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Abstract
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1. Introduction

A positive integer 𝑥 is known as a Markov number if there are positive integers
𝑦, 𝑧, such that the triple (𝑥, 𝑦, 𝑧) satisfies the equation

𝑥2 + 𝑦2 + 𝑧2 = 3𝑥𝑦𝑧. (1.1)

Some Markov numbers (sequence A002559 in the OEIS [7]) are

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, . . . .

Note that, if (𝑥, 𝑦, 𝑧) satisfies (1.1), then 𝑦 and 𝑧 are also Markov numbers, hence
(𝑥, 𝑦, 𝑧) is called a Markov triple. Clearly, one can permute the order of the three
components and assume that 0 < 𝑥 ≤ 𝑦 ≤ 𝑧.

It is known that (1, 𝐹2𝑛−1, 𝐹2𝑛+1) is a Markov triple for all 𝑛 ≥ 0, where 𝐹𝑟

denotes the 𝑟th Fibonacci number. Luca and Srinivasan [6] showed these are the
only Markov triples whose components are all Fibonacci numbers.

For 𝑘 ≥ 2, let {𝐹 (𝑘)
𝑟 }𝑟≥−(2−𝑘) denote the 𝑘-generalized Fibonacci sequence

given by the recurrence

𝐹 (𝑘)
𝑟 = 𝐹

(𝑘)
𝑟−1 + · · · + 𝐹

(𝑘)
𝑟−𝑘, for all 𝑟 ≥ 2,

with 𝐹
(𝑘)
𝑗 = 0 for 𝑗 = 2 − 𝑘, . . . , 0 and 𝐹

(𝑘)
1 = 1.

We determine all Markov triples of the form (𝐹
(𝑘)
𝑠 , 𝐹

(𝑘)
𝑚 , 𝐹

(𝑘)
𝑛 ), where 𝑠,𝑚, 𝑛

are positive integers. That is, we find all the solutions of the Diophantine equation
(︁
𝐹 (𝑘)
𝑠

)︁2
+
(︁
𝐹 (𝑘)
𝑚

)︁2
+
(︁
𝐹 (𝑘)
𝑛

)︁2
= 3𝐹 (𝑘)

𝑠 𝐹 (𝑘)
𝑚 𝐹 (𝑘)

𝑛 . (1.2)

By symmetry and since 𝐹
(𝑘)
1 = 𝐹

(𝑘)
2 = 1, we assume that 2 ≤ 𝑠 ≤ 𝑚 ≤ 𝑛. Many

arithmetic properties have recently been studied for the 𝑘-generalized Fibonacci
sequences. Some Diophantine equations similar to the one discussed in this paper
can be found in [1] and [4].

Here is our main result.

Main Theorem. The only solutinos (𝑘, 𝑠,𝑚, 𝑛) of equation (1.2) with 𝑘 ≥ 2 and
2 ≤ 𝑠 ≤ 𝑚 ≤ 𝑛 are the trivial solutions (𝑘, 2, 2, 2) and (𝑘, 2, 2, 3) and the parametric
one (2, 2, 2𝑙 − 1, 2𝑙 + 1) for some integer 𝑙 ≥ 2.

In particular, there are no non-trivial Markov triples of 𝑘-generalized Fibonacci
numbers for any 𝑘 ≥ 3.

2. Preliminaries

To start, let us assume that (𝑥, 𝑦, 𝑧) is a Markov triple with 𝑥 ≤ 𝑦 ≤ 𝑧. Suppose
that 𝑥 = 𝑦. Then

2𝑥2 + 𝑧2 = 3𝑥2𝑧,
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which implies (𝑧/𝑥)2 = 3𝑧 − 2 ∈ Z. Therefore, 𝑧 = 𝑟𝑥 where 𝑟 is some positive
integer. We thus get

2 + 𝑟2 = 3𝑥𝑟. (2.1)

Hence, 𝑟|2, so 𝑟 = 1, 2 and we obtain the triples (𝑥, 𝑦, 𝑧) = (1, 1, 1), (1, 1, 2).
Suppose next that 𝑦 = 𝑧. Then,

𝑥2 + 2𝑧2 = 3𝑧2𝑥,

which implies (𝑥/𝑧)
2

= 3𝑥−2 ∈ Z. Hence, 𝑧 | 𝑥, but since 𝑥 ≤ 𝑧, we get 𝑥 = 𝑦 = 𝑧,
and again the only possibility is (𝑥, 𝑦, 𝑧) = (1, 1, 1). The previous observation
shows that aside from the triples (1, 1, 1) and (1, 1, 2), each Markov triple consists
of different integers. Thus, we obtained for the Diophantine equation (1.2) the
trivial solutions (𝑘, 𝑠,𝑚, 𝑛) given by (𝑘, 2, 2, 2) and (𝑘, 2, 2, 3). From now on, we
assume that 1 ≤ 𝑥 < 𝑦 < 𝑧, so 2 ≤ 𝑠 < 𝑚 < 𝑛.

We need some facts about 𝑘-generalized Fibonacci numbers. For 𝑘 ≥ 2 fixed,
by [3] we have the following Binet-like formula for the 𝑟th 𝑘-generalized Fibonacci
number

𝐹 (𝑘)
𝑟 =

𝑘∑︁

𝑖=1

𝑓𝑘(𝛼𝑖)𝛼
𝑟−1
𝑖 , (2.2)

where 𝛼1, 𝛼2, . . . , 𝛼𝑘 are the roots of the characteristic polynomial

Φ𝑘(𝑥) = 𝑥𝑘 − 𝑥𝑘−1 − · · · − 1,

and
𝑓𝑘(𝑥) :=

𝑥− 1

2 + (𝑘 + 1)(𝑥− 2)
.

It is known that this polynomial has only one real root larger than 1, let’s
denote it by 𝛼(= 𝛼1). It is in the interval (2(1 − 2−𝑘), 2), see [5, Lemma 2.3] or
[8, Lemma 3.6]. The remaining roots 𝛼2, . . . , 𝛼𝑘 are all smaller than 1 in absolute
value. Furthermore, powers of 𝛼 can be used to bound 𝐹

(𝑘)
𝑟 (see [2]) from above

and below as in the inequality

𝛼𝑟−2 < 𝐹 (𝑘)
𝑟 < 𝛼𝑟−1, which holds for all 𝑟 ≥ 1. (2.3)

It is known from [4] that the coefficient 𝑓𝑘(𝛼) in the Binet formula (2.2) satisfies
the inequalities

1

2
≤ 𝑓𝑘(𝛼) ≤ 3

4
, for all 𝑘 ≥ 2. (2.4)

It is also known (see [3]) that

𝐹 (𝑘)
𝑟 = 𝑓𝑘(𝛼)𝛼𝑟−1 + 𝑒𝑘(𝑟), for all 𝑟 ≥ 1, with |𝑒𝑘(𝑟)| < 1/2, (2.5)

and it follows from the recurrence formula that

𝐹 (𝑘)
𝑟 = 2𝑟−2 for all 2 ≤ 𝑟 ≤ 𝑘 + 1. (2.6)
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Sometimes we write 𝛼(𝑘) := 𝛼 in order to emphasize the dependence of 𝛼 on
𝑘. It is easy to check that 𝛼(𝑘) is increasing as a function of 𝑘. In particular, the
inequality

𝜑 :=
1 +

√
5

2
= 𝛼(2) ≤ 𝛼(𝑘) < 𝛼(𝑘 + 1) < 2 (2.7)

holds for all 𝑘 ≥ 2
By (1.2) and (2.3), we have the following relations between our variables:

𝛼2(𝑛−2) < (𝐹 (𝑘)
𝑛 )2 < 3𝐹 (𝑘)

𝑠 𝐹 (𝑘)
𝑚 𝐹 (𝑘)

𝑛 < 𝛼𝑠+𝑚+𝑛

and
3𝛼𝑠+𝑚+𝑛−6 < 3𝐹 (𝑘)

𝑠 𝐹 (𝑘)
𝑚 𝐹 (𝑘)

𝑛 < (3𝐹 (𝑘)
𝑛 )2 < 3𝛼2(𝑛−1),

which imply 𝑛 ≤ 𝑠 + 𝑚 + 3 and 𝑠 + 𝑚 ≤ 𝑛 + 3, respectively. We record this
intermediate result.

Lemma 2.1. Assume that (𝑘, 𝑠,𝑚, 𝑛) is a solution of equation (1.2) with 𝑘 ≥ 2
and 2 ≤ 𝑠 < 𝑚 < 𝑛. Then

|𝑛− (𝑠 + 𝑚)| ≤ 3. (2.8)

3. The proof of the Main Theorem

To avoid notational clutter, we omit the superscript (𝑘), so we write 𝐹𝑟 instead of
𝐹

(𝑘)
𝑟 but understand that we are working with the 𝑘-generalized Fibonacci numbers.

We use (2.5) to rewrite (1.2), as

𝐹 2
𝑠 + 𝐹 2

𝑚 + 𝑓2
𝑘𝛼

2(𝑛−1) + 2𝑒𝑘𝑓𝑘𝛼
𝑛−1 + 𝑒2𝑘

= 3(𝑓𝑘𝛼
𝑠−1 + 𝑒′′𝑘)(𝑓𝑘𝛼

𝑚−1 + 𝑒′𝑘)(𝑓𝑘𝛼
𝑛−1 + 𝑒𝑘). (3.1)

Here, for simplicity, we wrote 𝑓𝑘 := 𝑓𝑘(𝛼), 𝑒𝑘 := 𝑒𝑘(𝑛), 𝑒′𝑘 := 𝑒𝑘(𝑚), 𝑒′′𝑘 := 𝑒𝑘(𝑠).
Therefore, after some calculations, we get

|𝑓2
𝑘𝛼

2(𝑛−1) − 3𝑓3
𝑘𝛼

𝑠+𝑚+𝑛−3| ≤ |𝐺1(𝑘, 𝑠,𝑚, 𝑛, 𝛼)| + 𝐹 2
𝑠 + 𝐹 2

𝑚, (3.2)

where 𝐺1(𝑘, 𝑠,𝑚, 𝑛, 𝛼) is the contributions of those terms in the right-hand side
expansion of (3.1). Therefore,

|𝐺1(𝑘, 𝑠,𝑚, 𝑛, 𝛼)| ≤ 27

32
𝛼𝑠+𝑚−2 +

27

32
𝛼𝑠+𝑛−2 +

9

16
𝛼𝑠−1

+
27

32
𝛼𝑚+𝑛−2 +

9

16
𝛼𝑚−1 +

21

16
𝛼𝑛−1 +

5

8
.

Now, we divide both sides of (3.2) by 3𝑓3
𝑘𝛼

𝑠+𝑚+𝑛−3. By (2.3) and (2.4), we get

|1 − (3𝑓𝑘)−1𝛼𝑛−(𝑚+𝑠)+1| ≤ 8

3

(︂
27𝛼

32𝛼𝑛
+

27𝛼

32𝛼𝑚
+

9𝛼2

16𝛼𝑚+𝑛
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+
27𝛼

32𝛼𝑠
+

9𝛼2

16𝛼𝑠+𝑛
+

21𝛼2

16𝛼𝑠+𝑚

+
5𝛼3

8𝛼𝑠+𝑚+𝑛
+

𝛼

𝛼𝑚+𝑛−𝑠
+

𝛼

𝛼𝑠+𝑛−𝑚

)︂
.

Since 2 ≤ 𝑠 < 𝑚 < 𝑛, we have 𝑚 ≥ 3, 𝑛 ≥ 4, 𝑚 ≥ 𝑠 + 1 and 𝑛 ≥ 𝑠 + 2. Therefore,
after some calculations, we arrive at

|1 − (3𝑓𝑘)−1𝛼𝑛−(𝑚+𝑠)+1| < 15.2

𝛼𝑠
. (3.3)

We put 𝑡 := 𝑛− (𝑚 + 𝑠). By (2.8), we have that 𝑡 ∈ {±3,±2,±1, 0}. We proceed
by cases. If 𝑡 + 1 ≤ 0, then

1

3
≤ 1 − (3𝑓𝑘)−1𝛼𝑡+1 ≤ 1 − 2𝑡+3

9
,

which implies
1/3 < |1 − (3𝑓𝑘)−1𝛼𝑡+1|. (3.4)

Now, if 𝑡 + 1 ≥ 2, then 𝜑2 ≤ 𝛼𝑡+1 ≤ 2𝑡+1. Thus, we obtain

1 − 2

3
2𝑡+1 ≤ 1 − (3𝑓𝑘)−1𝛼𝑡+1 ≤ 1 − 4

9
𝜑2.

Since 1 − 4𝜑2/9 < −0.16 and 1 − 2𝑡+2/3 < −1.6, we get

0.16 < |1 − (3𝑓𝑘)−1𝛼𝑡+1|. (3.5)

Finally, we treat the case 𝑡 = 0. Let us consider, for 𝑘 ≥ 2, the function

𝑔(𝑥, 𝑘) =
2𝑥 + (𝑘 + 1)(𝑥2 − 2𝑥)

3(𝑥− 1)
.

Clearly, for 𝑥 >
√

2 fixed, the function 𝑔(𝑥, 𝑘) is increasing as a function of 𝑘. On
the other hand,

𝜕

𝜕𝑥
𝑔(𝑘, 𝑥)

⃒⃒
⃒
𝑥=𝑥𝑘

= 0, where 𝑥𝑘 :=
1 + 𝑘 ±

√
1 − 𝑘2

𝑘 + 1
.

Assume first that 𝑘 ≥ 4 fixed. Then 𝑔(𝑥, 𝑘) is increasing for 𝑥 ∈ (1, 2) and 1.93 <
𝛼(4) ≤ 𝛼(𝑘). Therefore,

1.14 < 𝑔(1.93, 4) ≤ 𝑔(𝛼, 𝑘) = (3𝑓𝑘)−1𝛼.

Thus, we conclude that
0.14 < |1 − (3𝑓𝑘)−1𝛼|. (3.6)

Now, for 𝑘 = 2 and 𝑘 = 3, we get

(3𝑓2)−1𝜑 < 0.75 and (3𝑓3)−1𝛼(3) < 0.992, (3.7)
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respectively. By (3.4), (3.5), (3.6) and (3.7), we conclude that the inequality

0.008 < |1 − (3𝑓𝑘)−1𝛼𝑛−(𝑚+𝑠)+1|, (3.8)

holds in all the cases when 𝑘 ≥ 2 and |𝑛 − (𝑚 + 𝑠)| ≤ 3. Thus, by the previous
estimate (3.8) together with (3.3) and the inequality (2.8), we get

2 ≤ 𝑠 ≤ 15 and 1 ≤ 𝑛−𝑚 ≤ 18.

Now, we rewrite equation (1.2) as

𝐹 2
𝑠 + 𝑓2

𝑘𝛼
2(𝑚−1) + 2𝑒′𝑘𝑓𝑘𝛼

𝑚−1 + (𝑒′𝑘)2 + 𝑓2
𝑘𝛼

2(𝑛−1) + 2𝑒𝑘𝑓𝑘𝛼
𝑛−1 + 𝑒2𝑘

= 3𝐹𝑠(𝑓𝑘𝛼
𝑚−1 + 𝑒′𝑘)(𝑓𝑘𝛼

𝑛−1 + 𝑒𝑘). (3.9)

After some calculations, we obtain

|𝑓2
𝑘𝛼

2(𝑛−1) + 𝑓2
𝑘𝛼

2(𝑚−1) − 3𝐹𝑠𝑓
2
𝑘𝛼

𝑛+𝑚−2| ≤ |𝐺2(𝑘, 𝑠,𝑚, 𝑛, 𝛼)| + 𝐹 2
𝑠 , (3.10)

where 𝐺2(𝑘, 𝑠,𝑚, 𝑛, 𝛼) correspond to those terms in the right-hand side expansion
of (3.9). Therefore,

|𝐺2(𝑘, 𝑠,𝑚, 𝑛, 𝛼)| ≤
(︂

9𝛼13

8
+

3

4𝛼

)︂
(𝛼𝑚 + 𝛼𝑛) +

3𝛼14

4
+

1

2
. (3.11)

Now, we divide both sides of (3.10) by 3𝐹𝑠𝑓
2
𝑘𝛼

𝑛+𝑚−2 and use the previous estimate
(3.11) together with the fact that the inequality 𝐹 2

𝑠 < 𝛼28 holds for all 2 ≤ 𝑠 ≤ 15,
to get

|(3𝐹𝑠)
−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) − 1| < 1.37 × 108

𝛼𝑚
(3.12)

Let us assume that 𝑘 ≥ 14. By (2.6), we have that 𝐹𝑠 = 2𝑠−2 for 2 ≤ 𝑠 ≤ 15. We
now put 𝑡 := 𝑛−𝑚 and we study the function

ℎ(𝑠, 𝑡, 𝑥) =
1

3 · 2𝑠−2

(︂
𝑥2𝑡 + 1

𝑥𝑡

)︂
,

where (𝑠, 𝑡) ∈ [2, 15]× [1, 18] and 𝑥 ∈ (𝛼(14), 2). Clearly this function is increasing
in terms of 𝑥, therefore

ℎ(𝑠, 𝑡, 𝛼(14)) ≤ (3𝐹𝑠)
−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) ≤ ℎ(𝑠, 𝑡, 2).

We check computationally that

ℎ(𝑠, 𝑡, 2) < 0.9 and 1.1 < ℎ(𝑠, 𝑡, 𝛼(14)),

hold in the entire range of our variables (𝑠, 𝑡) ∈ [2, 15]× [1, 18]∩ (Z×Z). Therefore,
for 𝑘 ≥ 14, 2 ≤ 𝑠 ≤ 15 and 1 ≤ 𝑛−𝑚 ≤ 18, we get

0.1 < |(3𝐹𝑠)
−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) − 1|.
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On the other hand, for 3 ≤ 𝑘 ≤ 13, 2 ≤ 𝑠 ≤ 15 and 1 ≤ 𝑛 − 𝑚 ≤ 18, we find
computationally that

0.004 < min |(3𝐹𝑠)
−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) − 1|. (3.13)

Therefore, comparing the above lower bound (3.13) with (3.12), we get that for
𝑘 ≥ 3,

2 ≤ 𝑠 ≤ 15, 3 ≤ 𝑚 ≤ 50 and 4 ≤ 𝑛 ≤ 68. (3.14)

The remaining case 𝑘 = 2 has already been treated but we can include it in our
analysis nevertheless. We start noting that for 3 ≤ 𝑠 ≤ 15 and 1 ≤ 𝑛−𝑚 ≤ 18, we
have

0.16 < min |(3𝐹𝑠)
−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) − 1|. (3.15)

If 𝑠 = 2, we have that 3−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) = 1 when 𝑛−𝑚 = 2. Therefore, for
1 ≤ 𝑛−𝑚 ≤ 18 with 𝑛 ̸= 𝑚 + 2,

0.25 < min |3−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) − 1|.

Thus, comparing the above lower bound (3.15) with (3.12), for 𝑘 = 2 and 𝑛 ̸= 𝑚+2,
we get,

2 ≤ 𝑠 ≤ 15, 3 ≤ 𝑚 ≤ 42 and 4 ≤ 𝑛 ≤ 50. (3.16)

By (3.14) and (3.16), we conclude that:

Lemma 3.1. If (𝑘, 𝑠,𝑚, 𝑛) is a solution of equation (1.2) with 2 ≤ 𝑠 < 𝑚 < 𝑛 and
𝑘 ≥ 2, then either 𝑘 = 2 and 𝑛 = 𝑚 + 2 or 𝑘 ≥ 3,

2 ≤ 𝑠 ≤ 15, 3 ≤ 𝑚 ≤ 50 and 4 ≤ 𝑛 ≤ 68.

Now, we need to bound the variable 𝑘. Let us assume first that 𝑘 > 67. Then,
by Lemma 3.1, we have

𝑛 ≤ 68 < 𝑘 + 1.

Thus, the formula 𝐹𝑟 = 2𝑟−2 holds for all three 𝑟 ∈ {𝑠,𝑚, 𝑛}. Hence, equation
(1.2) may be rewritten as

22(𝑠−2) + 22(𝑚−2) + 22(𝑛−2) = 3 · 2𝑛+𝑚+𝑠−6.

Dividing both sides of this equality by 22(𝑠−2), we get

1 + 22(𝑚−𝑠) + 22(𝑛−𝑠) = 3 · 2𝑛+𝑚−𝑠−2. (3.17)

Since 𝑚−𝑠 ≥ 1 and 𝑛−𝑠 ≥ 2, the left-hand side of (3.17) is an odd integer greater
than or equal to 21. If 𝑛 + 𝑚 > 𝑠 + 2, the right-hand side is an even number,
if 𝑛 + 𝑚 < 𝑠 + 2 the right-hand side is not an integer and if 𝑛 + 𝑚 = 𝑠 + 2 the
right-hand side is 3 and none of these situations is possible. Thus, 𝑘 ≤ 67.
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Assume next that 𝑘 = 2 and 𝑛 = 𝑚 + 2 for some 𝑚 ≥ 3. Recall that the case
𝑘 = 2 was treated in [6], so, the following has already been done and we present it
here just to end our analysis. By their Lemma 3.2, we have 𝑠 = 2. Thus,

1 + 𝐹 2
𝑚 + 𝐹 2

𝑚+2 = 3𝐹𝑚𝐹𝑚+2. (3.18)

If 𝑚 is an even number, then one of 𝑚 or 𝑚+ 2 is a multiple of 4, so one of 𝐹𝑚 or
𝐹𝑚+2 is a multiple of 3, which leads to

1 + 𝐹 2
𝑗 ≡ 0 mod 3,

for some 𝑗 ∈ {𝑚,𝑚 + 2}, which is not possible. Therefore, 𝑚 = 2𝑙 − 1 for some
𝑙 ≥ 2. Thus, equation (3.18) may rewritten as

1 + 𝐹 2
2𝑙−1 + 𝐹 2

2𝑙+1 = 3𝐹2𝑙−1𝐹2𝑙+1 for 𝑙 ≥ 2,

which holds since it is equivalent to 1 + 𝐹 2
2𝑙 = 𝐹2𝑙−1𝐹2𝑙+1, which is a particular

case of Cassini’s formula.

In summary, we have the following result:

Lemma 3.2. If (𝑘, 𝑠,𝑚, 𝑛) is a solution of (1.2) with 2 ≤ 𝑠 < 𝑚 < 𝑛, then either
𝑘 = 2, 𝑠 = 2, 𝑚 = 2𝑙 − 1 and 𝑛 = 2𝑙 + 1 for some 𝑙 ≥ 2 or

2 ≤ 𝑘 ≤ 67, 2 ≤ 𝑠 ≤ 15, 3 ≤ 𝑚 ≤ 50 and 4 ≤ 𝑛 ≤ 68.

Finally, a brute force search for solutions (𝑘, 𝑠,𝑚, 𝑛) of the equation (1.2), using
the respective range given by the previous lemma, finishes the proof of our Main
Theorem. Here, we used

𝐹 [𝑟_, 𝑘_] := SeriesCoefficient[Series[𝑥/(1 − Sum[𝑥𝑗 , {𝑗, 1, 𝑘}]), {𝑥, 0, 1400}], 𝑟],

to create the 𝑟th 𝑘-Fibonacci number.
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