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THE GEOMETRY ON THE SLOPE OF A MOUNTAIN
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Abstract. The geometry on a slope of a mountain is the geometry of a Finsler metric, called
here the slope metric. We study the existence of globally defined slope metrics on surfaces of
revolution as well as the geodesic’s behavior. A comparison between Finslerian and Riemannian
areas of a bounded region is also studied.
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1. INTRODUCTION

Finsler manifolds, that is n-dimensional smooth manifolds endowed with Finsler
metrics, are natural generalization of the well-known Riemannian manifolds. The
main difference is that the metric itself and all Finsler geometric quantities depend
not only on the point x ∈ M of the manifold, but also on the direction y ∈ TxM,
where (x,y) are the canonical coordinates of the tangent bundle T M. This directional
dependence reveals many hidden geometrical features that are usually obscured by
the quadratic form in the y-variable of a Riemannian metric.

The Randers metrics F = α+β and the Kropina metrics F = α2

β
belong to a larger

class of Finsler metrics called (α,β)- metrics since they are obtained by deformations
of a Riemannian metric by means of a linear 1-form β= bi(x)yi on T M. The common
characteristic is that they are obtained by rigid translation of a Riemannian unit sphere
by a vector field W . The local and global geometries of these Finslerian metrics have
been extensively studied ([11]).

Another interesting but much less studied problem is the Matsumoto’s slope met-
ric F = α2

α−β
. Indeed, based on a letter of P. Finsler (1969), M. Matsumoto considered

the following problem:

Suppose a person walking on a horizontal plane with velocity c, while the gravit-
ational force is acting perpendicularly on this plane. The person is almost ignorant
of the action of this force. Imagine the person walks now with same velocity on the
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inclined plane of angle ε to the horizontal sea level. Under the influence of gravita-
tional forces, what is the trajectory the person should walk in the center to reach a
given destination in the shortest time?

Based on this, he has formulated the following Slope principle ([9] ).
With respect to the time measure, a plane (π) with an angle ε inclination can be

regarded as a Minkowski plane. The indicatrix curve of the corresponding Minkowski
metric is a limaçon, contained in this plane, given by

r = c+acosθ,

in the polar coordinates (r,θ) of (π), whose pole is the origin O of (π) and the polar
axis is the most steepest downhill direction, where a = g

2 sinε, and g is the accelera-
tion constant.

From calculus of variations it follows that for a hiker walking the slope of a moun-
tain under the influence of gravity, the most efficient time minimizing paths are not
the Riemannian geodesics, but the geodesics of the slope metric F = α2

α−β
.

More recently, it was shown that the fire fronts evolution can be modeled by Finsler
metrics of slope type and their generalizations (see [8]). In this setting the geodesics
behaviour and the cut locus have real interpretations and concrete applications for the
firefighters activity as well as preventing of wild fires. All these applications show
that slope metrics deserve a more detalied study making in this way the motivation
of the preseant paper.

Despite the quite long existence of slope metrics, their study is limited mainly to
the study of their local geometrical properties, while the global existence of such
metrics and other geometrical properties are conspicuously absent.

Our study leads to the following novel findings:

(1) we show that there are many examples of surfaces admitting globally defined
slope metrics;

(2) we describe in some detail the geometry of a surface of revolution endowed
with a slope metric. In special we study the geodesics behaviour, Clairaut
relation, etc.;

(3) we compare the Finslerian areas (by using the Busemann-Hausdorff and the
Holmes-Thompson volume forms, respectively) with the Riemannian one.

Here is the contents of the present paper. We recall in Section 2 the construction
of the slope metric on a surface M→ R3 based on Matsumoto’s work pointing out
the strongly convexity condition such a surface must satisfy in order to admit a slope
metric (Proposition 1).

Based on these we show that there exist smooth surfaces M→R3 that admit glob-
ally defined slope metrics (Section 3). All the examples known until now were local
one. This is for the first time the existence of global slope metrics is shown.
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In Section 4 we specialize to surfaces of revolution admitting globally defined
slope metrics. We study in Section 4.1 general Finsler surfaces of revolution and give
a new form of the Clairaut relation in Theorem 1. This relation is very important
showing that the geodesic flow of Finsler surfaces of revolution is integrable despite
its highly nonlinear character. After solving the algebraic system (4.6) one can write
the geodesic equations in an explicit form, however solving this system is not a trivial
task. Next, in Section 4.3, we construct explicitly the slope metric on a surface of
revolution and show that there are many such surfaces admitting globally defined
strongly convex slope metrics, see Theorem 3 for a topological classification and
examples. These are actually Finsler surfaces of revolution (see Theorem 2).

We turn to study of geodesics of slope metrics on a surface of revolution in Sec-
tion 4.4 by explicitly writing the geodesic equations as second order ODEs in (4.9).
Some immediate consequences are given (see Proposition 2, 3). The meridians are F-
geodesics, but parallels are not. Moreover, a slope metric cannot be projectively flat
or projectively equivalent to Riemannian metric α (Proposition 4). We show the con-
crete form of the Clairaut relation for this case in Theorem 4, and some consequence
of it in Proposition 5.

Finally, we compare the area of a bounded region D on the surface of revolution
M when measured by the canonical Riemannian, Busemann-Hausdorff, and Holmes-
Thompson volume measures, respectively (see Theorems 5 and 6).

Other topics in the geometry of slope metrics like the study of the flag curvature,
global behaviour of geodesics, and cut locus, etc. will be considered in forthcoming
research.

2. THE SLOPE METRIC

The slope metric is obtained by the movement on a Riemannian surface under the
influence of the gravity attraction force. Indeed, assume a hiker is walking on the
surface M, seen now as the slope of a mountain, with speed c an level ground, along
a path that makes an angle ε with the steepest downhill direction.

Let us consider the surface M embedded in the Euclidean space R3 with the para-
metrization M → R3, (x,y) 7→ (x,y,z = f (x,y)), where f : R2 → R is a smooth
function (further conditions will be added later), that is M is the graph of z = f (x,y).
The tangent plane πp = TpM at a point p = (x,y, f (x,y)) ∈ M is spanned by ∂x :=
(1,0, fx), ∂y := (0,1, fy), where fx and fy are the partial derivatives of f with re-
spect to x and y, respectively. The induced Riemannian metric from R3 to the surface
M is

ai j =

(
1+ f 2

x fx fy
fx fy 1+ f 2

y

)
. (2.1)

Remark 1. Observe that at a critical point p∈M, i.e. a point where ( fx(p), fy(p))=
(0,0), the tangent plane TpM is spanned by the unit vectors (1,0,0) and (0,1,0),
while the induced Riemannian metric is just the usual flat metric.
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We will construct the slope metric on the surface M by considering the plane x,y
to be the sea level, the z≥ 0 coordinate to be the altitude above the sea level and the
surface M : z = f (x,y) to be the slope of the mountain.

At any point p ∈ M we construct a Riemannian orthonormal frame {e1,e2} in
TpM by choosing e1 to point on the steepest downhill direction of TpM. Indeed, it is
elementary to see that

e1 =−
1√

(1+ f 2
x + f 2

y )( f 2
x + f 2

y )
( fx∂x + fy∂y), e2 =

1√
f 2
x + f 2

y

(− fy∂x + fx∂y)

(2.2)
is a such orthonormal frame.

With these notations, the Matsumoto’s slope principle is telling us that the locus
of unit time destinations of the hiker on the plane TpM is given by the limaçon r =
c+a · cosθ, where (r,θ) are the polar coordinates in TpM, c is the speed of the hiker
on the ground level xy, and a = g

2 · sinε is the gravity (of magnitude g) component
along the steepest downhill direction. The Finsler norm F having this limaçon as
indicatrix measures time travel on the surface S.

Taking into account the parametrization

X(t) = (c+acos t) · cos t, Y (t) = (c+acos t) · sin t, t ∈ [0,2π) (2.3)

it is easy to obtain the implicit equation of the limaçon

X2 +Y 2 = c
√

X2 +Y 2 +a ·X , (2.4)

where X ,Y are the coordinates with respect to the orthonormal frame {e1,e2} in TpM.
We get the Minkowski norm F(X ,Y ) = X2+Y 2

c
√

X2+Y 2+a·X , and by converting to the
canonical coordinates (x,y, ẋ, ẏ) of T M we obtain the slope metric

F(x,y, ẋ, ẏ) =
α2

cα− g
2 β

,

where {
α =

√
(1+ f 2

x )ẋ2 +2 fx fyẋẏ+(1+ f 2
y )ẏ2

β = fxẋ+ fyẏ.
(2.5)

Remark 2. Recall that a Finsler structure (M,F) is a surface (or more generally an
n-dimensional manifold) M endowed with a Banach norm in each tangent space that
smoothly varies with the base point all over the manifold. A Riemannian structure is
the particular case when each of these norms are induced by a quadratic form.

Observe that the slope metric as the Finsler metric whose indicatrix is a limaçon,
was effectively constructed only at regular points of the surface M. However, it is easy
to see that the resulting Finsler metric is well defined everywhere on M, including
the critical points of M, where it becomes the flat Riemannian metric. This is in
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perfect accord with the physical situation initially considered, since in these points
the gravitation forces have no influence.

For the sake of simplicity we can choose c := g
2 and by multiplication with c we

obtain the usual form of the slope metric

F =
α2

α−β
(2.6)

(see [3], [9]). The slope metric belongs to the class of (α,β)-metrics (see [1]).
By writing F = F(α,β) = α ·φ(s), where s = β

α
, the Hessian gi j := 1

2
∂2F2

∂yi∂y j reads

gi j = ρai j +ρ0bib j +ρ1(biα j +b jαi)−ρρ1αiα j, where αi := ∂α

∂yi , and ρ = φ2−sφφ′,
ρ0 = φφ′′+φ′φ′, ρ1 =−s(φφ′′+φ′φ′)+φφ′.

It is known from Shen’s work (see [1]) that (α,β) type Finsler metrics are strongly
convex whenever the function φ(s) satisfies

φ(s)> 0, φ(s)− sφ
′(s)> 0, φ

′′(s)≥ 0, for s< b.

In the case of the slope metric, we have φ(s) = 1
1−s and the relations above are

clearly satisfied for s< 1
2 , that is β < 1

2 α. It follows

Proposition 1. A surface M → R3, (x,y) 7→ (x,y,z = f (x,y)) admits a strongly
convex slope metric F = α2

α−β
, where α,β are given in (2.5), if and only if

f 2
x + f 2

y <
1
3

(2.7)

where fx, fy are partial derivatives of f .

This proposition is saying that β < 1
2 α is equivalent to the condition (2.7), for α,β

given in (2.5).

Remark 3. (1) This formula was obtained for the first time in [3] and the proof
is based on the idea in [3].

(2) The convexity formula above is obviously equivalent to the usual convexity
condition of the limaçon c > 2a.

(3) Taking into account the inverse matrix (ai j) of (2.1), it can be seen that

b2 := ai jbib j is given by b2 =
f 2
x + f 2

y

1+ f 2
x + f 2

y
, and from (2.7) it follows that

the strongly convexity of the indicatrix is equivalent to b <
1
2
.

Observe that for the slope metric (2.6) we have ρ = 2s−1
(s−1)3 = α2(α−2β)

(α−β)3 , ρ0 =

3
(s−1)4 = 3α4

(α−β)4 , ρ1 = 1−4s
(s−1)4 = α3(α−4β)

(α−β)4 and hence g11 = ρ · a11 + ρ0 + 2ρ1α1− ρ ·
ρ1(α1)

2, g12 = (1−ρα1)ρ1α2, g22 = ρ ·a22−ρ ·ρ1(α2)
2.
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3. EXAMPLES OF SLOPE METRICS

We will consider in the following some simple examples of slope metrics. Observe
that, as pointed already, the base surfaces may have critical points. At these points
the slope metric reduces to a flat Riemannian metric, fact in perfect agreement with
the initial setting of the problem.

One might be tempted to think that due to the convexity condition (2.7) the slope
metric is strongly convex only locally. See for instance the example of the paraboloid
of revolution f (x,y) := 100−x2−y2 in [3] where the strongly convexity condition is
assured only in a circular vicinity of the hilltop. However, that is not the case. There
are many Riemannian surfaces that admit globally strongly convex slope metric. We
describe few such examples below.

3.1. The plane

The simplest surface is the plane M : z = f (x,y) = px+ qy+ r, where p,q,r are
constants.

It is trivial to see that

(ai j) =

(
1+ p2 pq

pq 1+q2

)
, (bi) =

(
p
q

)
,

thus the slope metric is actually the Minkowski metric

F =
(1+ p2)ẋ2 +2pqẋẏ+(1+q2)ẏ2√

(1+ p2)ẋ2 +2pqẋẏ+(1+q2)ẏ2− (pẋ+qẏ)
,

with the strongly convexity condition p2 + q2 <
1
3

. Hence, the plane z = λ · x does

admit a strongly convex slope metric for any constant λ2 < 1
3 , while z = x does not

(see [3]).
We recall from [12] that for a slope metric on a surface M : z = f (x,y), the 1-form

β is parallel with respect to α if and only if M is a plane. In this case the slope metric
is a Berwald space.

3.2. A list of surfaces

Elementary computations show that all the following surfaces z = f (x,y) admit
strongly convex slope metric globally defined, where f : R2→ R are given by

(1) f (x,y) = 1
2
√

6
e−(x

2+y2),

(2) f (x,y) = 1
2
√

6
e−(x+y)2

,

(3) f (x,y) = 1
2
√

6
arctan(x+ y),

(4) f (x,y) = 1
2
√

6
((x+ y)− log(ex+y +1)),

(5) f (x,y) = 1
2
√

6
log(

√
(x+ y)2 +1+ x+ y).
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Indeed, all these surfaces satisfy condition (2.7) for any (x,y) ∈ R2.
Let us remark that the surface f (x,y) := 1

2
√

6
e−(x

2+y2) can be actually realized as

a surface of revolution obtained by rotating the graph of the function z = 1
2
√

6
e−x2

around the z axis. This example suggests that surfaces of revolution are good candid-
ates for the study of slope metrics, fact motivating the next section.

4. THE SLOPE METRIC OF A SURFACE OF REVOLUTION

4.1. Riemannian surface of revolution

Let us recall some facts from the geometry of Riemannian surfaces of revolution
(see [13]).

A surface of revolution M→ R3 can be parametrization as

(u,v) 7→ (x = m(u)cosv,y = m(u)sinv,z = u) (4.1)

where u ∈ (0,∞), v ∈ S1. Here (u,v) are the geodesic polar coordinates around the
pole p ∈ M, and m : (0,∞)→ (0,∞) is a smooth function such that m′(0) = 1 (see
[13] for details).

Remark 4. We have defined here a classical surface of revolution by rotating the
image of the curve m : (0,∞)→ (0,∞) around the z axis. However, there is no harm
in taking m : I→ (0,∞), where I ⊂ R is an open set.

It is known that a curve u = u(t), v = v0: constant is called a meridian, and u = u0:
constant, v = v(t) is called a parallel. A point p ∈M is called pole if any 2 geodesics
emanating from p do not meet again, in other words, the cut locus of p is empty.
A unit speed geodesic is called a ray if d(γ(0),γ(s)) = s, for all s ≥ 0. Clearly, all
geodesics emanating from the pole are rays.

The induced Riemannian metric is

(ai j) =

(
1+(m′)2(u) 0

0 m2(u)

)
(4.2)

and the unit speed geodesics (u = u(t),v = v(t)) are given by{
d2u
dt2 +

m′m′′
1+m′2

(du
dt

)2− mm′
1+m′2

(dv
dt

)2
= 0

d2v
dt2 +2 m′

m
du
dt

dv
dt = 0.

(4.3)

The geodesic spray coefficients of this Riemannian metric read{
2G1

α = m′m′′
1+m′2 (y

1)2− mm′
1+m′2 (y

2)2

2G2
α = 2 m′

m y1y2, (m 6= 0).

From here it follows that there exists a constant ν, called the Clairaut constant
such that

dv
dt
·m2(u(t)) = ν, (4.4)
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and hence du
dt =±

1
m

√
m2−ν2

1+m′2 , that is in the case of a Riemannian surface of revolution,
the geodesic flow is integrable.

Remark 5. By changing the parameter u on the profile curve m(u) we can para-
metrize M as (u,v) 7→ (m(u)cosv,m(u)sinv,z(u)) such that [m′(u)]2 + [z′(u)]2 = 1.
This simplifies the induced Riemannian metric (ai j). We are not using this paramet-
rization because linear form β in (2.5) is simpler when using (4.1) and this leads to
simplication of computations for the slope metric.

4.2. Finsler surfaces of revolution

Let (M,F) be a Finsler structure defined on a surface of revolution M defined as
in Section 4.1.

If X := ∂

∂v is a Killing vector field for F , that is LX F = Xc(F) = 0, where Xc is
the complete lift of X to T M, or equivalently ∂F

∂v = 0, then (M,F) is called a Finsler
surface of revolution.

Remark 6. (1) See [7] for a definition based on the notion of motion. Their
definition is equivalent to ours.

(2) See [5] and [6] for a complete study of rotationally Randers metrics, that is
Finsler metric of type F = α+β constructed on surfaces of revolution.

If we denote by H(x, p) the Hamiltonian corresponding to the Finsler structure
(M,F) by means of Legendre transform (see [10]), then since F is surface of re-
volution, it follows ∂H

∂v = 0. Hence, Hamilton Jacobi equations dxi

ds = ∂H
∂pi

, d pi
ds =− ∂H

∂xi

imply that I = p2 is a prime integral of the geodesic flow, that is d p2
ds = 0 along any

unit speed F-geodesic.
On the other hand, recall that by the Legendre transform associated to F , we have

p2 = g2iyi = g12y1 +g22y2 and hence we obtain

Theorem 1. Along any unit speed F-geodesics P (s) = (u(s),v(s)) we have

p2(s) = g12(P , Ṗ ) · du
ds

+g22(P , Ṗ ) · dv
ds

= νF = constant. (4.5)

That is, (4.5) is the corresponding relation to (4.4) in the Finslerian setting.
The constant νF plays the role of the Clairaut constant for Finslerian geodesics.

Remark 7. See [7] for an alternate proof of this formula.

It follows that, for any unit speed F-geodesic, we have

g12(P , Ṗ ) · du
ds

+g22(P , Ṗ ) · dv
ds

= ν, F(P , Ṗ ) = 1 (4.6)

and theoretically, by solving this algebraic system, we can obtain du
dt and dv

dt that by
integration would give the trajectories of the F-geodesics. However, observe that
finding an explicit solution of the system is not a trivial task.
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Remark 8. (1) As far as we know, the relation (4.5) appeared for the first time
in the case of the rotational Randers surface of revolution studied in [5],
where the Clairaut constant for the Randers geodesics is ν

1+µν
. Here ν is the

usual Clairaut constant of the corresponding Riemannian geodesic through
the Zermelo navigation process.

(2) We denote by ϕt the flow of ∂

∂v , which is a Finslerian isometry preserving the
orientation of M. The Finslerian distance dF is invariant under ϕt .

4.3. The slope metric on a surface of revolution

Let us consider again the surface of revolution M with the parametrization (4.1)
and induced Riemannian metric (4.2).

Following again Matsumoto’s slope principle, observe that the orthonormal frame
in TpM at a given p ∈ M is e1 = − 1√

(m′)2+1
· ∂

∂u , e2 = 1
m ·

∂

∂v and here, the relation

between the coordinates (X ,Y ) of TpM with respect to {e1,e2} and the canonical
coordinates (u̇, v̇) is X =−

√
1+(m′)2 · u̇, Y = m · v̇.

The limaçon implicit equation (2.4) reads now[
1+(m′)2] u̇2 +m2 · v̇2 = c

√
[1+(m′)2] u̇2 +m2v̇2−a

√
1+(m′)2 · u̇,

and taking into account that a = sinε = 1√
1+(m′)2

we obtain the slope metric in the

form (2.6) with

α =
√
[1+(m′)2] u̇2 +m2v̇2, β = u̇. (4.7)

Taking into account the strongly convexity condition b < 1
2 it follows

Theorem 2. A surface of revolution M → R3, (u,v) 7→ (m(u)cosv,m(u)sinv,u)
admits a strongly convex slope metric F = α2

α−β
, with α,β given in (4.7) if and only if

(m′)2 > 3. (4.8)

Moreover, (M,F) is a Finsler surface of revolution.

Let us recall from Poincaré -Hopf index theorem for the rotational vector filed
X = ∂

∂v

∣∣∣
p
, p ∈ M, that the strongly convexity condition (4.8) implies that number

of singular points of X on M can be only 1 or 0. Indeed, otherwise X would be
vanishing, or M would be homeomorphic to the sphere, and this is not possible. It
is clear from (4.8) that M cannot be boundaryless compact manifold. The case of a
cylinder of revolution is not possible either due (4.8), hence we obtain

Theorem 3. The surfaces of revolution M admitting globally defined strongly con-
vex slope metrics are homeomorphic to R2.

One can now easily construct examples of surfaces of revolution satisfy condition
(4.8). Here are such surfaces
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(1) m(u) =
√

6u2−1, for u ∈ ( 1√
6
,∞);

(2) m(u) = 1
2

√
−2ln(24u2), for u ∈ (0, 1

2
√

6
).

Since the slope metric F is a Finslerian surface of revolution, the theory explained
in Section 4.2 applies.

4.4. The geodesics of a surface of revolution with the slope metric

In order to study to geodesics of the slope metric (M,F = α2

α−β
) we need a formula

for the geodesic spray of F .
We recall the general formula for an arbitrary (α,β)-metric

Gi = G i
α +αQsi

0 +Θ{−2Qαs0 + r00}
yi

α
+Ψ{−2Qαs0 + r00}bi

where Gi and G i
α denote the spray coefficients for F and α, respectively.

Here we use the customary notations:

ri j :=
1
2
(bi| j +b j|i), si j :=

1
2
(bi| j−b j:i), si

j := aiksk j, s j = bisi
j, bi = ai jb j,

and

Q : =
φ′

φ− sφ′
, Ψ :=

φ′′

2[φ− sφ′+(b2− s2)φ′′]
,

Θ : =
φ− sφ′

2[φ− sφ′+(b2− s2)φ]
· φ
′

φ
− sΨ =

[
φ− sφ′

φ′′
· φ
′

φ
− s

]
Ψ

(see [1]).
In the case of α,β given in (4.7) we obtain(

b1|1
b2|2

)
=

(
−m′m′′
1+m′2
mm′

1+m′2

)
,

r00 =−2 ·G1
α

si
j = s j = 0, b1|2 = 0,

and hence Gi = G i
α + r00

[
Θ

yi

α
+Ψ ·bi

]
.

By taking into account now φ(s) = 1
1−s after some computations we get

Ψ =
1

2b2−3s+1
=

α

(2b2 +1)α−3β

Θ =

(
1
2
−2s

)
Ψ =

1−4s
2(2b2−3s+1)

=
α−4β

2α
·Ψ =

α−4β

2[(2b2 +1)α−3β]

therefore Gi = G i
α + r00

[
α−4β

2α
· yi

α
+bi

]
·Ψ.
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In particular G1 = G1
α ·

(α−2β)2

α[(2b2+1)α−3β]
, G2 = G2

α−G1
α ·

α−4β

α[(2b2+1)α−3β]
·y2, and there-

fore, the unit speed F-geodesic equations are
d2u
ds2 +2G1

α ·
(α−2β)2

α[(2b2+1)α−3β]

∣∣∣∣∣
(u(s),v(s))

= 0

d2v
ds2 +2G2

α−2G1
α ·

α−4β

α[(2b2+1)α−3β]
· dv

ds

∣∣∣∣∣
(u(s),v(s))

= 0.
(4.9)

The geodesic equations in this form are not of much use.
However, some conclusions can be drawn.

Proposition 2. The meridians are F-unit speed geodesics.

Proof. If we consider an (F-unit speed) meridian P (s) = (u(s),v0), then Ṗ (s) =(du
ds ,0

)
and by using the F-unit speed condition the geodesic equation (4.9) are

identically satisfied. �

Proposition 3. A parallel P (s) = (u0,v(s)) is F-geodesic if and only if m′(u0) = 0,
that is a strongly convex slope metric do not admit parallels geodesics.

Proof. (⇒) If the parallel P (s) = (u0,v(s)) is a unit speed F-geodesic, then along
P (s), α2

∣∣∣
(P ,Ṗ )

= 1 and β

∣∣∣
(P ,Ṗ )

= 0, hence the conclusion follows from the same

arguments as in the Riemannian case.
(⇐) If we assume m′(u0) = 0 then the conclusion follows in a similar way with

the Riemannian case. �

Proposition 4. The slope metric F = α2

α−β
can not be projectively equivalent to the

Riemannian metric of M, nor projectively flat.

Proof. Recall that a Matsumoto metric F = α2

α−β
is projectively equivalent to the

Riemannian metric α if and only if β is parallel with respect to ai j, that is bi| j = 0,
where | is the covariant derivative with respect to ai j.

However, observe that in the case of the slope metric we have b1|1 = −γ1
11 6= 0,

b1|2 = 0, b2|2 =−γ1
22 6= 0.

In order to be projectively flat β must be parallel and α projectively flat. Clearly,
none of these conditions is true in the case of the slope metric. �

Let us consider the prime integral p2 of the geodesic flow. A straightforward
computation shows

Theorem 4. Along the unit speed F-geodesic P : (0,a)→M, P (s) = (u(s),v(s)),
du
ds 6= 0 for s ∈ (0,a) we have:

p2(s) = (g12y1 +g22y2)
∣∣
(P ,Ṗ )

= ρ
∣∣
(P ,Ṗ )

·m2(u(s)) · dv
ds

= νF . (4.10)
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Therefore du
ds , dv

ds are solutions of the following algebraic system:

ρ
∣∣
(P ,Ṗ )

·m2(u(s)) · dv
ds

= νF ,
α2

α−β

∣∣
(P ,Ṗ )

= 1, (4.11)

where ρ(P (s), Ṗ (s)) = α−2β

(α−β)2 |(P (s),Ṗ (s)). An explicit solution of this algebraic system

can be obtained by solving a 4th order equation but the computation is too complic-
ated to be given here.

Instead of writing the explicit solution of (4.11) we point out some consequence
of (4.10).

If a unit speed F-geodesic P (0,a)→M is tangent to the Killing vector field at its
end points, that is

Ṗ (0) =
1

F
(

P (0), ∂

∂v

∣∣∣
P (0)

) · ∂

∂v

∣∣∣
P (0)

, Ṗ (a) =
1

F
(

P (a), ∂

∂v

∣∣∣
P (a)

) · ∂

∂v

∣∣∣
P (a)

,

and Ṗ (s) is linearly dependent with ∂

∂v

∣∣∣
P (s)

for any s ∈ (0,a), then Clairaut relation

(4.10) implies

Proposition 5. If P : (0,a)→M, P (s) = (u(s),v(s)) is an F-unit speed geodesic
such that Ṗ (0) and Ṗ (a) are linear dependent vectors with ∂

∂v

∣∣∣
P (0)

and ∂

∂v

∣∣∣
P (a)

, re-

spectively, then m(u(0))=m(u(a))= νF . Moreover, m(u(s))>m(u(0)) for s∈ (0,a).

5. FINSLERIAN VOLUMES

It is known that the Euclidean volume form in Rn is the n-form dVRn := dx1dx2 . . .dxn,
and the Euclidean volume of a bounded open set D ⊂ Rn is given by Vol(D) =∫

D dVRn =
∫

D dx1dx2 . . .dxn.
Obviously, if D⊂ Rn is a bounded open set, Vol(D) is a finite constant.
More generally, let us consider a Riemannian manifold (M,g) with the Rieman-

nian volume form dVg :=
√

gdx1dx2 . . .dxn, and hence the Riemannian volume of
(M,g) can be computed as

Vol(M,g) =
∫

M
dVg =

∫
M

√
gdx1dx2 . . .dxn =

∫
M

θ
1
θ

2 . . .θn,

where {θ1,θ2, . . . ,θn} is a g-orthonormal co-frame on M, and g = det(gi j).
In general, a volume form dµ on an n-dimensional Finsler manifold (M,F) is a

globally defined, non-degenerate n-form on M. In local coordinates we can always
write dµ = σ(x)dx1∧·· ·∧dxn, where σ is a positive function on M.

The usual Finslerian volumes are obtain by different choices of the function σ(x).
Here are two of the most well studied Finslerian volumes.
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The Busemann-Hausdorff volume form is defined as dVBH := σBH(x)dx1 ∧ ·· · ∧
dxn, where

σBH(x) :=
Vol(Bn(1))
Vol(Bn

x M)
, (5.1)

here Bn(1) is the Euclidean unit n-ball, Bn
x M = {y : F(x,y) = 1} is the Finslerian ball

and Vol the canonical Euclidean volume.
This volume form allows us to define the Busemann-Hausdorff volume of the

Finsler manifold (M,F) by volBH(M,F) =
∫

M dVBH .

Remark 9. Observe that the n-ball Euclidean volume is

Vol(Bn(1)) =
1
n

Vol(Sn−1) =
1
n

Vol(Sn−2)
∫

π

0
sinn−2(t)dt.

Another volume form naturally associated to a Finsler structure is the Holmes-
Thompson volume form defined by dVHT = σHT (x)dx1...dxn, where

σHT (x) :=
Vol(Bn

x M,gx)

Vol(Bn(1))
=

1
Vol(Bn(1))

∫
Bn

x M
(detgi j(x,y))dy1...dyn, (5.2)

and the Holmes-Thompson volume of the Finsler manifold (M,F) is defined as volHT (M,F)=∫
M dVHT .

Remark 10. If (M,F) is an absolute homogeneous Finsler manifold, then the
Busemann-Hausdorff volume is a Hausdorff measure of M, and therefore we have
volBH(M,F) ≥ volHT (M,F) (see [4]). If (M,F) is not absolute homogeneous, then
the inequality above is not true anymore.

In the case of an Finsler (α,β)-metric, one can compute explicitly the Finslerian
volume in terms of the Riemannian volume (see [1]). Indeed, if (M,F(α,β)) is an
(α,β)-metric on an n-dimensional manifold M, one denotes

f (b) :=
∫

π

0 sinn−2(t)dt∫
π

0
sinn−2(t)

φ(bcos(t))n dt
, g(b) :=

∫
π

0 sinn−2(t)T (bcos t)dt∫
π

0 sinn−2(t)dt
, (5.3)

where F = αφ(s), s= β/α, and T (s) := φ(φ− sφ′)n−2[(φ− sφ′)+(b2− s2)φ′′].
Then the Busemann-Hausdorff and Holmes-Thompson volume forms are given by

dVBH = f (b)dVα, and dVHT = g(b)dVα, respectively, where dVα is the Riemannian
volume form.

It is remarkable that if the function T (s)−1 is an odd function of s, then dVHT =
dVα. This is the case of Randers metrics (see [2]), but not the case of the slope metric.

The following lemma is elementary.

Lemma 1. Let us consider the following functions
(1) f : (0, 1

2)→ (8
9 ,1), f (b) := 2

2+b2 ,

(2) g : (0, 1
2)→ (5

√
3

9 ,1), g(b) := (2−3b2)

2(1−b2)
√

1−b2 ,
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(3) h : (0, 1
2)→ (1, 5

√
3

8 ), h(b) := (2+b2)(2−3b2)

4(1−b2)
√

1−b2 .

Then, f and g are both monotone decreasing while h is monotone increasing on the
given intervals.

A direct application of this lemma is the following theorem.

Theorem 5. Let (M,F) be a slope metric on a surface of revolution. Then

AreaBH(D)< AreaHT (D)< Areaα(D)

for any bounded region D⊂M.

Proof. Firstly, observe that in the case of a slope metric, formulas (5.3) imply

f (b) =
π∫

π

0 (1−bcos t)2 ·dt
=

2
2+b2 , g(b) =

(2−3b2)

2(1−b2)
√

1−b2
.

It results

dVBH = f (b)dVα =
2

2+b2 ·dVα,

dVHT = g(b)dVα =
(2−3b2)

2(1−b2)
√

1−b2
·dVα,

dVHT = h(b)dVBH =
(2+b2)(2−3b2)

4(1−b2)
√

1−b2
·dVBH ,

so the meaning of the function h in Lemma 1 is clear now.
By taking into account the monotonicity of f , g, h described in Lemma 1, the

inequalities stated above hold good. �

Moreover, from Lemma 1 we have

Theorem 6. Let (M,F) be a slope metric on a surface of revolution. Then

(1) 8
9 Areaα(D)≤ AreaBH(D)≤ Areaα(D),

(2) 5
√

3
9 Areaα(D)≤ AreaHT (D)≤ Areaα(D),

(3) AreaBH(D)≤ AreaHT (D)≤ 5
√

3
8 AreaBH(D),

for any bounded region D⊂M.
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