
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 21 (2020), No. 2, pp. 621–630 DOI: 10.18514/MMN.2020.2993

HERMITE-HADAMARD INEQUALITIES FOR UNIFORMLY
CONVEX FUNCTIONS AND ITS APPLICATIONS IN MEANS

H. BARSAM AND A. R. SATTARZADEH

This paper is dedicated to Professor Hossien Mohebi on his 60th birthday.

Received 15 June, 2019

Abstract. In this paper, we prove Hermite-Hadamard inequality for uniformly convex, uniformly
s-convex functions. Also, we obtain Hermite Hadamard inequality for fractional integral by using
these functions. Finally, some applications of these inequalities are given.
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1. INTRODUCTION AND PRELIMINARIES

Let f : I ⊂R→R be a convex function and a,b ∈ I with a < b, then the following
inequality holds:

f (
a+b

2
)≤ 1

b−a

∫ b

a
f (x)dx≤ f (a)+ f (b)

2
.

The above inequality is well known in the literature as the Hermite-Hadamard in-
equality. Recently, the generalizations, improvements, variations and applications
for convexity and the Hermite-Hadamard inequality have attracted the attention of
many researchers, see [4–8, 11] and the references therein.

The following definitions can be found in [2, 12] and [1].

Definition 1. Let f : R→R be a function. Then f is called uniformly convex with
modulus ψ : [0,+∞)→ [0,+∞] if ψ is incresaing, ψ vanishes only at 0, and

f (tx+(1− t)y)+ t(1− t)ψ(|x− y|)≤ t f (x)+(1− t) f (y), (1.1)

for each x,y ∈ R and t ∈ (0,1).
If (1.1) holds with ψ = β

2 |.|
2 for some β > 0, then f is called strongly convex with

constant β.

In the following we give a simple example of a uniformly convex function (see
[2], Corollary 2.14).
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Example 1. In view of the following equality,

(αx+(1−α)y)2 +α(1−α)(x− y)2 = αx2 +(1−α)y2,

for all α ∈ (0,1) and x,y ∈ R, the function f (t) = t2 for t ∈ R is uniformly convex
with modulus ψ(t) = t2 for all t ≥ 0.

In the following proposition, the relation between convex functions and strongly
convex functions is expressed. For more details about uniformly and strongly convex
functions see [2].

Proposition 1. Let f : R→R be a function and β > 0. Then f is a strongly convex

function with constant β if and only if f − β

2
|.|2 is a convex function.

Clearly, strong convexity implies uniformly convexity, uniformly convexity im-
plies strict convexity, and strict convexity implies convexity.
We can define the concept of uniformly s-convexity as follows:

Definition 2. Let f : R→ R be a function. Then f is called s-uniformly convex
function with modulus ψ : [0,+∞)→ [0,+∞] if ψ is incresaing, ψ vanishes only at 0,
and

f (tx+(1− t)y)+ ts(1− t)ψ(|x− y|)≤ ts f (x)+(1− t)s f (y), (1.2)

for each x,y ∈ R, t ∈ (0,1) and s ∈ (0,1).
If Definition (1.2) holds with ψ = β

2 |.|
2 for some β > 0, then f is called strongly

s-convex with constant β.

Definition 3. Let f ∈ L[a,b]. The left-sided and right-sided Riemann-Liouville
fractional integrals Jα

a+ f and Jα

b− f of order α > 0 with a≥ 0 are defined by

Jα

a+ f (x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f (t)dt with x > a

Jα

b− f (x) =
1

Γ(α)

∫ b

x
(t− x)α−1 f (t)dt with x < b

respectively, where Γ(α) is the Gamma function and its defnition is

Γ(α) =
∫ +∞

0
e−ttα−1dt.

It is to be noted that J0
a+ f (x) = J0

b− f (x) = f (x). In the case of α = 1, the fractional
integral reduces to the classical integral.

In [12], M. Z. Sarikaya et al. presented the following Hermite-Hadamard’s in-
equalities for fractional integrals.
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Theorem 1 ([12]). Let f : I → R be a positive function with 0 ≤ a < b and f ∈
L[a,b]. If f is a convex function on [a,b], then the following inequality for fractional
integrals holds:

f (
a+b

2
)≤ Γ(α+1)

2(b−a)α
[Jα

a+ f (b)+ Jα

b− f (a)]≤ f (a)+ f (b)
2

.

2. MAIN RESULTS

In this section, we shall state our main results. At the first, we obtain Hermite-
Hadamard type inequalities for the class of uniformly convex, uniformly s-convex
and strongly convex functions.

Theorem 2. Let f : R→ R be uniformly convex function. Then, the following
inquality holds:

f (
a+b

2
)+

1
8(b−a)

∫ b−a

a−b
ψ(|t|)dt ≤ 1

b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)

2
− 1

6
ψ(|a−b|).

Proof. In (1.1), set t = 1
2 , then one has

f (
x+ y

2
)+

1
4

ψ(|x− y|)≤ f (x)+ f (y)
2

. (2.1)

Now in (2.1), set x = ta+(1− t)b and y = (1− t)a+ tb, and integrate inequality (2.1)
on [0,1] with respect to t. We conclude

f (
a+b

2
)+

1
4

∫ 1

0
ψ(|(2t−1)(a−b)|)dt

≤ 1
2

∫ 1

0
f (ta+(1− t)b)dt +

1
2

∫ 1

0
f ((1− t)a+ tb)dt.

Also, the following equalities holds

1
4

∫ 1

0
ψ(|(2t−1)(a−b)|)dt =

1
4

∫ a−b

b−a
ψ(|u|) du

2(a−b)

=
1

8(b−a)

∫ b−a

a−b
ψ(|t|)dt

and ∫ 1

0
f ((1− t)a+ tb)dt =

∫ 1

0
f (ta+(1− t)b)dt =

1
b−a

∫ b

a
f (t)dt.

Therefore,

f (
a+b

2
)+

1
8(b−a)

∫ b−a

a−b
ψ(|t|)dt ≤ 1

b−a

∫ b

a
f (t)dt.
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On the other hand, in (1.1) put x = a, y = b and integrate on [0,1] with respect to t.
Hence ∫ 1

0
f (ta+(1− t)b)dt +

∫ 1

0
t(1− t)ψ(|a−b|)dt ≤

∫ 1

0

f (a)+ f (b)
2

dt,

and so
1

b−a

∫ b

a
f (t)dt +ψ(|a−b|)Γ(2)Γ(2)

Γ(4)
≤ f (a)+ f (b)

2
.

Therefore,
1

b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)

2
− 1

6
ψ(|a−b|),

which completes the proof. It is worth noting that we used the following fact:∫ 1

0
t(1− t)dt = B(2,2) =

Γ(2)Γ(2)
Γ(4)

=
1
6
,

where

B(x,y) =
∫ 1

0
tx−1(1− t)y−1dt, Γ(x) =

∫ +∞

0
e−ttx−1dt, x > 0, y > 0,

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

.

�

In order to prove the main theorems, we need the following lemma that has been
proved in [3].

Lemma 1. Let f : Io→ R be a differentiable function on Io, a,b ∈ Io with a < b.
If f ′ ∈ L[a,b], then the following equality holds:

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt =

b−a
2

∫ 1

0
(1−2t) f ′(ta+(1− t)b)dt.

Theorem 3. Let f : Io→R be a differentiable function on Io, a,b ∈ Io with a < b.
If | f ′| is uniformly convex function on Io, then the following inequality holds:∣∣∣∣ f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣≤ b−a
8

(| f ′(a)|+ | f ′(b)|)− b−a
32

ψ(|a−b|).

Proof. In view of Lemma 1 and uniformly convexity of | f ′|, one has∣∣∣∣ f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt

∣∣∣∣≤ b−a
2

∫ 1

0
|(1−2t)|| f ′(ta+(1− t)b)|dt

≤ b−a
2

∫ 1

0
|1−2t|(t| f ′(a)|+(1− t)| f ′(b)|+ t(t−1)ψ(|a−b|))dt

≤ b−a
2

∫ 1

0
t|1−2t|| f ′(a)|dt +

∫ 1

0
|1−2t|(1− t)| f ′(b)|dt
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+
∫ 1

0
|1−2t|t(t−1)ψ(|a−b|))dt

≤ b−a
8

(| f ′(a)|+( f ′(b)))− b−a
32

ψ(|a−b|),

which completes the proof. Also, note that∫ 1

0
t|1−2t|dt =

∫ 1

0
(1− t)|1−2t|dt =

1
4
,∫ 1

0
|1−2t|t(t−1)ψ(|a−b|)dt =− 1

16
ψ(|a−b|).

�

Theorem 4. Let f : Io→R be a differentiable mapping on Io, a,b ∈ Io with a < b
and p > 1. If | f ′|q is uniformly convex on Io, then the following inequality holds:∣∣∣∣ f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣≤ b−a

2(p+1)
1
p
(
| f ′(a)|q + | f ′(b)|q

2
− 1

6
ψ(|a−b|))

1
q ,

where 1
p +

1
q = 1.

Proof. By Lemma 1 and Hölder’s inequality, we conclude∣∣∣∣ f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt

∣∣∣∣≤ b−a
2

∫ 1

0
|(1−2t)|| f ′(ta+(1− t)b)|dt

≤ b−a
2

(∫ 1

0
|1−2t|pdt

) 1
p
(∫ 1

0
| f ′(ta+(1− t)b)|qdt

) 1
q

≤ b−a
2

1

(p+1)
1
p

(
| f (a)|q

∫ 1

0
tdt + | f ′(b)|q

∫ 1

0
(1− t)dt +ψ(|a−b|)

∫ 1

0
t(t−1)dt

) 1
q

≤ b−a

2(p+1)
1
p

(
| f ′(a)|q + | f ′(b)|q

2
− 1

6
ψ(|a−b|)

) 1
q

.

Hence, the proof is complete. �

Theorem 5. Let f : R→ R be strongly convex function. Then

f (
a+b

2
)+

β

24
(b−a)2 ≤ 1

b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)

2
− β

12
(b−a)2.

Proof. From Hermite-Hadamard inequality for convex functions, we have

f (
a+b

2
)≤ 1

b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)

2
. (2.2)

Since from Proposition 1 f is a strongly convex function, we have f − β

2 |.|
2 is convex.

Hence in (2.2) replace f by f− β

2 |.|
2 and after some calculations the result is obtained.

�
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Theorem 6. Let f : R→ R be uniformly s-convex function. Then

2s−1 f (
a+b

2
)+

1
8(b−a)

∫ b−a

a−b
ψ(|t|)dt ≤ 1

b−a

∫ b

a
f (t)dt

≤ f (a)+ f (b)
s+1

− 1
(s+1)(s+2)

ψ(|a−b|).

Proof. In (1.2), set t = 1
2 , then we have

f (
x+ y

2
)+

1
2s+1 ψ(|x− y|)≤ f (x)+ f (y)

2s . (2.3)

Now, set x = ta+(1− t)b and y = (1− t)a+ tb in (2.5) and integrate on [0,1] with
respect to t. We get

f (
a+b

2
)+

1
2s+1

∫ 1

0
ψ(|(2t−1)(a−b)|)dt

≤ 1
2s

∫ 1

0
f (ta+(1− t)b)dt +

1
2s

∫ 1

0
f ((1− t)a+ tb)dt.

Now,

1
2s+1

∫ 1

0
ψ(|(2t−1)(a−b)|)dt =

1
2s+1

∫ a−b

b−a
ψ(|u|) du

2(a−b)

=
1

2s+2(b−a)

∫ b−a

a−b
ψ(|t|)dt.

Also, we have
∫ 1

0 f ((1− t)a+ tb)dt =
∫ 1

0 f ((1− t)b+ ta)dt = 1
b−a

∫ b
a f (t)dt. There-

fore

f (
a+b

2
)+

1
2s+2(b−a)

∫ b−a

a−b
ψ(|t|)dt ≤ 1

2s−1(b−a)

∫ b

a
f (t)dt.

On the other hand, in (1.1) put x = a, y = b and integrate on [0,1] with respect to t.
Then we obtain∫ 1

0
f (ta+(1− t)b)dt +

∫ 1

0
ts(1− t)ψ(|a−b|)dt ≤

∫ 1

0
ts f (a)+(1− t)s f (b)dt

so,

1
b−a

∫ b

a
f (t)dt +ψ(|a−b|)Γ(s+1)Γ(2)

Γ(s+3)
≤ f (a)+ f (b)

s+1
,

finally,

1
b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)

s+1
− 1

(s+1)(s+2)
ψ(|a−b|),

which completes the proof. �
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Theorem 7. Let p ∈ [2,+∞), then the following inequality holds:

|a+b
2
|p + 1

8(b−a)
21−p min{p2−

p
2 ,1−2−

p
2 }

∫ b−a

a−b
|t|pdt ≤ 1

b−a

∫ b

a
|t|pdt

≤ |a|
p + |b|p

2
− 1

6
min{p2−

p
2 ,1−2−

p
2 }|a−b|p.

Proof. According to ([2], Proposition 10.13), since |.|2 is uniformly convex with
modules of convexity |.|2. Hence for p ∈ [2,+∞) is uniformly convex with modules
of convexity ψ such that ψ satisfing

ψ≥ 21−p min{p2−
p
2 ,1−2−

p
2 }|.|p, (2.4)

Hence, in view of Theorem 2 for function f (t) = |t|p and (2.4), one has

|a+b
2
|p + 1

8(b−a)
21−p min{p2−

p
2 ,1−2−

p
2 }

∫ b−a

a−b
|t|pdt

≤ |a+b
2
|p + 1

8(b−a)

∫ b−a

a−b
ψ(t)dt

≤ 1
b−a

∫ b

a
|t|pdt

≤ |a|
p + |b|p

2
− 1

6
ψ(|a−b|)

≤ |a|
p + |b|p

2
− 1

6
min{p2−

p
2 ,1−2−

p
2 }|a−b|p.

�

Proposition 2. Let p be an even number and let a,b ∈ R with 0 < a < b, then the
following inequality holds:

(p+1)(
a+b

2
)p +

(b−a)p+1

2p+2(b−a)
min{p2−

p
2 ,1−2−

p
2 }

≤ bp+1−ap+1

b−a

≤
(

ap +bp

2
− (b−a)p

6
min{p2−

p
2 ,1−2−

p
2 }
)
(p+1).

Proof. The proof is immediate consequence of Theorem 7. �

2.1. Hermite-Hadamard’s inequalities for fractional integrals

Theorem 8. Let f : [a,b]→ R be a uniformly convex function. Then, for α > 0
the following inquality for fractional integrals holds:

f (
a+b

2
)+

Γ(α+1)
2α+2(b−a)α

Jα

(a−b)+ψ(|a−b|)≤ Γ(α+1)
2(b−a)α

[Jα

a+ f (b)+ Jα

b− f (a)]
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≤ f (a)+ f (b)
2

−αβ(α+1,2)ψ(|a−b|).

Proof. In (1.1), set t = 1
2 , then we have

f (
x+ y

2
)+

1
4

ψ(|x− y|)≤ f (x)+ f (y)
2

. (2.5)

Now, set x = ta+(1− t)b and y = (1− t)a+ tb in (2.5). Multiplying both sides of
(2.5) by tα−1 and then integrating the resulting inequality with respect to t over [0,1],
we obtain ∫ 1

0
tα−1 f (

a+b
2

)dt +
1
4

∫ 1

0
tα−1

ψ(|(2t−1)(a−b)|)dt

≤ 1
2

∫ 1

0
tα−1 f (ta+(1− t)b)dt +

1
2

∫ 1

0
tα−1 f ((1− t)a+ tb)dt.

Let ta+(1− t)b = r, (1− t)a+ tb = s and (2t−1)(a−b) = x, then

f (a+b
2 )

α
+

1
4

∫ a−b

b−a
(
b−a− x
2(b−a)

)α−1
ψ(|x|) dx

2(a−b)
≤

1
2

∫ a

b
(

b− r
b−a

)α−1 f (r)
dr

a−b
+

1
2

∫ b

a
(

s−a
b−a

)α−1 f (s)
ds

b−a
.

So, we have

f (a+b
2 )

α
+

1
2α+2(b−a)α

Jα

(a−b)+ψ(|a−b|)≤ Γ(α)

2(b−a)α
[Jα

a+ f (b)+ Jα

b− f (a)].

Conversely, since f is uniformly convex one has

f (tx+(1− t)y)+ t(1− t)ψ(|x− y|)≤ t f (x)+(1− t) f (y). (2.6)

Now, replacing x by y we have

f (ty+(1− t)x)+ t(1− t)ψ(|x− y|)≤ t f (y)+(1− t) f (x). (2.7)

Adding the two equations (2.6) and (2.7) we obtain

f (tx+(1− t)y)+ f ((1− t)x+ ty)+2t(1− t)ψ(|x− y|)≤ f (x)+ f (y). (2.8)

Set x = a and y = b in (2.8) and also multiplying both sides of (2.8) by tα−1 and then
integrating the resulting inequality with respect to t over [0,1], we obtain∫ 1

0
tα−1 f (ta+(1−t)b)dt+

∫ 1

0
tα−1 f ((1−t)a+tb)dt+

∫ 1

0
2tα(1−t)ψ(|a−b|)dt

≤
∫ 1

0
tα−1 f (a)dt +

∫ 1

0
tα−1 f (b)dt.

So,
Γ(α)

2(b−a)α
[Jα

a+ f (b)+ Jα

b− f (a)]≤ f (a)+ f (b)
2α

−β(α+1,2)ψ(|a−b|),
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which completes the proof. �

3. APPLICATIONS TO SPECIAL MEANS

Consider the following special means for two nonnegative real numbers α,β with
α 6= β as follows (see [3, 5, 9, 10]):

(1) The arithmetic mean:

A = A(α,β) =
α+β

2
, α,β ∈ R,

with α,β > 0.
(2) The logarithmic mean:

L = L(α,β) =
β−α

lnβ− lnα
, α 6= β,α,β ∈ R,

with α,β > 0.
(3) The generalized logarithmic mean:

Ln(α,β) = [
βn+1−αn+1

(n+1)(β−α)
]

1
n , n ∈ R\{−1,0},α 6= β,α,β ∈ R,

with α,β > 0.

Proposition 3. Let a,b ∈R with 0 < a < b and let p be an even number. Then the
following inequality holds:(

(
a+b

2
)p +

(b−a)p+1

2p+2(p+1)(b−a)
min{p2−

p
2 ,1−2−

p
2 }
) 1

p

≤ Lp(a,b)≤
(
(
ap +bp

2
− (b−a)p

6
min{p2−

p
2 ,1−2−

p
2 })

) 1
p

Proof. Since the function g(t) = t
1
p is increasing for t ≥ 0 and p > 0, in view of

Proposition 2, the proof is complete. �
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