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Abstract. In this paper, we investigate the stability and bifurcation of a discrete-time prey-
predator system which is subject to an efficiency of prey conversion into predators and minimum
threshold prey consumption required before predators begin to reproduce. It is concluded that the
system undergoes Neimark-Sacker bifurcations in a small neighborhood of the unique positive
equilibrium which depends on the number of prey-predator. Moreover, the numerical simulations
are done to demonstrate the theoretical results.
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1. INTRODUCTION

Mathematical models which provide a way to design of changes in population size
help to generate testable predictions. The changes in population size result from in-
teractions between individuals of the same or different species, interactions with the
environment, disease, food supply, etc. Predation, cooperative, mutualistic, commen-
sural are different types of interactions of between individuals.

The discrete-time and continuous-time models are used for predicting the size of
population. Especially, the discrete-time models are suitable to get more accurate nu-
merical simulations for non-overlapping generations [20]. The prey-predator models
have an importance at studies of mathematical biology [1, 7, 10, 25]. In recent years,
studies on bifurcation and stability of systems involving population interaction have
remarkable attention [2–6, 11, 13, 14, 16–19, 22, 27–29].

Bifurcation theory is a mathematical study of changes in the qualitative or topo-
logical structure of a given family. This theory is widely used in the mathematical
study of dynamical systems. A bifurcation occurs when a small smooth change made
to the parameter values (the bifurcation parameters) of a system causes a sudden
’qualitative’ or topological change in its behaviour [21].

c© 2020 Miskolc University Press
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In [14], the Neimark-Sacker bifurcation of a dimensional discrete-time prey-predator
model is presented as follows:

xn+1 = axn(1− xn)− xnyn (1.1)

yt+1 =
1
β

xnyn.

where xn and yn denote the numbers of prey and predator, respectively. Moreover the
parameters a, β and the initial conditions x0, y0 are positive real numbers.

A predator needs availability of prey as well as resources, to be able to sustain
life and mature of it. Biological facts include the possibility of time spent in hunting
and consumption of prey. This case associated with reproductive rates of predator is
important for competitive interaction models.

In this paper, we will focus on the stability and bifurcation of a discrete-time prey-
predator system which is subject to an efficiency of prey conversion into predators
and minimum threshold of prey consumption required before predators begin to re-
produce in [1, 10]. The general a prey-predator system can be given as follows:

xn+1 = axn(1− xn)− xnyn, (1.2)

yt+1 =
1
b

xnyn− eyn,

where xn and yn denote the numbers of prey and predator population in the n th
generation, respectively. In this system, all the parameters a,b and e are positive
real numbers. Moreover the parameter a denotes reproductive rates of prey popula-
tion and the parameter b represents reproductive rates of predation depending on the
growth rate of the prey. Also, the parameter e is the probability of the efficiency of
prey conversion into predators and minimum threshold prey consumption required
before predators begin to reproduce with e < 1.

The purpose of this work is to give the existence of the equilibrium point of the
system (1.2); and to investigate the stability conditions of these equilibrium point.
Also, the existence of Neimark-Sacker bifurcation of the system (1.2) is studied by
choosing b as a bifurcation parameter. Moreover, we show the dynamical properties
of the system (1.2), by means of trajectories, bifurcation diagrams and phase portraits.

This study consists of four section. In Section 2, we investigated the existence
and local asymptotic stability of equilibrium points of the system (1.2) in R2

+. In
Section 3, the existence of the system (1.2) undergoes a Neimark-Sacker bifurcation
is discussed. Section 4 includes numerical simulations to support theoretical results.
In the last section, the results are briefly presented.

2. THE EXISTENCE AND STABILITY OF EQUILIBRIUM POINTS

In this section, we consider the prey-predator system (1.2). Firstly, we discuss
the existence of equilibrium points for the system (1.2), and then study the stability
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of the equilibrium points by using the characteristic polynomial or the eigenvalues
of the Jacobian matrix evaluated at the equilibrium points. Now, let us give some
necessary information.

Let us consider the two-dimensional discrete dynamical system of the form

xn+1 = f (xn,yn), (2.1)

yn+1 = g(xn,yn), n = 0,1,2, ...,

where f : I×J→ I and g : I×J→ J are continuously differentiable functions and I,J
are some intervals of real numbers. Furthermore, a solution {(xn,yn)}∞

n=0 of system
(2.1) is uniquely determined by initial conditions (x0,y0) ∈ I × J. An equilibrium
point of (2.1) is a point (x,y) that satisfies

x = f (x,y), (2.2)

y = g(x,y).

Let (x,y) be an equilibria of the map F(x,y) = ( f (x,y),g(x,y)), where f and g are
continuously differentiable functions at (x,y). The linearized system of (2.1) about

the equilibria (x,y) is given by Xn+1 = F(Xn) = FJXn, where Xn =

(
xn
yn

)
and FJ is

a Jacobian matrix of system (2.1) about the equilibria (x,y).

Theorem 1 ([24]). Assume that Xn+1 =F(Xn), n= 0,1, . . . is a system of difference
equations and x is an equilibrium point of F. If all eigenvalues of the Jacobian
matrix FJ about the equilibria x lie inside the open unit disk |λ|< 1, then x is locally
asymptotically stable. If one of them has absolute value greater than one, then x is
unstable.

Theorem 2 ([8]). Consider the second-degree polynomial equation

λ
2− pλ−q = 0 (2.3)

where p and q are real numbers.
(i) If both roots of Equation (2.3) lie in the open unit disk |λ| < 1, then the

equilibria (x,y) is locally asymptotically stable.
(ii) If at least one of the roots of Equation (2.3) has absolute value greater than

one, then the equilibria (x,y) is unstable.
(iii) A necessary and sufficient condition for both roots of Equation (2.3) to lie

inside the open disk |λ|< 1 is

|p|< 1−q < 2.

In this case the locally asymptotically stable equilibria (x,y) is also called a
sink.

(iv) A necessary and sufficient condition for both roots of Equation (2.3) to have
absolute value greater than one is

|q|> 1, |p|< |1−q|.
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In this case (x,y) is a repeller (source).
(v) A necessary and sufficient condition for one root of Equation (2.3) to have

absolute value greater than one and for the other to have absolute value less
than one is p2 + 4q > 0, |p| > |1− q|. In this case the unstable equilibria
(x,y) is called a saddle point.

(vi) A necessary and sufficient condition for a root of Equation (2.3) to have ab-
solute value equal to one is

|p|= |1−q|.
In this case, the steady state (x,y) is called a non-hyperbolic point.

Theorem 3 ([18]). Let F(x) = x2 +Bx+C. Suppose that F(1)> 0, x1 and x2 are
two roots of F(x) = 0. Then

(i) |x1| < 1 and |x2| < 1 if and only if F(−1)> 0 and C < 1;
(ii) |x1| < 1 and |x2| > 1 (or |x1|> 1 and |x2| < 1) if and only if F(−1)< 0;

(iii) |x1|> 1 and |x2| > 1 if and only if F(−1)> 0 and C > 1;
(iv) x1 =−1 and |x2| 6= 1 if and only if F(−1) = 0 and B 6= 0,2;
(v) x1 and x2 are complex and |x1| = |x2| = 1 if and only if B2− 4C < 0 and

C = 1.

Theorem 4 ([2]). The characteristic polynomial

F(x) = x2 +Bx+C

has all its roots inside the unit open disk (|x| < 1) if and only if
(i) F(1)> 0 and F(−1)> 0

(ii) D+
1 = 1+C > 0 and D−1 = 1−C > 0.

Now, we will investigate the equilibrium points of system (1.2) and analyze the
stability of these equilibrium points.

We easily obtain the equilibrium points of system (1.2) by using (2.2) such that

x = ax(1− x)− xy, (2.4)

y =
1
b

xy− ey.

Then, we have the following Lemma.

Lemma 1. For the system (1.2), the following cases hold:
(i) The system (1.2) has a unique trivial (extinction) equilibria E0 = (0,0) for

all parameters.
(ii) If a > 1, then the system (1.2) has two equilibria. These are an extinction

E0 = (0,0) and an exclusion E1 = (a−1
a ,0).

(iii) If a > 1 and b < a−1
a(e+1) , then the system (1.2) has three equilibria. These are

an extinction equilibria E0 = (0,0), an exclusion equilibria E1 = (a−1
a ,0)

and a coexistence equilibria E2 = (b[e+1], a−ab[e+1]−1).
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Now, let us study local dynamics of the equilibria obtaining the Jacobian matrix
evaluated at E0,E1 and E2. Firstly, by considering (1.2), we can get the Jacobian
matrix as

JE0 =

(
a 0
0 −e

)
(2.5)

evaluated at E0, and the eigenvalues of JE0 are

λ1 = a, λ2 =−e.

By using Theorem 2-3, we can express the topological classification of the equilibria
E0 of the system (1.2) as follows:

Lemma 2. For the extinction equilibrium points E0, the following cases hold:
(i) If 0 < a < 1 and 0 < e < 1, then the equilibria E0 is a sink point.

(ii) If 0 < e < 1 < a, then the equilibria E0 is a saddle point.
(iii) If a = 1, E0 is non-hyperbolic point.

Note that if a > 1, then the equilibria E0 can not be a source point with e < 1.
Secondly, we can get the Jacobian matrix as

JE1 =

(
2−a −1+ 1

α

0 −1+a−abe
αb

)
(2.6)

evaluated at E1 and the eigenvalues of JE1 are

λ1 = 2−a, λ2 =
−1+a−abe

αb
.

Similarly, by using Theorem 2-3, we can get the topological classification of the
exclusion equilibria E1 of the system (1.2) as follows:

Lemma 3. For the extinction equilibrium points E1, the following cases hold:
(i) If 1 < a < 3 and a−1

α(e+1) < b, then the equilibria E1 is a sink point.

(ii) If (a < 1 or a > 3) and a−1
α(e+1) > b, then the equilibria E1 is a source point.

(iii) If (a < 1 or a > 3) and a−1
α(e+1) < b or 1 < a < 3 and a−1

α(e+1) > b, then the
equilibria E1 is a saddle point.

(iv) If a = 3, or b = a−1
α(e+1) , E1 is non-hyperbolic point.

Finally, we can find the Jacobian matrix as

JE2 =

(
1−ab(e+1) −b(e+1)
−1+a−ab(e+1)

b 1

)
(2.7)

evaluated at E2 and the characteristic polynomial is

F(λ) = λ
2 +[−2+ab(1+ e)]λ+[−e−a(1+ e)(−1+b[2+ e])].

So, we can analyze the dynamics of a unique positive coexistence equilibrium points
of the system (1.2). By using Theorem 2-3, we can get the topological classification
of the coexistence equilibria E2 of system (1.2) as follows:
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Lemma 4. Suppose that F(1) > 0. In this case, 0 < b < a−1
α(e+1) is provided for

a > 1, 0 < e < 1. For the coexistence equilibrium points E2, the following cases
hold:

(i) If a−1
2a+ae < b < 3+a−e+ae

3a+4ae+ae2 , for a > 3 or a−1
2a+ae < b < a−1

α(e+1) for 1 < a < 3,
then the equilibria E2 is a sink point.

(ii) If 0 < b < min
{

a−1
2a+ae ,

3+a−e+ae
3a+4ae+ae2

}
, then the equilibria E2 is a source point.

(iii) If b > 3+a−e+ae
3a+4ae+ae2 , then the equilibria E2 is a saddle point.

(iv) If 0 < b < −2
α
+2
√

a+e
a2(e+1) and b = b1 such that b1 =

(a−1)
(2a+ae) , then the eigen-

values of JE2 are a pair of conjugate complex numbers whose modules are
one.

3. NEIMARK-SACKER BIFURCATIONS

In this section, the direction and the existence of Neimark–Sacker bifurcation are
obtained for the system (1.2) ([16,27]). Also, if the system (1.2) provides eigenvalue
assignment, transversality and non resonance conditions, then Neimark–Sacker bi-
furcation occurs at a bifurcation point ([9, 23]). In order to work Neimark–Sacker
bifurcation in the system (1.2), we define the parameters providing non-hyperbolic
conditions by

NSBE2 =

{
a,b,e ∈ R+ : 0 < b <

−2
α

+2
√

a+ e
a2(e+1)

and b = b1

}
. (3.1)

By considering Lemma 8, the eigenvalues of JE2 evaluated at a non-hyperbolic point
E2 has a pair of conjugate complex numbers whose modules are one. These eigen-
values are

λ,λ |b=b1=
1
2

[
2−ab(1+ e)± i

√
(1+ e)[(4a−4)−a2b2−4ab(1+ e)]

]
|b=b1

(3.2)
with

|λ|=
∣∣∣λ∣∣∣= 1.

For b ∈ NSBE2 , we get
∂ |λi(b)|

∂b
|b=b1 6= 0 , i = 1,2. (3.3)

Also, if

trJE2 |b=b1 6= 0,−1, (3.4)

then, we reach

λ
k(b1) 6= 1 , k = 1,2,3,4. (3.5)
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Let q, p ∈ C2 be two eigenvectors which corresponding to the eigenvalues λ of the
matrix J(NSBE2) and the eigenvalues λ of the matrix J(NSBE2)

T , respectively. If
these eigenvectors are calculated with Maple program, then we get

q ∼

(
T −1− i

√
2T −1−T 2−4Ka

2a
,1

)
, (3.6)

and

p ∼

(
T −1+ i

√
2T −1−T 2−4Ka

2K
,1

)
, (3.7)

such that T = 3+2e−a(e+1)
2+e , K =− (−1+a)(1+e)

a(2+e) .
By using the scalar product in C2 : < p,q>= p1q1+ p2q2, we define the following

vector in order to normalize p according to q

p ∼

(
(T −1)+ i

√
2T −4aK−1−T 2

2KR
,

1
R

)
. (3.8)

where R = (1+ (−1+T−i
√
−1−4aK+2T−T 2)2

4aK ) and < p,q >= 1.
In order to transform the equilibrium point E2 of the system (1.2) into the origin

(0,0), we take

un = xn−b[e+1], vn = yn− [a−ab(e+1)−1)]. (3.9)

Then, we get the following map:(
u
v

)
→ JE2

(
u
v

)
+

(
F1(u,v)
F2(u,v)

)
, (3.10)

where
F1(u,v) =−au2−uv+O(‖U‖3)

F2(u,v) =
1
b

uv+O(‖U‖3)

such that Ut = (u,v)T . Also, the system (1.2) can be written as(
un+1
vn+1

)
→ JE2

(
un
vn

)
+

1
2

B(un,vn)+
1
6

C(un,vn,wn)+O(‖Un‖4), (3.11)

with the multilinear vector functions of u;v;w ∈ R2 :

B(u,v) =
(

B1(u,v)
B2(u,v)

)
and

C(u,v) =
(

B1(u,v,w)
B2(u,v,w)

)
.
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These vectors are expressed by

B1(u,v) =
2

∑
j,k=1

∂2F1

∂ξ j∂ξk
|ξ=0 u. jvk =−2au1v1− (u2v1 +u1v2)

B2(u,v) =
2

∑
j,k=1

∂2F2

∂ξ j∂ξk
|ξ=0 u. jvk =

1
b
(u2v1 +u1v2)

C1(u,v,w) =
2

∑
j,k=1

∂3F1

∂ξ j∂ξkξl
|ξ=0 u. jvkwl = 0

C2(u,v,w) =
2

∑
j,k=1

∂3F2

∂ξ j∂ξkξl
|ξ=0 u. jvkwl = 0.

∀U ∈ R2 can be uniqely offered as

U = zq+ zq (3.12)

for some z ∈ C. Here, z is the conjugate of that complex number z, and z =< p,U >.
For all sufficiently small |b|, we can transform the system (1.2) into the form

z→ λ(b)z+g(z,z,b), (3.13)

where λ(r) = (1+ω(b))eiarctan(b) with ω(b1) = 0 and g(z,z,b) is a complex valued
smooth function of z and z. Taylor expression of g with respect to g(z,z) is as follows:

g(z,z,b) = ∑
k+l≥2

1
k!l!

gkl(b)zkzl, (3.14)

with

g20(b1) =< p,B(q,q)>

g11(b1) =< p,B(q,q)>

g02(b1) =< p,B(q,q)>

g21(b1) =< p,C(q,q,q)> .

In order to come out Neimark-Sacker bifurcation for the system (3.10), we need that
the coefficient ϕ(b1) must not be zero. This coefficient is

ϕ(b1) =Re

(
e−iarc tan(b1)

2
g21

)
−Re

(
(1−2eiarc tan(b1))e−2iarc tan(b1)

2(1− eiarc tan(b1))
g20g11

)

− 1
2
|g11|2−

1
4
|g02|2

(3.15)

where eiarc tan(b1) = λ(b1). Consequently, we have the following theorem on Neimark-
Sacker bifurcation:
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Theorem 5. If (3.4) holds, ϕ(b1) 6= 0 and the parameter b changes its value in
small vicinity of NSBE2 , then the system (1.2) passes through a Neimark-Sacker bi-
furcation at the only equilibrium point E2. Moreover if ϕ(b1) < 0 (ϕ(b1) > 0), then
there exists a unique attracting (repelling) invariant closed curve which bifurcates
from E2.

4. NUMERICAL SIMULATIONS

In this section, theoretical results are supported with graphics by using Mathemat-
ica [15, 26] and SageMath [12] programming. Some numerical simulations is given
to demonstrate existence of Neimark-Sacker bifurcation for the system (1.2). Here,
trajectories, bifurcation diagrams and phase portraits are illustrated by taking b as
bifurcation parameter.

Example 1. Let us consider the following system for the parameter values e = 0.5,
a = 2.5 and b = 0.24,

xn+1 = 2.5xn(1− xn)− xnyn (4.1)

yn+1 =
1

0.24
xnyn−0.5yn.

The coexistence positive equilibrium point is (x,y) = (0.36,0.6), and the Jacobian
matrix evaluated (x,y) is obtained as follows:

J(x,y) =
(

0.1 −0.36
2.5 1

)
.

If the eigenvalues are calculated, then we obtain

λ1,2 = 0.55∓0.835165i

such that |λ1,2|= 1. Let

q ∼ (−0.3340658618+0.1800000000i,−i)T ,

and
p ∼ (−0.3340658618−0.1800000000i, i)T ,

be complex eigenvectors corresponding to λ1,2 respectively.
If the normalized vector is taken as

q ∼ (−0.3340658618+0.1800000000i,−i)T

to obtain the normalization < p, q >= 1, the vector is found

p ∼ (0,331611+0.238793i,0.139463−1.0678i)T .

By transformation of variables

un = xn−0.36, vn = yn−0.6
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the system (4.1) can be written as follows:

un+1 =−2.5u2
n +0.1un−0.36vn−unvn

yn+1 = 2.5un + vn +4.16667unvn.

When the coefficient of the form (3.14) are calculated, we get

g20(b1) =−3.03009+2.14832i

g11(b1) =−0.328575−1.51574i

g02(b1) = 2.94708+1.41614i

g21(b1) = 0.

From (3.15), we get as ϕ(bNS) = −2.76917 < 0 such that θ = 0.988432. Con-
sequently, the Neimark-Sacker bifurcation emerges at bNS = 0.24.

To confirm the theoretical result, the trajectories, the bifurcation diagrams and
phase portraits of the prey-predator system (1.2) are shown in Figure 1, Figure 2 and
Figure 3.

5. CONCLUSIONS

This paper contains the complex dynamic behavior of the prey predator system
(1.2) with an efficiency of prey conversion into predators and minimum threshold
of prey consumption required before predators begin to reproduce. We investigate
stability conditions of the equilibrium points of the system (1.2), and show that the
system (1.2) displays a Neimark-Sacker bifurcations.

We find that the system (1.2) has a trivial (extinction) equilibria E0, an exclusion
equilibria E1 and a coexistence equilibria E2. We give asymptotic stability conditions
of these equilibria by using linearization method. It is clear that there is unique posit-
ive coexistence equilibria E2 of the system (1.2) with a> 1 and b< a−1

a(e+1) . Moreover,
it is proved that system (1.2) undergoes Neimark-Sacker bifurcation under the con-
dition b = a−1

2a+ae by using mathematical techniques of bifurcation theory. It is seen
that Neimark–Saker bifurcation appears when the parameters vary on the neighbor-
hood NSBE2 =

{
a,b,e ∈ R+ : 0 < b < −2

α
+2
√

a+e
a2(e+1) and b = b1

}
. Some figures

present dynamical properties of system (1.2) which has an attracting invariant curve
for b < 0.24, e = 0.5, a = 2.5 and the initial conditions (x0,y0) = (0.4,0.3). As the
parameter b exceed 0.24, the system becomes stable. If the parameter b exceeds 0.4,
the predation population disappears. We conclude that the parameter b has a different
effect on the dynamics on system (1.2) with the biological effect of e.
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FIGURE 1. Trajectories of the prey-predator system (1.2) for different
values b with the parameter values a = 2.5, e = 0.5 and the initial condi-
tions (x0,y0) = (0.4,0.3).

FIGURE 2. Trajectories of the prey-predator system (1.2) for different
values b with the parameter values a = 2.5, e = 0.5 and the initial condi-
tions (x0,y0) = (0.4,0.3).
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FIGURE 3. The phase portraits of the prey-predator system (1.2) with the
parameter values a = 2.5, e = 0.5 and the initial conditions (x0,y0) =

(0.4,0.3).
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