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Abstract

Let ℐ ⊆ 2N be an admissible ideal, we say that a sequence (𝑥𝑛) of real
numbers ℐ−converges to a number 𝐿, and write ℐ − lim𝑥𝑛 = 𝐿, if for each
𝜀 > 0 the set 𝐴𝜀 = {𝑛 : |𝑥𝑛 − 𝐿| ≥ 𝜀} belongs to the ideal ℐ. In this paper
we discuss the relation ship between convergence of positive series and the
convergence properties of the summand sequence. Concretely, we study the
ideals ℐ having the following property as well:

∞∑︁

𝑛=1

𝑎𝛼
𝑛 <∞ and 0 < inf

𝑛

𝑛

𝑏𝑛
≤ sup

𝑛

𝑛

𝑏𝑛
<∞⇒ ℐ − lim 𝑎𝑛𝑏

𝛽
𝑛 = 0,
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where 0 < 𝛼 ≤ 1 ≤ 𝛽 ≤ 1
𝛼

are real numbers and (𝑎𝑛), (𝑏𝑛) are sequences
of positive real numbers. We characterize 𝑇 (𝛼, 𝛽, 𝑎𝑛, 𝑏𝑛) the class of all such
admissible ideals ℐ.

This accomplishment generalized and extended results from the papers
[4, 7, 12, 16], where it is referred that the monotonicity condition of the
summand sequence in so-called Olivier’s Theorem (see [13]) can be dropped
if the convergence of the sequence (𝑛𝑎𝑛) is weakend. In this paper we will
study ℐ-convergence mainly in the case when ℐ stands for ℐ<𝑞, ℐ(𝑞)𝑐 , ℐ≤𝑞,
respectively.

Keywords: ℐ-convergence, convergence of positive series, Olivier’s theorem,
admissible ideals, convergence exponent

MSC: 40A05, 40A35

1. Introduction

We recall the basic definitions and conventions that will be used throughout the
paper. Let N be the set of all positive integers. A system ℐ, ∅ ≠ ℐ ⊆ 2N is called
an ideal, provided ℐ is additive (𝐴,𝐵 ∈ ℐ implies 𝐴 ∪ 𝐵 ∈ ℐ), and hereditary
(𝐴 ∈ ℐ, 𝐵 ⊂ 𝐴 implies 𝐵 ∈ ℐ). The ideal is called nontrivial if ℐ ≠ 2N. If ℐ is a
nontrivial ideal, then ℐ is called admissible if it contains the singletons ({𝑛} ∈ ℐ
for every 𝑛 ∈ N). The fundamental notation which we shall use is ℐ−convergence
introduced in the paper [11] ( see also [3] where ℐ−convergence is defined by means
of filter-the dual notion to ideal). The notion ℐ−convergence corresponds to the
natural generalization of the notion of statistical convergence ( see [5, 17]).

Definition 1.1. Let (𝑥𝑛) be a sequence of real (complex) numbers. We say that
the sequence ℐ−converges to a number 𝐿, and write ℐ − lim𝑥𝑛 = 𝐿, if for each
𝜀 > 0 the set 𝐴𝜀 = {𝑛 : |𝑥𝑛 − 𝐿| ≥ 𝜀} belongs to the ideal ℐ.

In the following we suppose that ℐ is an admissible ideal. Then for every
sequence (𝑥𝑛) we have immediately that lim𝑛→∞ 𝑥𝑛 = 𝐿 (classic limit) implies
that (𝑥𝑛) also ℐ−converges to a number 𝐿. Let ℐ𝑓 be the ideal of all finite
subsets of N. Then ℐ𝑓–convergence coincides with the usual convergence. Let
ℐ𝑑 = {𝐴 ⊆ N : 𝑑(𝐴) = 0}, where 𝑑(𝐴) is the asymptotic density of 𝐴 ⊆ N
(𝑑(𝐴) = lim𝑛→∞

#{𝑎≤𝑛:𝑎∈𝐴}
𝑛 , where #𝑀 denotes the cardinality of the set 𝑀).

Usual ℐ𝑑−convergence is called statistical convergence. For 0 < 𝑞 ≤ 1 the class

ℐ(𝑞)
𝑐 = {𝐴 ⊂ N :

∑︁

𝑎∈𝐴

𝑎−𝑞 < ∞}

is an admissible ideal and whenever 0 < 𝑞 < 𝑞′ < 1, we get

ℐ𝑓 ( ℐ(𝑞)
𝑐 ( ℐ𝑞′

𝑐 ( ℐ(1)
𝑐 ( ℐ𝑑.

The notions the admissible ideal and ℐ−convergence have been developed in several
directions and have been used in various parts of mathematics, in particular in
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number theory, mathematical analysis and ergodic theory, for example [1, 2, 5, 6,
9–11, 15, 17–19].

Let 𝜆 be the convergence exponent function on the power set of N, thus for
𝐴 ⊂ N put

𝜆(𝐴) = inf
{︁
𝑡 > 0 :

∑︁

𝑎∈𝐴

𝑎−𝑡 < ∞
}︁
.

If 𝑞 > 𝜆(𝐴) then
∑︀

𝑎∈𝐴
1
𝑎𝑞 < ∞, and

∑︀
𝑎∈𝐴

1
𝑎𝑞 = ∞ when 𝑞 < 𝜆(𝐴); if 𝑞 = 𝜆(𝐴),

the convergence of
∑︀

𝑎∈𝐴
1
𝑎𝑞 is inconclusive. It follows from [14, p. 26, Examp. 113,

114] that the range of 𝜆 is the interval [0, 1], moreover for 𝐴 = {𝑎1 < 𝑎2 < · · · <
𝑎𝑛 < . . . } ⊆ N the convergence exponent can be calculate by using the following
formula

𝜆(𝐴) = lim sup
𝑛→∞

log 𝑛

log 𝑎𝑛
.

It is easy to see that 𝜆 is monotonic, i.e. 𝜆(𝐴) ≤ 𝜆(𝐵) whenever 𝐴 ⊆ 𝐵 ⊂ N,
furthermore, 𝜆(𝐴 ∪𝐵) = max{𝜆(𝐴), 𝜆(𝐵)} for all 𝐴,𝐵 ⊂ N.

2. Overwiew of known results

In this section we mention known results related to the topic of this paper and some
other ones we use in the proofs of our results. Recently in [19] was introduced the
following classes of subsets of N:

ℐ<𝑞 = {𝐴 ⊂ N : 𝜆(𝐴) < 𝑞}, if 0 < 𝑞 ≤ 1,

ℐ≤𝑞 = {𝐴 ⊂ N : 𝜆(𝐴) ≤ 𝑞}, if 0 ≤ 𝑞 ≤ 1, and
ℐ0 = {𝐴 ⊂ N : 𝜆(𝐴) = 0}.

Clearly, ℐ≤0 = ℐ0. Since 𝜆(𝐴) = 0 when 𝐴 ⊂ N is finite, then ℐ𝑓 = {𝐴 ⊂ N :
𝐴 is finite} ⊂ ℐ0, moreover, there is proved [19, Th.2] that each class ℐ0, ℐ<𝑞, ℐ≤𝑞,
respectively forms an admissible ideal, except for ℐ≤1 = 2N.

Proposition 2.1 ([19, Th.1]). Let 0 < 𝑞 < 𝑞′ < 1. Then we have

ℐ0 ( ℐ<𝑞 ( ℐ(𝑞)
𝑐 ( ℐ≤𝑞 ( ℐ<𝑞′ ( ℐ(𝑞′)

𝑐 ( ℐ≤𝑞′ ( ℐ<1 ( ℐ(1)
𝑐 ( ℐ≤1 = 2N,

and the difference of successive sets is infinite, so equality does not hold in any of
the inclusions.

The claim in the following proposition is a trivial fact about preservation of the
limit.

Proposition 2.2 ([11, Lemma]). If ℐ1 ⊂ ℐ2, then ℐ1 − lim𝑥𝑛 = 𝐿 implies ℐ2 −
lim𝑥𝑛 = 𝐿.

In [13] L. Olivier proved results so-called Olivier’s Theorem about the speed of
convergence to zero of the terms of convergent positive series with nonincreasing
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terms. Precisely, if (𝑎𝑛) is a nonincreasing positive sequence and
∑︀∞

𝑛=1 𝑎𝑛 < ∞,
then lim𝑛→∞ 𝑛𝑎𝑛 = 0 (see also [8]). In [16], T. Šalát and V. Toma made the
remark that the monotonicity condition in Olivier’s Theorem can be dropped if
the convergence the sequence (𝑛𝑎𝑛) is weakened by means of the notion of ℐ-
convergence (see also [7]). In [12], there is an extension of results in [16] with very
nice historical contexts of the object of our research.

Since 0 = lim𝑛→∞ 𝑛𝑎𝑛 = ℐ𝑓 − lim𝑛𝑎𝑛, then the above mentioned Olivier’s
Theorem can be formulated in the terms of ℐ-convergence as follows:

(𝑎𝑛) nonincreasing and
∞∑︁

𝑛=1

𝑎𝑛 < ∞ ⇒ ℐ − lim𝑛𝑎𝑛 = 0,

holds for any admissible ideal ℐ (this assertion is a direct corollary of the facts
ℐ𝑓 ⊆ ℐ and Proposition 2.2), and providing (𝑎𝑛) to be a sequence of positive real
numbers.

The following simple example

𝑎𝑛 =

{︃
1
𝑛 , if 𝑛 = 𝑘2, (𝑘 = 1, 2, . . . )
1
2𝑛 , otherwise,

shows that monotonicity condition of the positive sequence (𝑎𝑛) can not be in
general omitted. This example shows that lim sup𝑛→∞ 𝑛𝑎𝑛 = 1, thus the ideal ℐ𝑓
does not have for positive terms the following property

∞∑︁

𝑛=1

𝑎𝑛 < ∞ ⇒ ℐ − lim𝑛𝑎𝑛 = 0. (2.1)

The previous example can be strengthened taking 𝑎𝑛 = log𝑛
𝑛 if 𝑛 is square, in

such case the sequence (𝑛𝑎𝑛) is not bounded yet. In [16], T. Šalát and V. Toma
characterized the class 𝑆(𝑇 ) of all admissible ideals ℐ ⊂ 2N having the property
(2.1), for sequences (𝑎𝑛) of positive real numbers.

They proved that

𝑆(𝑇 ) = {ℐ ⊂ 2N : ℐ is an admissible ideal such that ℐ ⊇ ℐ(1)
𝑐 }.

J. Gogola, M. Mačaj, T. Visnyai in [7] introduced and characterized the class 𝑆𝑞(𝑇 )
of all admissible ideals ℐ ⊂ 2N for 0 < 𝑞 ≤ 1 having the property

∞∑︁

𝑛=1

𝑎𝑞𝑛 < ∞ ⇒ ℐ − lim𝑛𝑎𝑛 = 0, (2.2)

providing (𝑎𝑛) be a positive real sequence. The stronger condition of convergence
of positive series requirest the stronger convergence property of the summands as
well. They proved

𝑆𝑞(𝑇 ) = {ℐ ⊂ 2N : ℐ is an admissible ideal such that ℐ ⊇ ℐ(𝑞)
𝑐 }.
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Of course, if 𝑞 = 1 then 𝑆1(𝑇 ) = 𝑆(𝑇 ).
In [12], C. P. Niculescu, G. T. Prǎjiturǎ studied the following implication, which

is general as (2.1):

∞∑︁

𝑛=1

𝑎𝑛 < ∞ and inf
𝑛

𝑛

𝑏𝑛
> 0 ⇒ ℐ − lim 𝑎𝑛𝑏𝑛 = 0, (2.3)

for sequences (𝑎𝑛), (𝑏𝑛) of positive real numbers.
They proved that the ideal ℐ𝑑 fulfills (2.3). In the next section we are going to

show that ℐ(1)
𝑐 is the smallest admissible ideal partially ordered by inclusion which

also fulfills (2.3).

3. ℐ(𝑞)
𝑐 − convergence and convergence of positive se-

ries

In this part we introduce and characterize the class of such ideals that fulfill the
following implication (3.1). Obviously this class will generalize the results of (2.2)
and (2.3). On the other hand, we define the smallest admissible ideal partially
ordered by inclusion which fulfills (3.1).

In the sequel we are going to study the ideals ℐ having the following property:

∞∑︁

𝑛=1

𝑎𝛼𝑛 < ∞ and 0 < inf
𝑛

𝑛

𝑏𝑛
≤ sup

𝑛

𝑛

𝑏𝑛
< ∞ ⇒ ℐ − lim 𝑎𝑛𝑏

𝛽
𝑛 = 0, (3.1)

where 0 < 𝛼 ≤ 1 ≤ 𝛽 ≤ 1
𝛼 are real numbers and (𝑎𝑛), (𝑏𝑛) are positive sequences

of real numbers.
We denote by 𝑇 (𝛼, 𝛽, 𝑎𝑛, 𝑏𝑛) the class of all admissible ideals ℐ ⊂ 2N having the

property (3.1). Obviously 𝑇 (1, 1, 𝑎𝑛, 𝑛) = 𝑆(𝑇 ) and 𝑇 (𝑞, 1, 𝑎𝑛, 𝑛) = 𝑆𝑞(𝑇 ).

Theorem 3.1. Let 0 < 𝛼 ≤ 1 ≤ 𝛽 ≤ 1
𝛼 be real numbers. Then for every positive

real sequences (𝑎𝑛), (𝑏𝑛) such that

∞∑︁

𝑛=1

𝑎𝛼𝑛 < ∞ and inf
𝑛

𝑛

𝑏𝑛
> 0

we have
ℐ(𝛼𝛽)
𝑐 − lim 𝑎𝑛𝑏

𝛽
𝑛 = 0.

Proof. Let 𝜀 > 0, put 𝐴𝜀 = {𝑛 ∈ N : 𝑎𝑛𝑏
𝛽
𝑛 ≥ 𝜀}. We proceed by contradiction.

Then there exists such 𝜀 > 0 that 𝐴𝜀 /∈ ℐ(𝛼𝛽)
𝑐 , thus

∑︁

𝑛∈𝐴𝜀

1

𝑛𝛼𝛽
= ∞. (3.2)
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For 𝑛 ∈ 𝐴𝜀 we have

𝑎𝛼𝑛 ≥ 𝜀𝛼
1

𝑏𝛼𝛽𝑛
= 𝜀𝛼

(︁ 𝑛

𝑏𝑛

)︁𝛼𝛽 1

𝑛𝛼𝛽
≥ 𝜀𝛼

(︁
inf
𝑛

𝑛

𝑏𝑛

)︁𝛼𝛽 1

𝑛𝛼𝛽
,

and so ∞∑︁

𝑛=1

𝑎𝛼𝑛 ≥
∑︁

𝑛∈𝐴𝜀

𝑎𝛼𝑛 ≥ 𝜀𝛼
(︁
inf
𝑛

𝑛

𝑏𝑛

)︁𝛼𝛽 ∑︁

𝑛∈𝐴𝜀

1

𝑛𝛼𝛽
.

Using this and the assumption for a sequence (𝑏𝑛) and (3.2) we get
∞∑︁

𝑛=1

𝑎𝛼𝑛 = ∞,

which is a contradiction.

If in Theorem 3.1 we put 𝛼 = 𝑞 and 𝛽 = 1, we can obtain the following corollary.

Corollary 3.2. For every positive real sequences (𝑎𝑛), (𝑏𝑛) such that
∞∑︁

𝑛=1

𝑎𝑞𝑛 < ∞ and inf
𝑛

𝑛

𝑏𝑛
> 0

we have
ℐ(𝑞)
𝑐 − lim 𝑎𝑛𝑏𝑛 = 0.

Already in the case when 𝑞 = 1 in Corollary 3.2, we get a stronger assertion
than given in [12] for the ideal ℐ𝑑, because of ℐ(1)

𝑐 ( ℐ𝑑.
Remark 3.3. Let (𝑎𝑛), (𝑏𝑛) be positive real sequences. For special choices 𝛼 and
(𝑏𝑛) in Corollary 3.2, we can obtain the following:

i) Putting 𝛼 = 1. Then we get: If
∑︀∞

𝑛=1 𝑎𝑛 < ∞ and inf𝑛
𝑛
𝑏𝑛

> 0 then ℐ(1)
𝑐 −

lim 𝑎𝑛𝑏𝑛 = 0 ( which is stronger result as [12, Theorem 5]).

ii) Putting 𝛼 = 1 and 𝑏𝑛 = 𝑛. Then we get: If
∑︀∞

𝑛=1 𝑎𝑛 < ∞ then ℐ(1)
𝑐 −

lim 𝑎𝑛𝑛 = 0 ( see [16, Theorem 2.1]).

iii) Putting 𝛼 = 𝑞 and 𝑏𝑛 = 𝑛. Then we get: If
∑︀∞

𝑛=1 𝑎
𝑞
𝑛 < ∞ then ℐ(𝑞)

𝑐 −
lim 𝑎𝑛𝑛 = 0 ( see [7, Lemma 3.1]).

Theorem 3.4. Let 0 < 𝛼 ≤ 1 ≤ 𝛽 ≤ 1
𝛼 be real numbers. If for some admissible

ideal ℐ holds
ℐ − lim 𝑎𝑛𝑏

𝛽
𝑛 = 0

for every sequences (𝑎𝑛), (𝑏𝑛) of positive numbers such that
∞∑︁

𝑛=1

𝑎𝛼𝑛 < ∞ and sup
𝑛

𝑛

𝑏𝑛
< ∞,

then
ℐ(𝛼𝛽)
𝑐 ⊆ ℐ.
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Proof. Let us assume that for some admissible ideal ℐ we have ℐ − lim 𝑎𝑛𝑏
𝛽
𝑛 = 0

and take an arbitrary set 𝑀 ∈ ℐ(𝛼𝛽)
𝑐 . It is sufficient to prove that 𝑀 ∈ ℐ. Since

ℐ− lim 𝑎𝑛𝑏
𝛽
𝑛 = 0 we have for each 𝜀 > 0 the set 𝐴𝜀 = {𝑛 ∈ N : 𝑎𝑛𝑏

𝛽
𝑛 ≥ 𝜀} ∈ ℐ. Since

𝑀 ∈ ℐ(𝛼𝛽)
𝑐 we have

∑︀
𝑛∈𝑀

1
𝑛𝛼𝛽 < ∞. Now we define the sequence 𝑎𝑛 as follows:

𝑎𝑛 =

{︃
1
𝑛𝛽 , if 𝑛 ∈ 𝑀,
1
2𝑛 , if 𝑛 /∈ 𝑀.

Obviously the sequence (𝑎𝑛) fulfills the premises of the theorem as 𝑎𝑛 > 0 and

∞∑︁

𝑛=1

𝑎𝛼𝑛 =
∑︁

𝑛∈𝑀

(︁ 1

𝑛𝛽

)︁𝛼
+
∑︁

𝑛/∈𝑀

(︁ 1

2𝑛

)︁𝛼
≤
∑︁

𝑛∈𝑀

1

𝑛𝛼𝛽
+

∞∑︁

𝑛=1

(︁ 1

2𝛼

)︁𝑛
< ∞.

Hence 𝑎𝑛𝑛
𝛽 = 1 for 𝑛 ∈ 𝑀 and so for each 𝑛 ∈ 𝑀 we have

𝑎𝑛𝑏
𝛽
𝑛 = 𝑎𝑛𝑛

𝛽
(︁𝑏𝑛
𝑛

)︁𝛽
=
(︁𝑏𝑛
𝑛

)︁𝛽
≥ 1
(︀
sup𝑛

𝑛
𝑏𝑛

)︀𝛽 > 0.

Denote by 𝜀(𝛽) =
(︀
sup𝑛

𝑛
𝑏𝑛

)︀−𝛽
> 0 and preceding considerations give us

𝑀 ⊂ 𝐴𝜀(𝛽) ∈ ℐ.

Thus 𝑀 ∈ ℐ, what means ℐ(𝛼𝛽)
𝑐 ⊆ ℐ.

The characterization of the class 𝑇 (𝛼, 𝛽, 𝑎𝑛, 𝑏𝑛) is the direct consequence of
Theorem 3.1 and Theorem 3.4.

Theorem 3.5. Let 0 < 𝛼 ≤ 1 ≤ 𝛽 ≤ 1
𝛼 be real numbers and (𝑎𝑛), (𝑏𝑛) be sequences

of positive real numbers. Then the class 𝑇 (𝛼, 𝛽, 𝑎𝑛, 𝑏𝑛) consists of all admissible
ideals ℐ ⊂ 2N such that ℐ ⊇ ℐ(𝛼𝛽)

𝑐 .

For special choices 𝛼, 𝛽 and (𝑏𝑛) in Theorem 3.5 we can get the following.

Corollary 3.6. Let 0 < 𝑞 ≤ 1 be a real number and (𝑎𝑛) be positive real sequences
having the properties

∞∑︁

𝑛=1

𝑎𝑞𝑛 < ∞.

Then we have

i) 𝑇 (𝑞, 1, 𝑎𝑛, 𝑛) = {ℐ ⊂ 2N : ℐ is admissible ideal such that ℐ ⊇ ℐ(𝑞)
𝑐 } = 𝑆𝑞(𝑇 ),

ii) 𝑇 (1, 1, 𝑎𝑛, 𝑛) = {ℐ ⊂ 2N : ℐ is admissible ideal such that ℐ ⊇ ℐ(1)
𝑐 } = 𝑆(𝑇 ).
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4. ℐ<𝑞− and ℐ≤𝑞−convergence and convergence of
series

In this section we will study the admissible ideals ℐ ⊂ 2N having the special property
(4.1) and (4.3), respectively.

∞∑︁

𝑛=1

𝑎𝑞𝑘𝑛 < ∞ for every 𝑘 and 0 < inf
𝑛

𝑛

𝑏𝑛
≤ sup

𝑛

𝑛

𝑏𝑛
< ∞ ⇒ ℐ − lim 𝑎𝑛𝑏𝑛 = 0, (4.1)

where (𝑞𝑘) is a strictly decreasing sequence which is convergent to 𝑞, 0 ≤ 𝑞 < 1
and (𝑎𝑛), (𝑏𝑛) are sequences of positive real numbers.

Denote by 𝑇 𝑞𝑘
𝑞 (𝑎𝑛, 𝑏𝑛) the class of all admissible ideals ℐ having the property

(4.1).

Theorem 4.1. Let 0 ≤ 𝑞 < 1 and (𝑞𝑘) be a strictly decreasing sequence which is
convergent to 𝑞. Then for positive real sequences (𝑎𝑛), (𝑏𝑛) such that holds

∞∑︁

𝑛=1

𝑎𝑞𝑘𝑛 < ∞, for every 𝑘 and inf
𝑛

𝑛

𝑏𝑛
> 0,

we have
ℐ≤𝑞 − lim 𝑎𝑛𝑏𝑛 = 0.

Proof. Again, we proceed by contradiction. Put 𝐴𝜀 = {𝑛 ∈ N : 𝑎𝑛𝑏𝑛 ≥ 𝜀}. Then
there exists such 𝜀 > 0 that 𝐴𝜀 /∈ ℐ≤𝑞, thus 𝜆(𝐴𝜀) > 𝑞. Hence there exists such
𝑖 ∈ N, that 𝑞 < 𝑞𝑘𝑖

< 𝜆(𝐴𝜀), and so we get

∑︁

𝑛∈𝐴𝜀

1

𝑛𝑞𝑘𝑖
= ∞. (4.2)

For 𝑛 ∈ 𝐴𝜀 we have

𝑎
𝑞𝑘𝑖
𝑛 ≥ 𝜀𝑞𝑘𝑖

1

𝑏
𝑞𝑘𝑖
𝑛

= 𝜀𝑞𝑘𝑖

(︁ 𝑛

𝑏𝑛

)︁𝑞𝑘𝑖 1

𝑛𝑞𝑘𝑖
≥ 𝜀𝑞𝑘𝑖

(︁
inf
𝑛

𝑛

𝑏𝑛

)︁𝑞𝑘𝑖 1

𝑛𝑞𝑘𝑖
,

therefore ∞∑︁

𝑛=1

𝑎
𝑞𝑘𝑖
𝑛 ≥

∑︁

𝑛∈𝐴𝜀

𝑎
𝑞𝑘𝑖
𝑛 ≥ 𝜀𝑞𝑘𝑖

(︁
inf
𝑛

𝑛

𝑏𝑛

)︁𝑞𝑘𝑖
∑︁

𝑛∈𝐴𝜀

1

𝑛𝑞𝑘𝑖
.

Using this and the assumption for a sequence (𝑏𝑛) and (4.2) we get

∞∑︁

𝑛=1

𝑎
𝑞𝑘𝑖
𝑛 = ∞,

what is a contradiction.
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Theorem 4.2. Let 0 ≤ 𝑞 < 1 and (𝑞𝑘) be a strictly decreasing sequence which is
convergent to 𝑞. If for some admissible ideal ℐ holds

ℐ − lim 𝑎𝑛𝑏𝑛 = 0

for every sequences (𝑎𝑛), (𝑏𝑛) of positive numbers such that

∞∑︁

𝑛=1

𝑎𝑞𝑘𝑛 < ∞, for every 𝑘 and sup
𝑛

𝑛

𝑏𝑛
< ∞,

then
ℐ≤𝑞 ⊆ ℐ.

Proof. Let us assume that for any admissible ideal ℐ we have ℐ − lim 𝑎𝑛𝑏𝑛 = 0 and
take an arbitrary set 𝑀 ∈ ℐ≤𝑞. It is sufficient to prove that 𝑀 ∈ ℐ. Since 𝑀 ∈ ℐ≤𝑞

we have 𝜆(𝑀) ≤ 𝑞 and so for each 𝑞𝑘 > 𝑞 we get
∑︁

𝑛∈𝑀

1

𝑛𝑞𝑘
< ∞.

Moreover ℐ − lim 𝑎𝑛𝑏𝑛 = 0 and so for each 𝜀 > 0 the set 𝐴𝜀 = {𝑛 ∈ N : 𝑎𝑛𝑏𝑛 ≥
𝜀} ∈ ℐ. Define the sequence (𝑎𝑛) as follows:

𝑎𝑛 =

{︃
1
𝑛 , if 𝑛 ∈ 𝑀,
1
2𝑛 , if 𝑛 /∈ 𝑀.

The sequence (𝑎𝑛) fulfills the premises of the theorem, 𝑎𝑛 > 0 and for each 𝑞𝑘 we
obtain

∞∑︁

𝑛=1

𝑎𝑞𝑘𝑛 =
∑︁

𝑛∈𝑀

1

𝑛𝑞𝑘
+
∑︁

𝑛/∈𝑀

(︁ 1

2𝑛

)︁𝑞𝑘
≤
∑︁

𝑛∈𝑀

1

𝑛𝑞𝑘
+

∞∑︁

𝑛=1

(︁ 1

2𝑞𝑘

)︁𝑛
< ∞.

Now 𝑎𝑛𝑛 = 1 for 𝑛 ∈ 𝑀 . Therefore for each 𝑛 ∈ 𝑀 we have

𝑎𝑛𝑏𝑛 = 𝑎𝑛𝑛
(︁𝑏𝑛
𝑛

)︁
=

𝑏𝑛
𝑛

≥ 1

sup𝑛
𝑛
𝑏𝑛

> 0.

Denote by 𝜀 =
(︀
sup𝑛

𝑛
𝑏𝑛

)︀−1
> 0 we have

𝑀 ⊂ 𝐴𝜀 ∈ ℐ.

Thus 𝑀 ∈ ℐ, what means ℐ≤𝑞 ⊆ ℐ.

The above mentioned results (Theorem 4.1 and Theorem 4.2) allow us to give
a characterization for the class 𝑇 𝑞𝑘

𝑞 (𝑎𝑛, 𝑏𝑛).

Theorem 4.3. Let 0 ≤ 𝑞 < 1 and (𝑞𝑘) be a strictly decreasing sequence which
converges to 𝑞. Let (𝑎𝑛), (𝑏𝑛) be positive real sequences. Then the class 𝑇 𝑞𝑘

𝑞 (𝑎𝑛, 𝑏𝑛)

consists of all admissible ideals ℐ ⊂ 2N such that ℐ ⊇ ℐ≤𝑞.
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Let us consider the following property and pronounce for it analogical results
as above.

∞∑︁

𝑛=1

𝑎𝑞𝑘𝑛 < ∞ for some 𝑘 and 0 < inf
𝑛

𝑛

𝑏𝑛
≤ sup

𝑛

𝑛

𝑏𝑛
< ∞ ⇒ ℐ − lim 𝑎𝑛𝑏𝑛 = 0, (4.3)

where (𝑞𝑘) is a strictly increasing sequence of positive numbers which is convergent
to 𝑞, 0 < 𝑞 ≤ 1 and (𝑎𝑛), (𝑏𝑛) are sequences of positive real numbers.

Denote by 𝑇 𝑞
𝑞𝑘
(𝑎𝑛, 𝑏𝑛) the class of all admissible ideals ℐ having the property

(4.3).

Theorem 4.4. Let 0 < 𝑞 ≤ 1 and (𝑞𝑘) be a strictly increasing sequence of positive
numbers which is convergent to 𝑞. Then for positive real sequences (𝑎𝑛), (𝑏𝑛) such
that holds ∞∑︁

𝑛=1

𝑎
𝑞𝑘0
𝑛 < ∞, for some 𝑘0 ∈ N and inf

𝑛

𝑛

𝑏𝑛
> 0,

we have
ℐ<𝑞 − lim 𝑎𝑛𝑏𝑛 = 0.

Proof. Again, we proceed by contradiction. Then there exists 𝜀 > 0 such that
𝐴𝜀 = {𝑛 ∈ N : 𝑎𝑛𝑏𝑛 ≥ 𝜀} /∈ ℐ<𝑞, thus 𝜆(𝐴𝜀) ≥ 𝑞. For each 𝑘 ∈ N ( as well for 𝑘0)
we have 𝑞𝑘 < 𝑞 ≤ 𝜆(𝐴𝜀), and so

∑︁

𝑛∈𝐴𝜀

1

𝑛𝑞𝑘
= ∞. (4.4)

Further the proof continues by the same way as it was outlined in Theorem 4.1.

Theorem 4.5. Let 0 < 𝑞 ≤ 1 and (𝑞𝑘) be a strictly increasing sequence of positive
numbers which is convergent to 𝑞. If for some admissible ideal ℐ holds

ℐ − lim 𝑎𝑛𝑏𝑛 = 0

for every sequences (𝑎𝑛), (𝑏𝑛) of positive numbers such that
∞∑︁

𝑛=1

𝑎
𝑞𝑘0
𝑛 < ∞ for some 𝑘0 ∈ N and sup

𝑛

𝑛

𝑏𝑛
< ∞,

then
ℐ<𝑞 ⊆ ℐ.

Proof. Let us assume that for any admissible ideal ℐ we have ℐ − lim 𝑎𝑛𝑏𝑛 = 0
and take an arbitrary 𝑀 ∈ ℐ<𝑞. It is sufficient to prove that 𝑀 ∈ ℐ. Since
𝑀 ∈ ℐ<𝑞 we have 𝜆(𝑀) < 𝑞 and so there exists a sufficiently large 𝑘0 ∈ N such
that 𝜆(𝑀) < 𝑞𝑘0

< 𝑞. So ∑︁

𝑛∈𝑀

1

𝑛𝑞𝑘0
< ∞.

Again, the proof continues by the same way as it was outlined in Theorem 4.2.
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The above results (Theorem 4.4 and Theorem 4.5) allow us to give a character-
ization for the class 𝑇 𝑞

𝑞𝑘
(𝑎𝑛, 𝑏𝑛).

Theorem 4.6. Let 0 < 𝑞 ≤ 1 and (𝑞𝑘) be a strictly increasing sequence of positive
numbers which converges to 𝑞. Let (𝑎𝑛), (𝑏𝑛) be positive real sequences. Then the
class 𝑇 𝑞

𝑞𝑘
(𝑎𝑛, 𝑏𝑛) consists of all admissible ideals ℐ ⊂ 2N such that ℐ ⊇ ℐ<𝑞.

5. Summary and scheme of main results

Let (𝑎𝑛), (𝑏𝑛) be fix sequences of positive real numbers having the appropriate
property (3.1), (4.1) and (4.3), respectively. Denote in short classes given above
𝑇 (𝛼, 𝛽, 𝑎𝑛, 𝑏𝑛) = 𝑇 (𝛼, 𝛽), 𝑇 𝑞𝑘

𝑞 (𝑎𝑛, 𝑏𝑛) = 𝑇 𝑞𝑘
𝑞 and 𝑇 𝑞

𝑞𝑘
(𝑎𝑛, 𝑏𝑛) = 𝑇 𝑞

𝑞𝑘
. Then we have

i) for 0 < 𝛼 ≤ 1 ≤ 𝛽 ≤ 1
𝛼 ,

𝑇 (𝛼, 𝛽) = {ℐ ⊂ 2N : ℐ is admissible ideal such that ℐ ⊇ ℐ(𝛼𝛽)
𝑐 },

ii) for 1 ≥ 𝑞𝑘 > 𝑞 ≥ 0 (𝑘 = 1, 2 . . . ), 𝑞𝑘 ↓ 𝑞 as 𝑘 → ∞,

𝑇 𝑞𝑘
𝑞 = {ℐ ⊂ 2N : ℐ is admissible ideal such that ℐ ⊇ ℐ≤𝑞},

iii) for 0 < 𝑞𝑘 < 𝑞 ≤ 1 (𝑘 = 1, 2 . . . ), 𝑞𝑘 ↑ 𝑞 as 𝑘 → ∞,

𝑇 𝑞
𝑞𝑘

= {ℐ ⊂ 2N : ℐ is admissible ideal such that ℐ ⊇ ℐ<𝑞}.

For special cases the following scheme shows the smallest(minimal) admissible
ideals partially ordered by inclusion which belong to the classes in the second line.

ℐ0 ( ℐ(𝛼𝛽)
𝑐 ( ℐ<𝑞 ( ℐ(𝑞)

𝑐 ( ℐ≤𝑞 ( ℐ<1 ( ℐ(1)
𝑐

↕ ↕ ↕ ↕ ↕ ↕ ↕

𝑇 𝑞𝑘
0 ) 𝑇 (𝛼, 𝛽)

𝑖𝑓 𝛼𝛽<𝑞

) 𝑇 𝑞
𝑞𝑘

) 𝑇 (𝛼, 𝛽)
𝑖𝑓 𝛼𝛽=𝑞

) 𝑇 𝑞𝑘
𝑞 ) 𝑇 1

𝑞𝑘
) 𝑇 (𝛼, 𝛽)

𝑖𝑓 𝛼𝛽=1
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