this case
the written comparator is user-defined and it should be analysed as well. Other
special case, when the default std::less is provided without any specialization,
in this case the operator< is called on the objects. The custom object comparison
can sneak into without using custom functors. From the analysis point of view,
the only difference is that the operator< function should be analysed instead of
the operator() of the provided functor. However, it is not covered in this paper,
focusing only on user-defined functors.

When an instantiation meets the given criteria, it should be analyzed because
it can be erroneous, for example SpecialKeyCmp class is used here:

std::map<SpecialKey, int, SpecialKeyCmp> m;

After these usage places are located, the classes of the used functors need to
be checked. For this, it is necessary to find the definition of the used functor type
and the matching operator() member function for the given usage. When the
definition of operator() is available in this translation unit, it can be used to
furthermore processing, but it is done by next visitor.

Function body parser The next AST visitor is responsible for parsing the
function implementation. Its input is the function definition in the AST, the usage
finder visitor passes the operator() member function definitions to this visitor.

The visitor’s purpose is to extract one or more expressions from the function
body which can be used to compare objects. This kind of visitor can locate and
capture every logical or comparison expression which can affect the return value.
The outcome is a list of expressions which can define the return value of the given
function. The visitor needs to process the job backward, because the root ex-
pression which defines the return value, can be identified only at the end of each
execution path. These end points are the return-statements in the function body.

However, it is not adequate to process only them. It can happen that someone
declares a local variable or calls a function to evaluate an expression. This visi-
tor needs to handle variable declarations and assignments, when an expression is
bounded to a name which is used in return-statement. The names are replaced
by the bounded expressions in the return-statement.

Nevertheless it tracks function calls which can modify variables or their return
values appear in the expressions. In case of function calls, the function body is
parsed with another object of this visitor to get the relevant expressions.

An important point here is to manage the currently valid conditions on the
given execution path. It is necessary, because the conditions can affect the return
value, in some case, they define the comparison implicitly. For example, without
analysing the conditions, the following functor cannot be judged well, however, it
definitely breaks the strict weak ordering rule.

10 B. Babati, N. Pataki

bool CustomComp::operator()(int lhs, int rhs) const
{

if (lhs < rhs)
{

return false;
}
else
{

return true;
}

}

In addition to all of this, they need to be performed recursively in order to
dissolve an expression as much as possible at compile time. For instance, when a
function calls another one which affects the return value in some way, it is necessary
to inspect that function and substitute it with extracted elemental expressions.

This visitor deals with the following code context:

bool CustomComp::inRange(int value) const
{

return value < 42;
}

bool CustomComp::operator()(int lhs, int rhs) const
{

const bool tmp = lhs > 0 && rhs > 0;
return tmp && inRange(lhs) && inRange(rhs) && lhs < rhs;

}

In this example, the expression which actually will be evaluated at each operator()
function call is: lhs > 0 && rhs > 0 && lhs < 42 && rhs < 42 && lhs < rhs.

Expression parser This is the lowest level visitor in this implementation. This
parser works on a very small part of the AST, the beforehand located expressions
are visited by it. Its purpose is parsing the given expressions and convert them to
an internal data structure. The advantage of this data structure is that, it is far
simpler than Clang’s AST and contains only the relevant information.

The internal data structure is a graph which represents logical and comparison
expressions. The nodes are typically operators and variables but more constructs
are supported. The edges are logical relations between nodes, for example, the
operator< has two other nodes which are the left and right hand side operands of
expression.

The visitor handles binary operators, unary operators, literals, variables and
so on. It walks over on that small part of AST and tranforms nodes to proper
internal data structures. At the end of the visiting of Clang’s AST, the result is a

A static analysis method for safe comparison functors in C++ 11

graph which is identical to the original one without excess. For example, the graph
belongs to the a > 0 && b > 0 code snippet is depicted in Figure 1.

Figure 1: Internal data structure

With this step, the AST processing is mostly done. A list of expressions is
extracted for each instantiation which needs to be analyzed later, however, before
performing the concrete analysis, some small transformations need to be applied
on them. These transformations are detailed in the next subsection.

3.2.2. Transformations

After processing of Clang’s AST, an internal graph structure is created for each
expression at each functor usage place. They are identical to the original expres-
sions, although most of time they are not that complex. To reduce this complexity,
some modifications need to be applied on them. After the transformations, the
expressions will be equivalent with the original one, but simpler.

They target to eliminate the obvious complications and keep the expressions
plain. There are several well-known replacement rules related to mathematical
logic [7]:

• De Morgan’s laws: !(X || Y) -> !X && !Y

• Double negation: !!X -> X

• Tautology: X && X -> X

Besides that more transformations can be applied at compile time which comes
from the programming language behavior:

• Short-circuit binary operators: at logical and and or, when the first operand
is evaluated, it may define the result of the whole expression, e.g.: true ||
(X < 0) -> true

• Constant evaluation: comparisons may be evaluated at compile time, e.g.: 0
< 42 -> true

Using these replacement rules, the original expression can be transformed into
a new expression which contains less boilerplate. For example, the expression (x

12 B. Babati, N. Pataki

< y) || (0 != 0) can be converted into x < y. The 0 != 0 is not relevant from
the analysis point of view since it is always false and the outcome of the original
expression does not depend on it.

These transformations are applied on each expression when it is possible. This
approach results in a new, simplified expression which can be analyzed with more
confidence. These newly created expressions will be used later in order to decide
the correctness of functors.

3.2.3. Output format

After finding a custom functor suspicious, the tool emits a warning like the compiler
does, but it refers to the type that can be seen in the source, not the underlying
one [14]. It uses Clang’s diagnostic framework to report issues, so they look like a
compiler warning at the line of data structure usage, e.g. instantiation of std::map.

main.cpp:44:10: warning: Strict weak ordering is not fulfilled
by comparison type

std::set<int, Comp> s;

4. Decision Logic

The analysis can be executed on cleaned expressions that are prepared to be ana-
lyzed whether they meet the requirement of strict weak ordering rules.

Let 𝐴 be an arbitrary set and relation 𝑅 ⊆ 𝐴× 𝐴. It is a strict weak ordering
if the following properties are met[20]:

• Asymmetry: ∀𝑎, 𝑏 ∈ 𝐴 : 𝑎𝑅𝑏 ⇒ ¬(𝑏𝑅𝑎).

• Irreflexivity: ∀𝑎 ∈ 𝐴 : ¬𝑎𝑅𝑎.

• Transitivity: ∀𝑎, 𝑏, 𝑐 ∈ 𝐴 : 𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐 ⇒ 𝑎𝑅𝑐.

On one hand, this analysis is pragmatic and conservative, therefore it minimizes
the false positive warnings which is an essential property in static analysis tools,
but on the other hand, the tool is not a theorem prover.

The decision logic takes advantage of the previously presented visitors. The
pseudocode of the decision logic can be seen in Figure 2, the entry point is the
DecisionLogic procedure. We omit the proper type information but the informal
description helps to comprehend the proposed solution. In this procedure, the first
attribute to check whether the comparison uses both arguments because a regular
binary relation is required. We use the ParseNumberOfUtilizedParams function
that is straightforward, therefore we not detailed in Figure 2. If the comparison
does not utilize any of its argument, we emit a warning by calling EmitWarning
that is not detailed in the pseudocode, but presented in Section 3.2.3. However,
the functor’s operator() must have two parameters due to the compilation model
of C++ but parameter can be unused [18].

A static analysis method for safe comparison functors in C++ 13

procedure CheckExpression(<simplified structure of> 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ← ParseOperator(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

if 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is operator== ∨ 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is operator!= then
EmitWarning

end if

if 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is operator<= ∨ 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is operator>= then
EmitWarning

end if
end procedure
procedure CheckLiteral(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)

𝑙𝑖𝑡𝑒𝑟𝑎𝑙, 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛← ParseLiteralCondition(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)

if ¬(Evaluate(𝑙𝑖𝑡𝑒𝑟𝑎𝑙)) then
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛← ¬(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

end if
CheckExpression(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

end procedure
procedure DecisionLogic(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)

𝑝𝑎𝑟𝑎𝑚𝑠← ParseNumberOfUtilizedParams(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)
if 𝑝𝑎𝑟𝑎𝑚𝑠 ̸= 2 then

EmitWarning
else

𝑒𝑛𝑡𝑖𝑡𝑦 ← ParseReturnEntityType(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)
if 𝑒𝑛𝑡𝑖𝑡𝑦 is expression then

CheckExpression(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
end if
if 𝑒𝑛𝑡𝑖𝑡𝑦 is literal then

CheckLiteral(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)
end if
if 𝑒𝑛𝑡𝑖𝑡𝑦 is variable then

𝑣𝑎𝑙𝑢𝑒, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠← ParseVariableValue(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)

if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛← ParseCondition(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)

if ¬ Evaluate(value) then
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛← ¬(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

end if
CheckExpression(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

end if
end if

end if
end procedure

Figure 2: Pseudocode for the Decision Logic

14 B. Babati, N. Pataki

If both arguments take part in the comparison, we query what kind of result
is specified in the return-statement. The potential kinds are expressions, literals
(e.g. true, or 0), variables but every kind may depend on function calls that we
process by inlining them on the level of AST. However, we do not highlight this
fact in Figure 2.

The parameter of the decision logic is the AST representation of the analyzed
functor. When we produce the cleaned, simplified expression that we take advan-
tage of transformation steps presented in Section 3.2.2. If this transformed expres-
sion contains one of the following operators <=, >=, == or !=, we emit a warning,
otherwise we consider the comparison meets the requirement conservatively. We
query the applied operator with ParseOperator method in Figure 2.

When the returned element in the return-statement is a literal and the com-
parison utilizes both parameters the result must depend on a condition. As Section
3 presented, this condition is retrieved by our visitors and the condition is negated
when the literal is false or converted to false with the Evaluate function. We also
showed previously if there are multiple conditional statements, we process all these
conditions in the ParseCondition function that is not detailed in Figure 2. In case
of returned literal is considered to be true by the Evaluate method, the condition
remains untouched. This condition contains operator to compare the arguments,
so we evaluate this processed condition just like the expression previously.

In case of variable is returned, we call the ParseVariableValue procedure to
recognize its value if we are able to specify it. This recognized value can be used
as a literal and evaluate the comparison just like the previous case. We do not
emit warning, if the value of the variable cannot be determined. Of course, this
can cause false negative cases during the analysis, but it is not a typical use-case.

Briefly, our tool also emits a warning when it detects that the arguments are
compared with operator== or operator!=. If an ordering relation is defined as
a C++ comparison functor in an erroneous way, the asymmetry and transitivity
requirements are still met. The problematic property is the irreflexivity, therefore
our tool focuses on the validation of this requirement that is the most common
misuse regarding functors [14]. The possible comparison operators are <, >, <=,
>=. Although the operators < and > are considered right, they cannot cause issues
regarding to the given problem. The rest of them may cause issues, since the
equality is included in all of them, thus we emit warning in these cases.

We also take into consideration whether the arguments are compared with con-
stant values, but they are compared to each other with <= or >=, therefore this
essential expression of functor is incorrect: lhs > 0 && rhs > 0 && lhs <= rhs.

5. Limitations and Evaluation

The tool has some limitations, which one should bear in mind. First of them comes
from Clang’s nature, it handles translation units separately, so if the operator()
is defined in a different source file (.cc) where the container is instantiated with
the corresponding functor class, the tool cannot find the operator’s definition due

A static analysis method for safe comparison functors in C++ 15

to Clang’s limitation [11]. In this case, the given functor will not be analysed.
Another issue is related to compile time behavior, no runtime information is

available for the analysis; also if a very tricky comparison expression is written,
likely the functor cannot be decided if it is compliant or not.

During the development of the tool, some handmade test cases have been im-
plemented. They are good to cover all the corner cases in theory, however, it would
be good to see how the proposed tool performs on real-world projects.

Since the effect of this issue is very well-marked and serious, they usually are
eliminated during the development or testing phase of real products.

Nonetheless, in order to ascertain the quality of our approach and solution,
the tool was tested and evaluated on well-known open source projects. The user-
defined comparison functor usage with associative containers is not used very often,
so a limited number of projects could be checked unfortunately. However, even
comprehensive profiling does not measure the functors’ usage [13].

The methodology of testing was that the tool reported that a functor is being
analyzed then the result of the analysis is checked. Each functor which was report-
edly analyzed is inspected manually, as well. That makes it possible to verify the
result of the tool.

In this testing, four different functors are analyzed from three different projects
listed below:

• Flatbuffers - https://github.com/google/flatbuffers/

• Thrift - https://github.com/apache/thrift/

• Orc - https://github.com/apache/orc

All of the analyzed functors are used with std::map container. None of them
was reported as suspicious by our tool and the manual verification proved the
results’ correctness. Despite of the limitations of the tool, every functor’s properties
are evaluated correctly. The limitations do not affect the usage of tool in the source
code of real-world applications. The tool does not emit false positive reports at all,
so it can be used safely in quality assurance regularly.

6. Conclusion

C++ STL is a widely-used library that is based on the generic programming
paradigm. The usage of the library increases the code quality and comprehen-
sibility, however, the incorrect usage of library may result in new kind of errors.

This paper has presented a weird error related to the C++ Standard Template
Library that is related to sorted associated containers. The ordering can be cus-
tomized via functor class, but it should implement strict weak ordering. However,
this property is not validated at all. If a functor does not meet this requirement,
the container becomes inconsistent.

So in order to detect this kind of defects in the source code, a new approach has
been proposed. We have developed a tool for this method. The proposed solution

16 B. Babati, N. Pataki

analyzes source code that means the execution of the program is not required.
It is a Clang-based tool that takes advantage of Clang’s libraries and framework.
Our tool was tested on manually prepared test cases and it was evaluated on open
source projects to prove that it works perfectly with real-world applications.

The tool did not find any questionable functor, however, it confirms our tool
validity and the fact that is not a very often issue in released projects. Although
it does not report unnecessary false positive alarms, so it can be a handy tool in
the development process and Continuous Integration servers for quick feedback, as
well.

References

[1] M. Arroyo, F. Chiotta, F. Bavera: An user configurable Clang Static Analyzer taint
checker, in: 2016 35th International Conference of the Chilean Computer Science Society
(SCCC), Oct. 2016, pp. 1–12,
doi: 10.1109/SCCC.2016.7835996.

[2] M. H. Austern: Generic Programming and the STL: Using and Extending the C++ Stan-
dard Template Library, Addison-Wesley, 1999, isbn: 0-201-30956-4.

[3] B. Babati, G. Horváth, N. Pataki, A. Páter-Részeg: On the Validated Usage of the
C++ Standard Template Library, in: Proceedings of the 9th Balkan Conference on Infor-
matics, BCI’19, Sofia, Bulgaria: ACM, 2019, 23:1–23:8, isbn: 978-1-4503-7193-3,
doi: 10.1145/3351556.3351570,
url: http://doi.acm.org/10.1145/3351556.3351570.

[4] B. Babati, N. Pataki: Analysis of Include Dependencies in C++ Source Code, in: Com-
munication Papers of the 2017 Federated Conference on Computer Science and Information
Systems, ed. by M. Ganzha, L. Maciaszek, M. Paprzycki, vol. 13, Annals of Computer
Science and Information Systems, PTI, 2017, pp. 149–156,
doi: 10.15439/2017F358,
url: http://dx.doi.org/10.15439/2017F358.

[5] B. Babati, N. Pataki: Static analysis of functors’ mathematical properties in C++ source
code, AIP Conference Proceedings 2116.1 (2019), p. 350002,
doi: 10.1063/1.5114355, eprint: https://aip.scitation.org/doi/pdf/10.1063/1.5114355,
url: https://aip.scitation.org/doi/abs/10.1063/1.5114355.

[6] N. Blanc, A. Groce, D. Kroening: Verifying C++ with STL Containers via Predicate
Abstraction, in: Proceedings of the Twenty-Second IEEE/ACM International Conference on
Automated Software Engineering, ASE ’07, Atlanta, Georgia, USA: Association for Com-
puting Machinery, 2007, pp. 521–524, isbn: 9781595938824,
doi: 10.1145/1321631.1321724,
url: https://doi.org/10.1145/1321631.1321724.

[7] A. Church: Introduction to mathematical logic, Princeton University Press, 1996, isbn:
978-0691029061.

[8] D. Das, M. Valluri, M. Wong, C. Cambly: Speeding up STL Set/Map Usage in C++ Ap-
plications, in: Performance Evaluation: Metrics, Models and Benchmarks, ed. by S. Kounev,
I. Gorton, K. Sachs, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 314–321,
isbn: 978-3-540-69814-2.

[9] D. Gregor, S. Schupp: STLlint: lifting static checking from languages to libraries, Soft-
ware: Practice and Experience 36.3 (2006), pp. 225–254,
doi: 10.1002/spe.683, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.
683,
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.683.

A static analysis method for safe comparison functors in C++ 17

[10] G. Horváth, N. Pataki: Clang matchers for verified usage of the C++ Standard Template
Library, Annales Mathematicae et Informaticae 44 (2015), pp. 99–109,
url: http://ami.ektf.hu/uploads/papers/finalpdf/AMI_44_from99to109.pdf.

[11] G. Horváth, N. Pataki: Source Language Representation of Function Summaries in Static
Analysis, in: Proceedings of the 11th Workshop on Implementation, Compilation, Optimiza-
tion of Object-Oriented Languages, Programs and Systems, ICOOOLPS ’16, Rome, Italy:
ACM, 2016, 6:1–6:9, isbn: 978-1-4503-4837-9,
doi: 10.1145/3012408.3012414,
url: http://doi.acm.org/10.1145/3012408.3012414.

[12] G. Horváth, N. Pataki: Transparent functors for the C++ Standard Template Library,
in: Proceedings of the 11th Joint Conference on Mathematics and Computer Science, ed. by
E. Vatai, CEUR-WS, 2016, pp. 96–101.

[13] P. Jungblut, R. Kowalewski, K. Fürlinger: Source-to-Source Instrumentation for Pro-
filing Runtime Behavior of C++ Containers, in: 2018 IEEE 20th International Conference
on High Performance Computing and Communications; IEEE 16th International Confer-
ence on Smart City; IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), June 2018, pp. 948–953,
doi: 10.1109/HPCC/SmartCity/DSS.2018.00157.

[14] S. Meyers: Effective STL, Addison-Wesley, 2001, isbn: 0-201-74962-9.

[15] N. Pataki: Advanced Functor Framework for C++ Standard Template Library, Studia Uni-
versitatis Babeş-Bolyai Informatica LVI (2011), pp. 99–113.

[16] N. Pataki: C++ Standard Template Library by safe functors, in: Proc. of 8th Joint Con-
ference on Mathematics and Computer Science, MaCS, 2010, pp. 363–374.

[17] N. Pataki, T. Cséri, Z. Szűgyi: Task-specific style verification, AIP Conference Proceed-
ings 1479.1 (2012), pp. 490–493,
doi: 10.1063/1.4756173, eprint: https://aip.scitation.org/doi/pdf/10.1063/1.4756173,
url: https://aip.scitation.org/doi/abs/10.1063/1.4756173.

[18] N. Pataki, Z. Porkoláb: Extension of Iterator Traits in the C++ Standard Template
Library, in: Proceedings of the Federated Conference on Computer Science and Informa-
tion Systems, ed. by M. Ganzha, L. Maciaszek, M. Paprzycki, Szczecin, Poland: IEEE
Computer Society Press, 2011, pp. 911–914.

[19] N. Pataki, Z. Szűgyi, G. Dévai: Measuring the Overhead of C++ Standard Template
Library Safe Variants, Electronic Notes in Theoretical Computer Science 264.5 (2011), Pro-
ceedings of the Second Workshop on Generative Technologies (WGT) 2010, pp. 71–83, issn:
1571-0661,
doi: https://doi.org/10.1016/j.entcs.2011.06.005,
url: http://www.sciencedirect.com/science/article/pii/S1571066111000764.

[20] F. Roberts, B. Tesman: Applied combinatorics, CRC Press, 2009.

[21] B. Stroustrup: The C++ Programming Language (special edition), Addison-Wesley, 2000,
isbn: 0-201-70073-5.

[22] A. Sutton, B. Stroustrup: Design of Concept Libraries for C++, in: Software Language
Engineering, ed. by A. Sloane, U. Aßmann, Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 97–118, isbn: 978-3-642-28830-2.

18 B. Babati, N. Pataki

