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Abstract. The paper studies the existence result for a new class of Kirchhoff elliptic system with
variable parameters in the right hand side. Sub-super solutions method are used for proving the
main result. Our study is a natural improvement result of our previous one in (Boulaaras et al. in
Math. Methods Appl. Sci. 41:5203-5210, 2018).
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1. INTRODUCTION

Consider the following system

−A
(∫

Ω

|∇u|2 dx
)
4u = λα(x) f (u,v) in Ω,

−B
(∫

Ω

|∇v|2 dx
)
4v = λβ(x)g(u,v) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain with C2 boundary ∂Ω, and A,
B: R+→ R+ are continuous functions with further conditions to be given later, λ is
a positive parameter, and α,β ∈C

(
Ω
)
.
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This nonlocal problem originates from the stationary version of Kirchhoff’s work
[10] in 1883

ρ
∂2u
∂t2 −

P0

h
+

E
2L

L∫
0

∣∣∣∣∂u
∂x

∣∣∣∣2 dx

 ∂2u
∂x2 = 0, (1.2)

where Kirchhoff extended the classical d’Alembert’s wave equation by considering
the effect of the changes in the length of the string during vibrations. The parameters
in (1.2) have the following meanings: L is the length of the string, h is the area of the
cross-section, E is the Young modulus of the material, ρ is the mass density, and P0
is the initial tension.

Recently, the problems associated to Laplacian operator and Kirchhoff elliptic
equations have been heavily studied, we refer to [1, 3–5, 8, 9, 11–13].

In [2], Alves and Correa proved the validity of Sub-super solutions method for
problems of Kirchhoff class involving a single equation and a boundary condition −M

(
‖u‖2

)
∆u = f (x,u) in Ω,

u = 0 on ∂Ω,

with f ∈C
(
Ω×R

)
.

By using a comparison principle that requires M to be non-negative and non-
increasing in [0,+∞), with H (t) :=M

(
t2
)

t increasing and H (R) =R, they managed
to prove the existence of positive solutions assuming f increasing in the variable u
for each x ∈Ω fixed.

For systems involving similar class of equations, this result can not be used dir-
ectly, i.e. the existence of a subsolution and a supersolution does not guarantee the
existence of the solution. Therefore, a further construction is needed. As in [6],
where we studied the system

−A
(∫

Ω

|∇u|2 dx
)
4u = λ1 f (v)+µ1g(u) in Ω,

−B
(∫

Ω

|∇v|2 dx
)
4v = λ2h(u)+µ2 (x) l (v) in Ω,

u = v = 0 on ∂Ω.

(1.3)

Using a weak positive supersolution as first term of a constructed iterative sequence
(un,vn) in H1

0 (Ω)×H1
0 (Ω), and a comparison principle introduced in [2], the au-

thors established the convergence of this sequence to a positive weak solution of the
considered problem.

In this paper, we generalize the previous work in [6] by considering variable para-
meters α,β,γ and η in the right hand side of (1.1). We also give a better subsolution
providing easier computations.
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2. EXISTENCE RESULT

Definition 1. (u,v) ∈
(
H1

0 (Ω)×H1
0 (Ω)

)
, is called a weak solution of (1.1) if it

satisfies

A

∫
Ω

|∇u|2 dx

∫
Ω

∇u∇φ dx = λ

∫
Ω

α(x) f (u,v)φ dx in Ω,

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψ dx = λ

∫
Ω

β(x)g(u,v)ψ dx in Ω,

for all (φ,ψ) ∈
(
H1

0 (Ω)×H1
0 (Ω)

)
.

Definition 2. Let (u,v) ,(u,v) be a pair of nonnegative functions in(
H1

0 (Ω)×H1
0 (Ω)

)
, they are called positive weak subsolution and positive weak su-

persolution (respectively) of (1.1) if they satisfy the following

A

∫
Ω

|∇u|2 dx

∫
Ω

∇u∇φ dx≤ λ

∫
Ω

α(x) f (u,v)φ dx,

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψ dx≤ λ

∫
Ω

β(x)g(u,v)ψ dx,

and

A

∫
Ω

|∇u|2 dx

∫
Ω

∇u∇φ dx≥ λ

∫
Ω

α(x) f (u,v)φ dx,

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψ dx≥ λ

∫
Ω

β(x)g(u,v)ψ dx,

for all (φ,ψ) ∈
(
H1

0 (Ω)×H1
0 (Ω)

)
, with φ ≥ 0 and ψ ≥ 0, and (u,v) ,(u,v) = (0,0)

on ∂Ω.

Lemma 1 (Comparison principle [2]). Let M : R+→ R+ be a continuous nonin-
creasing function such that

M (s)> m0 > 0, for all s≥ s0, (2.1)

and H (t) = tM
(
t2
)

increasing on R+ .
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If u1,u2 are two non-negative functions verifying
−M

(∫
Ω

|∇u1|2 dx
)
4u1 ≥−M

(∫
Ω

|∇u2|2 dx
)
4u2 in Ω,

u1 = u2 = 0 on ∂Ω,

(2.2)

then u1 ≥ u2 a.e. in Ω.

Before stating and proving our main result, here are the conditions we need.
(H1) A,B : R+→ R+ are two continuous and increasing functions that satisfy the

monotonicity conditions of Lemma 1 so that we can use the Comparison
principle, and assume further that there exists ai,bi > 0, i = 1,2,

a1 ≤ A(t)≤ a2, b1 ≤ B(t)≤ b2 for all t ∈ R+.

(H2) α,β ∈C
(
Ω
)

and

α(x)≥ α0 > 0, β(x)≥ β0 > 0

for all x ∈Ω.
(H3) f , g are continuous on [0,+∞[ , C1 on (0,+∞) , and increasing functions of

infinite growth

lim
s,t→+∞

f (s, t) = +∞, lim
s,t→+∞

g(s, t) = +∞.

(H4) For all K > 0

lim
t→+∞

f (t,K (g(t, t)))
t

= 0.

(H5)

lim
t→+∞

g(t, t)
t

= 0.

Theorem 1. For large values of λα0 and λβ0 , system (1.1) admits a large positive
weak solution if conditions (H1)− (H5) are satisfied.

Proof of Theorem 1. Consider σ the first eigenvalue of −4 with Dirichlet bound-
ary conditions and φ1 the corresponding positive eigenfunction with ‖φ1‖ = 1 and
φ1 ∈C∞

(
Ω
)

(see [7]).
Let S = sup

x∈Ω

{σφ2
1−|∇φ1|2}, then from growth conditions (H3)

f (t, t)≥ S, g(t, t)≥ S, for t large enough.

For each α0 large, let us define

u =

(
λα0

2a2

)
φ

2
1
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and

v =
(

λβ0

2b2

)
φ

2
1,

where a2,b2 are given by condition (H1) . Let us show that (u,v) is a subsolution
of problem (1.1) for λα0 large enough. Indeed, let φ ∈ H1

0 (Ω) with φ ≥ 0 in Ω. By
(H1)− (H3) , we get

A

∫
Ω

|∇u|2 dx

∫
Ω

∇u.∇φ dx = A

∫
Ω

|∇u|2 dx

(λα0

a2

)∫
Ω

φ1∇φ1.∇φ dx

=

(
λα0

a2

)
A

∫
Ω

|∇u|2 dx

×

∫
Ω

∇φ1∇(φ1.φ)dx−
∫
Ω

|∇φ1|2 φ dx


=

(
λα0

a2

)
A

∫
Ω

|∇u|2 dx

∫
Ω

(
σφ

2
1−|∇φ1|2

)
φ dx

≤ λα0

∫
Ω

Sφ dx≤ λ

∫
Ω

α(x) f (u,v)φ dx

for λα0 > 0 large enough, and all φ ∈ H1
0 (Ω) with φ≥ 0 in Ω.

Similarly,

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψ dx≤ λ

∫
Ω

β(x)g(u,v)ψ dx in Ω

for λβ0 > 0 large enough and all ψ ∈ H1
0 (Ω) with ψ≥ 0 in Ω.

Also notice that u > 0 and v > 0 in Ω, u → +∞ and v → +∞ as λα0 → +∞,
λβ0→+∞.

For the supersolution part, consider e the solution of the following problem −4e = 1 in Ω,

e = 0 on ∂Ω.
(2.3)

We give the supersolution of problem (1.1) by

u =
C
µ
(λ‖α‖

∞
)e, v =

(
λ‖β‖∞

b2

)
g(Cλ,Cλ)e,

where µ = ‖e‖
∞
,C > 0 is a large positive real number to be given later.

Indeed, for all φ ∈H1
0 (Ω) with φ≥ 0 in Ω, we get from (2.3) and the condition (H1)

A

∫
Ω

|∇u|2 dx

∫
Ω

∇u.∇φ dx = A

∫
Ω

|∇u|2 dx

C
µ
(λ‖α‖

∞
)
∫
Ω

∇e.∇φ dx
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= A

∫
Ω

|∇u|2 dx

Cλ

µ
(‖α‖

∞
)
∫
Ω

φ dx≥ a1Cλ

µ
(‖α‖

∞
)
∫
Ω

φ dx.

By (H4) and (H5), we can choose C large enough so that

a1Cλ

µ

∫
Ω

φ dx≥ λ

∫
Ω

f
(

Cλ,

(
λ‖β‖∞

b2

)
g(Cλ,Cλ)µ

)
φ dx.

Therefore,

A

∫
Ω

|∇u|2 dx

∫
Ω

∇u.∇φ dx≥ λ‖α‖
∞

∫
Ω

f
(

Cλ,

(
λ‖β‖∞

b2

)
g(Cλ,Cλ)µ

)
φ dx

≥ λ‖α‖
∞

∫
Ω

f
(

C
µ

λe,
(

λ‖β‖∞

b2

)
g(Cλ,Cλ)e

)
φ dx

≥ λ

∫
Ω

α(x) f (u,v)φ dx. (2.4)

Also,

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψdx =
λ‖β‖

∞

b2
g(Cλ,Cλ)B

∫
Ω

|∇v|2 dx

∫
Ω

∇e∇ψdx

≥ λ‖β‖
∞

g(Cλ,Cλ)
∫
Ω

ψdx. (2.5)

Using (H4) and (H5) again for C large enough we get

1
λ‖β‖

∞

b2
µ
≥ g(Cλ,Cλ)

Cλ

Hence

g(Cλ,Cλ)
∫
Ω

ψdx≥
∫
Ω

g
(

Cλ,g(Cλ,Cλ)
(λ‖β‖

∞
)

b2
µ
)

ψdx

≥
∫
Ω

g
(

λC
(

e
µ

)
,g(Cλ,Cλ)

(λ‖β‖
∞
)

b2
e
)

ψdx

=
∫
Ω

g(u,v)ψdx. (2.6)
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Combining (2.5) and (2.6), we obtain

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψdx≥ λ

∫
Ω

β(x)g(u,v)ψdx. (2.7)

By (2.4) and (2.7) we conclude that (u,v) is a supersolution of problem (1.1).
Furthermore, u ≤ u and v ≤ v for C choosen large enough.

Now, we use a similar argument to [6] in order to obtain a weak solution of our
problem. Consider the following sequence {(un,vn)} ⊂

(
H1

0 (Ω)×H1
0 (Ω)

)
where:

u0 := u,v0 = v and (un,vn) is the unique solution of

−A
(∫

Ω

|∇un|2 dx
)
4un = λα(x) f (un−1,vn−1) in Ω,

−B
(∫

Ω

|∇vn|2 dx
)
4vn = λβ(x)g(un−1,vn−1) in Ω,

un = vn = 0 on ∂Ω.

(2.8)

Since A and B satisfy (H1) and α(x) f (un−1,vn−1) , β(x)g(un−1,vn−1) ∈ L2 (Ω)
(in x) , we deduce from a result in [2] that system (2.8) has a unique solution (un,vn)∈(
H1

0 (Ω)×H1
0 (Ω)

)
.

Using (2.8) and the fact that (u0,v0) is a supersolution of (1.1), we get
−A
(∫

Ω

|∇u0|2 dx
)
4u0 ≥ λα(x) f (u0,v0) =−A

(∫
Ω

|∇u1|2 dx
)
4u1,

−B
(∫

Ω

|∇v0|2 dx
)
4v0 ≥ λβ(x)g(u0,v0) =−B

(∫
Ω

|∇v1|dx
)
4v1

then by Lemma 1, u0 ≥ u1 and v0 ≥ v1. Also, since u0 ≥ u, v0 ≥ v and the monoton-
icity of f , g, h, and l one has

−A

∫
Ω

|∇u1|2 dx

4u1 = λα(x) f (u0,v0)≥ λα(x) f (u,v)≥−A

∫
Ω

|∇u|2 dx

4u,

−B

∫
Ω

|∇v1|2 dx

4v1 = λβ(x)g(u0,v0)≥ λβ(x)g(u,v)≥−B

∫
Ω

|∇v|2 dx

4v

according to Lemma 1 again, we obtain u1≥ u, v1≥ v. Repeating the same argument
for u2,v2, observe that

−A

∫
Ω

|∇u1|2 dx

4u1 = λα(x) f (u0,v0)≥ λα(x) f (u1,v1) =−A

∫
Ω

|∇u2|2 dx

4u2,
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−B

∫
Ω

|∇v1|dx

4v1 = λβ(x)g(u0,v0)≥ λα(x)g(u1,v1) =−B

∫
Ω

|∇v2|2 dx

4v2,

then u1 ≥ u2, v1 ≥ v2. Similarly, we get u2 ≥ u and v2 ≥ v from

−A

∫
Ω

|∇u2|2 dx

4u2 = λα(x) f (u1,v1)≥ λα(x) f (u,v)≥−A

∫
Ω

|∇u|2 dx

4u,

−B

∫
Ω

|∇v2|2 dx

4v2 = λβ(x)g(u1,v1)≥ λβ(x)g(u,v)≥−B

∫
Ω

|∇v|2 dx

4v.

By repeating these implementations we construct a bounded decreasing sequence
{(un,vn)} ⊂

(
H1

0 (Ω)×H1
0 (Ω)

)
verifying

u = u0 ≥ u1 ≥ u2 ≥ ...≥ un ≥ ...≥ u > 0, (2.9)

v = v0 ≥ v1 ≥ v2 ≥ ...≥ vn ≥ ...≥ v > 0. (2.10)

By continuity of functions f ,g, h, and l and the definition of the sequences (un) and
(vn) , there exist positive constants Ci > 0, i = 1, ...,4 such that

| f (un−1,vn−1)| ≤C1, |g(un−1,vn−1)| ≤C2 for all n. (2.11)

From (2.11), multiplying the first equation of (2.8) by un, integrating, using Holder
inequality and Sobolev embedding we check that

a1

∫
Ω

|∇un|2 dx≤ A

∫
Ω

|∇un|2 dx

∫
Ω

|∇un|2 dx = λ

∫
Ω

α(x) f (un−1,vn−1)undx

≤ λ‖α‖
∞

∫
Ω

| f (un−1,vn−1)| |un|dx≤C1

∫
Ω

|un|dx≤C3 ‖un‖H1
0 (Ω)

or
‖un‖H1

0 (Ω) ≤C3, ∀n, (2.12)

where C3 > 0 is a constant independent of n. Similarly, there exist C4 > 0 independent
of n such that

‖vn‖H1
0 (Ω) ≤C4, ∀n. (2.13)

From (2.12) and (2.13), we deduce that {(un,vn)} admits a weakly converging sub-
sequence in H1

0
(
Ω,R2

)
to a limit (u,v) satisfying u ≥ u > 0 and v ≥ v > 0. Being

monotone and also using a standard regularity argument, {(un,vn)} converges itself
to (u,v) . Now, letting n→ +∞ in (2.13), we conclude that (u,v) is a positive weak
solution of system (1.1). �
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