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Abstract. The aim of this paper is to investigate oscillatory properties of even-order advanced
differential equations. The key idea of our approach is to conduct a comparison with first order
equations and use the Riccati transformation technique. Some new oscillation criteria are shown.
Two examples are presented in order to clarify the main results.
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1. INTRODUCTION

Advanced differential equations can find application in several real world prob-
lems where the evolution rate depends not only on the present, but also on the future.
Hence, an advance could be introduced into the equation in order to take into account
the influence of potential future actions. For instance, it is worth pointing out that
there are a lot of applications to dynamical systems, mathematics of networks, optim-
ization, and their application in the mathematical modelling of engineering problems,
such as concerning electrical power systems, materials, energy (see [13]).

In this paper, we establish new oscillation criteria for all solutions of non-linear
even-order differential equations with variable coefficients and advanced term of the
form (

a(t)
(

w(n−1) (t)
)β
)′

+
j

∑
i=1

qi (t)g(w(ηi (t))) = 0, t ≥ t0, (1.1)

where j ≥ 1 and β is a quotient of odd positive integers.
Throughout this paper, we suppose that:
• a ∈C1 ([t0,∞),R) ,
• a(t)> 0, a′ (t)≥ 0, qi,ηi ∈C ([t0,∞),R) ,
• qi (t)≥ 0,
• ηi (t)≥ t, lim

t→∞
ηi (t) = ∞, i = 1,2, .., j,
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• g ∈C (R,R) such that g(x)
xβ
≥ k > 0, for x 6= 0

•
∫

∞

t0

1
a1/β (s)

ds = ∞.

By a solution of (1.1) we mean a function w ∈ Cn−1[tw,∞), tw ≥ t0, which has the

property a(t)
(
w(n−1) (t)

)β ∈ C1[tw,∞), and satisfies (1.1) on [tw,∞). A solution of
(1.1) is called oscillatory if it has arbitrarily large zeros on [tw,∞); otherwise, it is
called non-oscillatory. Equation (1.1) is said to be oscillatory if all of its solutions
are oscillatory.

2. THE AIM OF THIS PAPER

In the last decade, the interest in studying of oscillation properties for differen-
tial equations increased (see for instance [3–8, 10–12, 14–19, 23–25]). On the other
hand, the study of qualitative properties of solutions to differential equations were
extensively studied also in [20–22].

The aim of this paper is to complement and enrich the results contained in [1,2,9].
For this reason, it is interesting to discuss briefly the aforementioned results.
By using the comparison technique, the equation((

w(n−1) (t)
)β
)′

+q(t)wβ (η(t)) = 0, (2.1)

have been studied by Agarwal and Grace [1] and they proved that (2.1) is oscillatory
if

liminf
t→∞

∫
η(t)

t
(η(s)− s)n−2

(∫
∞

s
q(t)dt

)1/β

ds >
(n−2)!

e
. (2.2)

Agarwal et al. in [2] extended the Riccati transformation obtaining as new oscillation
criterion for (2.1), the following condition:

limsup
t→∞

tβ(n−1)
∫

∞

t
q(s)ds > ((n−1)!)β . (2.3)

In [9] the authors studied the oscillatory behaviour of (2.1) for β = 1. Using the
Riccati transformation, they show that (2.1) is oscillatory if there exists a function
µ ∈C1 ([t0,∞) ,(0,∞)) , such that∫

∞

t0

(
µ(s)q(s)− (n−2)!(µ′ (s))2

23−2nsn−2µ(s)

)
ds = ∞. (2.4)

We apply the previous results to the equation

w(4) (t)+
q0

t4 w(3t) = 0. t ≥ 1, (2.5)

(1) Applying the condition (2.2) contained in [1], we get

q0 > 13.6.
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(2) Applying condition (2.3) contained in [2], we get

q0 > 18.

(3) Applying condition (2.4) contained in [9], we get

q0 > 576.

From the above results, we can infer that the results in [2] improve the results con-
tained in [9]. Moreover, the results in [1] improve the results [2, 9].

Thus, the motivation of this paper is complement and enrich the results in [1,2,9].
The key idea of our approach is to conduct a comparison with first order equa-

tions whose oscillatory behaviours are already known, using Riccati transformation
technique.

The rest of the paper is organized as follows. Section 3 is devoted to the main
results of the paper. We present our investigations for equation (1.1). Meanwhile, a
relevant result on the existence of oscillatory oscillatory behaviour of solutions for
first order differential equations is stated. The proofs rely on some mathematical
inequalities and lemmas which are given for the sake of completeness. In Section
4, we provide two examples with specific parameters to illustrate the applicability of
our theorems. The paper ends with some concluding remarks.

The following lemmas will be very useful in the sequel:

Lemma 1 ([16]). If the function w satisfies w(i) (t) > 0, i = 0,1, ...,n, and
w(n+1) (t)< 0, then

w(t)
tn/n!

≥ w′ (t)
tn−1/(n−1)!

.

Lemma 2 ([25]). Suppose that w ∈ Cn ([t0,∞) ,(0,∞)) , w(n) is of a fixed sign on
[t0,∞) , w(n) not identically zero and there exists a t1 ≥ t0 such that

w(n−1) (t)w(n) (t)≤ 0,

for all t ≥ t1. If we have limt→∞ w(t) 6= 0, then there exists tθ ≥ t1 such that

w(t)≥ θ

(n−1)!
tn−1

∣∣∣w(n−1) (t)
∣∣∣ ,

for every θ ∈ (0,1) and t ≥ tθ.

Lemma 3 ([3]). Let β be a ratio of two odd numbers, V > 0 and U are constants.
Then

Ux−V x(β+1)/β ≤ ββ

(β+1)β+1

Uβ+1

V β
, V > 0.
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Lemma 4 ([15]). Assume that w is an eventually positive solution of (1.1). Then,
there exist two possible cases:

(S1) w(t)> 0, w′ (t)> 0, w′′ (t)> 0, w(n−1) (t)> 0, w(n) (t)< 0,
(S2) w(t)> 0, w(r)(t)> 0, w(r+1)(t)< 0 for all odd integer

r ∈ {1,3, ...,n−3}, w(n−1)(t)> 0, w(n)(t)< 0,

for t ≥ t1, where t1 ≥ t0 is sufficiently large.

3. OSCILLATION CRITERIA

In the following theorem, we compare the oscillatory behaviour of (1.1) with suit-
able first-order differential equations.

Theorem 1. Assume that (1) holds. If the differential equations

x′ (t)+ k
j

∑
i=1

qi (t)
(

θtn−2

(n−2)!a1/β (t)

)β

x(η(t)) = 0 (3.1)

and

z′ (t)+ z(t)
t

(n−4)!

∫
∞

t
(ς− t)n−4

(
k

a(ς)

∫
∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς = 0 (3.2)

are oscillatory, then every solution of (1.1) is oscillatory.

Proof. On the contrary, let us assume that w is a positive solution of (1.1). Then,
we can suppose that w(t) and w(ηi (t)) are positive for all t ≥ t1 sufficiently large.
From Lemma 4, we have two possible cases (S1) and (S2).
Let us assume that (S1) holds. From Lemma 2, we get

w(t)≥ θtn−2

(n−2)!a1/β (t)

(
a1/β (t)w(n−1) (t)

)
,

for every θ ∈ (0,1) and for all large t. Thus, if we set

x(t) = a(t)
(

w(n−1) (t)
)β

> 0,

then we see that δ is a positive solution of the inequality

x′ (t)+ k
j

∑
i=1

qi (t)
(

θtn−2

(n−2)!a1/β (t)

)β

x(η(t))≤ 0. (3.3)

From [19, Theorem 1], we conclude that the corresponding equation (3.1) also has a
positive solution, which is a contradiction.
Let us assume that (S2) holds. Integrating (1.1) from t to m and using w′ (t)> 0, we
obtain

a(m)
(

w(n−1) (m)
)β

−a(t)
(

w(n−1) (t)
)β

=−
∫ m

t

j

∑
i=1

qi (s)g(w(ηi (s)))ds.
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By virtue of w′ (t)> 0 and ηi (t)≥ t, we get

a(m)
(

w(n−1) (m)
)β

−a(t)
(

w(n−1) (t)
)β

≤−kwβ (t)
∫ m

t

j

∑
i=1

qi (s)ds.

Letting m→ ∞ , we see that

a(t)
(

w(n−1) (t)
)β

≥ kwβ (t)
∫

∞

t

j

∑
i=1

qi (s)ds

and so

w(n−1) (t)≥ w(t)

(
k

a(t)

∫
∞

t

j

∑
i=1

qi (s)ds

)1/β

.

Integrating again from t to ∞ for a total of n−4 times, we get

w′′ (t)+
w(t)

(n−4)!

∫
∞

t
(ς− t)n−4

(
k

a(ς)

∫
∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς≤ 0. (3.4)

Using Lemma 1, we get
w(t)≥ tw′ (t) , (3.5)

From (3.4) and (3.5), we get

w′′ (t)+w′ (t)
t

(n−4)!

∫
∞

t
(ς− t)n−4

(
k

a(ς)

∫
∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς≤ 0.

Thus, if we set
z(t) = w′ (t) ,

then we see that δ is a positive solution of the inequality

z′ (t)+ z(t)
t

(n−4)!

∫
∞

t
(ς− t)n−4

(
k

a(ς)

∫
∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς≤ 0. (3.6)

It is well known (see [19, Theorem 1]) that the corresponding equation (3.2) also has
a positive solution, which is a contradiction. The proof is complete. �

Corollary 1. Assume that (1) holds. If

liminf
t→∞

∫ t

ηi(t)

j

∑
i=1

qi (s)
(

θtn−2

(n−2)!a1/β (t)

)β

ds >
((n−1)!)β

e
(3.7)

and

liminf
t→∞

∫ t

ηi(t)

s
(n−4)!

∫
∞

t
(ς− t)n−4

(
k

a(ς)

∫
∞

ς

j

∑
i=1

qi (s)ds

)1/β

dςds >
1
e

(3.8)

are oscillatory, then every solution of (1.1) is oscillatory.
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Lemma 5. Assume that w be an eventually positive solution of (1.1) and (S1)
holds. If

φ(t) := µ(t)

(
a(t)

(
w(n−1) (t)

)β

wβ (t)

)
, (3.9)

where µ ∈C1 ([t0,∞) ,(0,∞)) , then

φ
′ (t)≤ µ′ (t)

µ(t)
φ(t)− kµ(t)

j

∑
i=1

qi (t)−
βθtn−2

(n−2)!(µ(t)a(t))
1
β

φ(t)
β+1

β , (3.10)

for all t > t1, where t1 large enough.

Proof. Let w is an eventually positive solution of (1.1) and let us assume that (S1)
holds. Thus, from Lemma 2, we get

w′ (t)≥ θ

2
tn−2w(n−1) (t) , (3.11)

for every θ ∈ (0,1) and for all large t. From (3.9), we see that φ(t)> 0 for t ≥ t1, and

φ
′ (t) = µ′ (t)

a(t)
(
w(n−1) (t)

)β

wβ (t)
+µ(t)

(
a
(
w(n−1)

)β
)′
(t)

wβ (t)

−βµ(t)
wβ−1 (t)w′ (t)a(t)

(
w(n−1) (t)

)β

w2β (t)
.

Using (3.11) and (3.9), we obtain

φ
′ (t)≤

µ′+ (t)
µ(t)

φ(t)+µ(t)

(
a(t)

(
w(n−1) (t)

)β
)′

wβ (t)

−βµ(t)
θ

(n−2)!
tn−2 a(t)

(
w(n−1) (t)

)β+1

wβ+1 (t)

≤ µ′ (t)
µ(t)

φ(t)+µ(t)

(
a(t)

(
w(n−1) (t)

)β
)′

wβ (t)

− βθtn−2

(n−2)!(µ(t)a(t))
1
β

φ(t)
β+1

β . (3.12)

From (1.1) and (3.12), we obtain

φ
′ (t)≤ µ′ (t)

µ(t)
φ(t)− kµ(t)

∑
j
i=1 qi (t)wβ (ηi (t))

wβ (t)
− βθtn−2

(n−2)!(µ(t)a(t))
1
β

φ(t)
β+1

β .
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Note that w′ (t)> 0 and ηi (t)≥ t, thus, we find

φ
′ (t)≤ µ′ (t)

µ(t)
φ(t)− kµ(t)

j

∑
i=1

qi (t)−
βθtn−2

(n−2)!(µ(t)a(t))
1
β

φ(t)
β+1

β .

The proof is complete. �

Lemma 6. Assume that w be an eventually positive solution of (1.1) and (S2)
holds. If

δ(t) := ϑ(t)
w′ (t)
w(t)

. (3.13)

where ϑ ∈C1 ([t0,∞) ,(0,∞)) , then

δ
′ (t)≤ ϑ′ (t)

ϑ(t)
δ(t)−Φ(t)− 1

ϑ(t)
δ(t)2 , (3.14)

for all t > t1, where t1 large enough and

Φ(t) =
ϑ(t)

(n−4)!

∫
∞

t
(ς− t)n−4

(
k

a(ς)

∫
∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς.

Proof. Let w is an eventually positive solution of (1.1) and let us assume that (S2)
holds. From the definition of δ(t), we see that δ(t)> 0 for t ≥ t1. By differentiating,
we find

δ
′ (t) =

ϑ′ (t)
ϑ(t)

δ(t)+ϑ(t)
w′′ (t)
w(t)

− 1
ϑ(t)

δ(t)2 . (3.15)

From (3.4) and (3.15), we obtain

δ
′ (t)≤ ϑ′ (t)

ϑ(t)
δ(t)− ϑ(t)

(n−4)!

∫
∞

t
(ς− t)n−4

(
k

a(ς)

∫
∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς− 1
ϑ(t)

δ(t)2 .

Thus,

δ
′ (t)≤ ϑ′ (t)

ϑ(t)
δ(t)−Φ(t)− 1

ϑ(t)
δ(t)2 .

The proof is complete. �

In this theorem, we will establish an oscillation criterion for equation (1.1).

Theorem 2. Assume that there exist positive functions µ,ϑ∈C1 ([t0,∞) ,(0,∞)) such
that ∫

∞

t0

(
kµ(s)

j

∑
i=1

qi (s)−
((n−2)!)β a(t)(µ′ (t))β+1

(β+1)β+1 (tn−2θµ(t))β

)
ds = ∞, (3.16)

for some θ ∈ (0,1), and either ∫
∞

t0

j

∑
i=1

qi (s)ds = ∞ (3.17)
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or ∫
∞

t0

(
Φ(s)− 1

4ϑ(s)

(
ϑ
′ (s)
)2
)

ds = ∞. (3.18)

Then every solution of (1.1) is oscillatory.

Proof. Assume that w is an eventually positive solution of (1.1). Then, we can
suppose that w(t) and w(ηi (t)) are positive for all t ≥ t1 sufficiently large. From
Lemma 4, we have two possible cases (S1) and (S2).
Assume that (S1) holds. From Lemma 5, we get that (3.10) holds. Using Lemma 3
with

U =
µ′ (t)
µ(t)

, V =
βθtn−2

(n−2)!(µ(t)a(t))
1
β

and x = φ(t) ,

we get

µ′ (t)
µ(t)

φ(t)− βθtn−2

(n−2)!(µ(t)a(t))
1
β

φ(t)
β+1

β ≤−((n−2)!)β a(t)(µ′ (t))β+1

(β+1)β+1 (tn−2θµ(t))β
. (3.19)

From (3.10) and (3.19), we obtain

φ
′ (t)≤−kµ(t)

j

∑
i=1

qi (t)+
((n−2)!)β a(t)(µ′ (t))β+1

(β+1)β+1 (tn−2θµ(t))β
.

Integrating from t1 to t, we get∫ t

t1

(
kµ(s)

j

∑
i=1

qi (s)−
((n−2)!)β a(t)(µ′ (t))β+1

(β+1)β+1 (tn−2θµ(t))β

)
ds≤ φ(t1) ,

for every θ ∈ (0, 1) , which contradicts (3.16). Assume that (S2) holds. Integrating
(1.1) from m to t, we conclude that

−a(m)
(

w(n−1) (m)
)β

=−
∫ t

m

j

∑
i=1

qi (s)g(w(ηi (s)))ds.

By virtue of w′ (t)> 0 and ηi (t)≥ t, we get∫ t

m

j

∑
i=1

qi (s)ds≤
a(m)

(
w(n−1) (m)

)β

kwβ (m)
,

which contradicts (3.17).
From Lemma 6, we get that (3.14) holds. Using Lemma 3 with

U = ϑ
′ (t)/ϑ(t) , V = 1/ϑ(t) ,β = 1 and x = δ(t) ,

we get
ϑ′ (t)
ϑ(t)

δ(t)− 1
ϑ(t)

δ
2 (t)≤− 1

4ϑ(t)

(
ϑ
′ (t)
)2
. (3.20)



OSCILLATORY PROPERTIES OF EVEN-ORDER ORDINARY DIFFERENTIAL EQUATIONS 649

From (3.14) and (3.20), we obtain

δ
′ (t)≤−Φ(t)+

1
4ϑ(t)

(
ϑ
′ (t)
)2
. (3.21)

Integrating from t1 to t, we get∫ t

t1

(
Φ(s)− 1

4ϑ(s)

(
ϑ
′ (s)
)2
)

ds≤ δ(t1) ,

which contradicts (3.18). The proof is complete. �

Putting µ(t) = tn−1 and ϑ(t) = t into Theorem 2, we get the following oscillation
criterion:

Corollary 2. Let (1.1) hold. Assume that∫
∞

t0

(
sn−1

j

∑
i=1

qi (s)−
((n−2)!)β (n−1)β+1 s−nβ+n+β−2a(s)

(β+1)β+1
θβ

)
ds = ∞, (3.22)

or some θ ∈ (0,1) . If (3.17) holds and

∫
∞

t0

 s
(n−4)!

∫
∞

t
(ς− t)n−4

(
k

a(ς)

∫
∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς− 1
4s

ds = ∞, (3.23)

then every solution of (1.1) is oscillatory.

4. EXAMPLES AND CONCLUDING REMARKS

In this section we show two numerical examples as application of the theoretical
findings discussed in the previous section. Finally, we list some perspectives for
future works.

Example 1. Let us consider the differential equation(
t
(
w′′′ (t)

))′
+

d0

t3 w(ct) = 0, t ≥ 1, (4.1)

where c > 0 and d0 > 1 is a constant. Note that β = 1, n = 4, a(t) = t, q(t) = d0/t3.
If we set k = 1, and µ(s) = s3,then∫

∞

t0

(
kµ(s)

j

∑
i=1

qi (s)−
((n−2)!)β a(s)(µ′ (s))β+1

(β+1)β+1 (sn−2θµ(s))β

)
ds

=
∫

∞

t0

(
d0

s3

s3 −
32s5

2θs5

)
ds =

∫
∞

t0

(
d0−

9
2θ

)
ds

= ∞ if d0 >
9

2θ
,
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for some constant θ ∈ (0, 1). Hence, by Theorem 2, every solution of equation (4.1)
is oscillatory if

d0 >
9

2θ
.

Remark 1. Applying the condition (3.22) to the equation (2.5), we find

q0 > 4.5.

Therefore, our result improves the results contained in [1, 2, 9].

Example 2. Let us consider the differential equation

w(4) (t)+
q0

t4 w(2t) = 0, t ≥ 1, (4.2)

where q0 > 0 is a constant. Note that β = 1, n = 4, a(t) = 1, q(t) = q0/t4 and
η(t) = 2t. If we set k = 1, then condition (3.16) becomes∫

∞

t0

(
sn−1

j

∑
i=1

qi (s)−
((n−2)!)β (n−1)β+1 s−nβ+n+β−2a(s)

(β+1)β+1
θβ

)
ds

=
∫

∞

t0

(
q0

s
− 9

2θs

)
ds =

(
q0−

9
2θ

)∫
∞

t0

1
s

ds

= ∞ if q0 > 4.55 (let θ = 99/100)

and condition (3.18) becomes s
(n−4)!

∫
∞

t
(ς− t)n−4

(
k

a(ς)

∫
∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς− 1
4s

ds

=
∫

∞

t0

(
q0

6s
− 1

4s

)
ds

= ∞, if q0 >
3
2
.

Therefore, from Corollary 2, every solution to the equation (4.2) is oscillatory if
q0 > 4.55.

Remark 2. Now we compare our result with the known related criteria for oscilla-
tion of the equation under consideration.

(1) Applying condition (2.2) in [1], we get

q0 > 25.5.

(2) Applying condition (2.3) in [2], we obtain

q0 > 18.
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(3) Applying condition (2.4) in [9], we find

q0 > 1728.

Therefore, our result improves the results contained in [1, 2, 9].
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