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Abstract—The two-dimensional hyperbolic space turned out
to be an efficient geometry for generative models of complex
networks. The networks generated with this hyperbolic metric
space share their basic structural properties (like small diameter
or scale-free degree distribution) with several real networks. In
this paper, we present a new model for generating trees in the
two-dimensional hyperbolic plane. The generative model is not
based on known hyperbolic network models: the trees are not
inferred from the existing links of any network; instead, the
hyperbolic tree is generated from scratch purely based on the
hyperbolic coordinates of nodes. We show that these hyperbolic
trees have scale-free degree distributions and are present to
a large extent both in synthetic hyperbolic complex networks
and real ones (Internet autonomous system topology, US flight
network) embedded in the hyperbolic plane.

Index Terms—hyperbolic trees, complex networks, scale-free
distribution

I. INTRODUCTION

Trees play an essential role in network operation and man-
agement. Carefully chosen ones can be considered skeletons of
more complex, real networks, acting as a scaffold for certain
vital functions like routing [9], navigation [8], cluster analysis,
or broadcasting [11]. For example, the so-called minimum
(weight) spanning tree can efficiently be used for designing
routing algorithms and protocols in computer and commu-
nication networks. The spanning tree of a network contains
all the nodes with only a subset of the edges. That is, it is
algorithmically generated from the whole original network.
In this paper, we follow a completely different approach to
generating hyperbolic trees. Only hyperbolic plane coordinates
of network nodes are used, and a simple rule is applied to es-
tablish tree edges. The rule significantly differs from the ones
used for hyperbolic complex network generation [7], and no
other structural properties of the network are considered in the
hyperbolic tree generation. First, it is shown, both analytically
and numerically, that the degree distribution of the hyperbolic
trees generated are scale-free, that is, they follow a power-law
function. Second, it is also demonstrated that the hyperbolic
trees are highly present in synthetic hyperbolic networks as
well as in real networks embedded in the hyperbolic plane.
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András Biró are supported by the ÚNKP-20-1 New National Excellence
Program of the Ministry of Innovation and Technology from the source of
the national research, development and innovation fund.

II. THE HYPERBOLIC PLANE

The hyperbolic plane (the two-dimensional hyperbolic
space) is a metric space, hence there is a well-defined distance
calculation such as (hyperbolic cosine theorem)

cosh d(u, v) = cosh ru cosh rv − sinh ru sinh rv cosφ (1)

where ru and rv are the radial components of the polar
coordinates of points u and v, and φ = φu − φv is the
difference of the angular components of the polar coordinates
[2], [5]. Note that it significantly differs from the Euclidean
cosine theorem. The fundamental nature of hyperbolic space
is its constant negative curvature, which is not specified
here because we do not directly need it. From now on, we
assume unit negative curvature, which corresponds to the
distance calculation formula above. The direct consequence
of negative curvature is the exponential behavior; for example,
the circumference and area of circles are exponential functions
of the radii instead of polynomials like in the Euclidean space.
The area of a hyperbolic disk with radius R is

AR = 2π(cosh (R) − 1) . (2)

A further exciting and counter-intuitive property of the hyper-
bolic plane is that the area of triangles is bounded above by
π and equals to (in case of unit negative curvature)

Atriangle = π − α− β − γ (3)

where α, β, γ are the angles of the triangle. The immediate
consequence is that the triangle areas can usually be neglected,
which can significantly simplify the calculations. For example,
the area of a circle sector with R = 5 and φ = π/2 (a quarter
circle) is π

2 (cosh 5 − 1) ≈ 115 while the area of the right-
angled triangle with sides 5 a is less than π/2 ≈ 1.57. This
means that the area of a circle sector is mainly concentrated
to the circle segment. The above equations represent the three
main properties, the careful use of which provides the basis
of our calculations and derivations.

III. HYPERBOLIC TREES

For generating hyperbolic random trees, let the model be the
following. Let N points having uniform distribution random
coordinates be generated on a hyperbolic disk of radius R.
The uniform distribution means in this context that the node
density (i.e., the number of nodes per unit area) on the R−disk
is constant. From this and (1), it follows that the probability



density of the angle coordinates of the points is uniform
between 0 and 2π, while the radial coordinate density is given
by

ρ(r) =
sinh r

coshR− 1
. (4)

In a generated point set, the coordinates of the points are ran-
domly sampled from the distributions above. The construction
of the hyperbolic tree is given by the following rules. Each
point in the set generated corresponds to a node in the tree.
First, the points are ordered by increasing radial coordinates.
The first node (the point with the smallest radial coordinate)
is the root of the tree. Then the ith node (i = 2, ..., N ) is
connected to the closest one among (1, ..., i − 1), that is to
the closest one having smaller radial coordinate. An example
can be seen in Fig. 1 in which N = 200 nodes are placed
uniformly on a disk of radius R = 9. Here, we should
note that for illustration purposes, the native representation
of hyperbolic space is used; that is, in the drawings, we use
hyperbolic coordinates as if they were Euclidean. Although
this may cause some strange phenomena in the figures, the tex-
tual descriptions of the algorithms and examples become more
comfortable to interpret. As the calculations and derivations
do not rely on the properties of any specific representations,
there is no reason to use more sophisticated models like the
Poincarè disk or the Klein model in our investigations. In
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Fig. 1. Points generated on a radius R = 9 hyperbolic disk according to
uniform distribution (left side) and the hyperbolic tree inferred from this point
(right side). One can observe that several links in the tree are oriented towards
radial directions due to the explanation of hyperbolic distance characteristics.

Fig. 2 a more complex example can be seen with R = 14,
N = 1000. One can immediately notice that the nodes
seem to be non-uniformly distributed on the disk. This is
due to the non-isometric nature of the native representation.
Note that all other representation models in the Euclidean
plan lack isometry, the hyperbolic plane simply ”too big”,
e.g., contains exponentially larger amount of space than the
Euclidean one. In the case of the disk with a radius of 14,
the total area is 2π(cosh 14 − 1) ≈ 3.78 × 106. The half of
this area is 1.89106, which can be covered by a disk with
radius 13.3! Due to the uniform node distribution, half of the
nodes are expected within the disk of 13.3. In the particular
realization in Fig. 2, exactly 500 nodes are inside the 13.14
radius disk (shown by red dashed line in the figure) while

the other 500 ones have radial coordinate values within 13.14
and 14. This clearly illustrates the exponential behavior of a
hyperbolic plane: areas and node densities are not what they
seem in the figures. Another strange phenomenon in Fig. 2

1

936

999

Fig. 2. A hyperbolic tree with 1000 nodes. One can observe the strong
hierarchy and the wide spectrum of node degrees. There are exactly half of
the nodes (500) inside the red dashed circle. Areas and node densities are
not what they seem. Distances also significantly differ from Euclidean one,
e.g. node 936 and 999 closer to node 1 than to each other (green dots), see
explanation in the text.

and Fig. 1 is that the orientation of most of the connections
lies close to the radial direction. It seems that lots of node
pairs (especially in the outer rim of the disk) should have
been connected because they look to lie close enough to each
other; further evidence that the hyperbolic distance calculation
significantly differs from the Euclidean one. We demonstrate
that with simple examples. In Fig 2, the green connections
highlight the first node (with the smallest radial coordinate)
connected to nodes 936 and 999. The polar coordinates are
as follows: (φ1, r1) = (1.07836, 1.88073) , (φ936, r936) =
(0.93668, 13.8972) , (φ999, r999) = (0.829746, 13.9966).
According to the hyperbolic cosine law (1) the distances are
d(1, 936) = 12.2075 , d(1, 999) = 12.6142 d(936, 999) =
22.0355 . Thus nodes 936 and 999 turn out to be much farther
from each other than it seems in the native representation,
becoming the first node the closest neighbor to both. Hence
they should not be connected. In fact, if the radial coordinates
of two nodes are close to each other, the hyperbolic distance
is rapidly increasing with increasing angular difference, es-
pecially in the range of small values. Fig. 3 illustrates this
behaviour, in which the angular coordinate φ999 of node 999
is varying from φ936 to φ936 − π.

One can observe that node 999 would be closer to node 936
only in an extremely small range of 0 < ∆φ < 0.00076; for
all larger ∆φ d(936, 999) > d(1, 999) holds.
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Fig. 3. Hyperbolic distances between nodes 936,999 and nodes 1,999 are
presented. In case of similar radial coordinates (r936, r999) the distance
is quickly increasing with angular difference, while in case of large radial
coordinate difference (r1, r999) the distance function is quite flat.

IV. DEGREE DISTRIBUTION OF HYPERBOLIC TREES

In this section the degree distribution of the nodes in the
hyperbolic tree is investigated. First approximate analytical
derivations are performed, than numerical experiments are pre-
sented. The derivation of the approximate degree distribution
formula consists of three main steps. In the first step, the
connection probability p(u, v) for a node pair u, v (ru < rv)
is derived. In the second step, the conditional expected degree
k̄(ru) 1 is computed based on p(u, v) and the probability
density of node v. In the third step, the degree distribution
is inferred from k̄(ru) with appropriate deconditioning.

Assume that N points are randomly placed on a disk of
radius R evenly distributed over its area and a tree is generated
applying the previously described algorithm. We can establish
the probability p(u, v) that an arbitrary node pair (u, v) is
connected. More specifically, p(u, v) is the probability that u
and v are connected under the condition that ru < rv . 2 In
Fig. 4 a node pair u, v are shown with ru < rv . According

1We introduce the short notation k̄(ru) for E[k(u)|ru], that is, the
conditional expectation of the degree of a node u, whose radial coordinate is
ru.

2The notation p(u connected to v|ru, rv , ru < rv) could be more appro-
priate, but for brevity we use p(u, v).
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Fig. 4. Geometric illustration for the calculation of the connection probability
p(u, v): Node v is connected to node u (ru < rv) if no nodes are contained
in the intersection of the O−centered disk (colored in red) with radius rv
and the v−centered disk (green line) with radius d(u, v).

to the tree generation rule, v is connected to the closest
node which has a smaller radial coordinate than rv . In a
geometric interpretation, v connects to the closest node inside
the O-centered disk of radius rv (red disk in the figure). The
closest node will be exactly u when no points lie inside the
intersection of the O-centered disk with radius rv and the v-
centered disk with radius d(u, v) (green disk in the figure).
The probability that all the N − 2 points fall outside the
intersection area is 1 − AQP

AR
, where AQP denotes the area

of the intersection, and AR = 2π(coshR − 1) is the area of
the whole disk. It follows that

p(u, v) =

(
1 − AQP

AR

)N−2

=

(
1 − AQP

AR

)AR N−2
AR

≈ e−δAQP ,

(5)
where δ is the node density: δ = N

AR
≈ N−2

AR
What remains

to be done to calculate the probability p(u, v) is to establish
AQP . One can observe in Fig. 4 that AQP is equal to the sum
of the two circle sectors POQ (red, sector angle is 2α) and
PvQ (green, sector angle is 2β) minus the area of the two
triangles PQO and PQv:

AQP ≈ 2α(cosh rv − 1) + 2β(cosh d(u, v) − 1), (6)

where the area of the two triangles 2(π − α− 2β) is already
neglected. The angles α and β can be determined by applying
the hyperbolic cosine law (1) to the triangle vOQ with edges
OQ and vQ. From these

α(duv, rv) = arccos
cosh2 rv − cosh duv

sinh2 rv
(7)

and
β(duv, rv) = arccos

cosh rv(cosh duv − 1)

sinh rv sinh duv
(8)



Now the equations (6),(7) and (8) can be combined to get
AQP as a function of d(u, v) and rv . Because the formula
is a bit lengthy and not very expressive, it is not repeated
here. However, based on a sequence of approximations a much
simpler and useful expression can be obtained as

AQP ≈ 4e
d(u,v)

2 (9)

by which we get a simple formulae for the approximation of
the connection probability:

p(u, v) ≈ e−δ4e
d(u,v)

2 . (10)

At this point, it is practical to postpone the in-depth analysis
of the details and quality of these approximations, as two more
weighing functions are to appear in the computation of k̄(ru).
Instead, an illustrative example is shown in Fig. 5 to study the
performance of the different approximations of AQP , where
rv = 7 is fixed and d(u, v) is running from 1 to 14 (note
that d(u, v) < 2rv holds for all (u, v), ru < rv). One can

AQP (6)

AQP (9)
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Fig. 5. Different approximations of AQP and their relative difference.

observe that for a wide range of d(u, v) values, the simpler
approximation (9) is quite close to the more tedious one; the
relative difference is below 5% when 3 < d(u, v) < 13.
Because the distance d(u, v) is also a function of ru and rv
itself, it is worth expanding it exploiting (1) as

cosh d(u, v) = cosh ru cosh rv − sinh ru sinh rv cosφ, (11)

where φ is the difference between the angle coordinates of u
and v. Using the approximations coshx ≈ ex

2 and sinhx ≈ ex

2
when x is not too small, one can write

ed(u,v)

2
=

eru+rv

4
(1 − cosφ) . (12)

Based on this equation we get

e
d(u,v)

2 ≈ e
ru+rv

2

√
1 − cosφ

2
. (13)

Using the remarkable identity
√

1−cosφ
2 = sin φ

2 a further,
more useful formula can be obtained for p(u, v) for subsequent
derivation as

p(u, v) ≈ e−4δe
ru+rv

2 sin φ
2 . (14)

Now we can continue with the derivation of k̄(ru). Roughly
speaking, k̄(ru) is the expected number of neighbors of u
when all nodes v, (ru < rv < R) are counted for which u is
the closest. There is surely one more ”downward” connection
of u to a node with an even lower radial coordinate due to the
tree generation rule (except when u has the smallest ru, but
this exception does not influence the results). More formally,
p(u, v) is to be integrated with the probability densities of rv
and φ (φ) := φv − φu (and a constant 1 should be added),
that is

k̄(ru) = 1 +N

∫ R

rv=ru

∫ 2π

φ=0

p(u, v)
1

2π

sinh rv
coshR− 1

dφdrv .

(15)
First, consider the integral with respect to the angle difference
φ: ∫ 2π

φ=0

p(u, v)dφ . (16)

Interestingly enough, if we use approximation (14), it can
be expressed exactly with two distinguished functions: the
zero order modified Bessel function III0(x) and the zero order
modified Struve function LLL0(x)∫ 2π

φ=0

e−x sin φ
2 dφ = 2π (III0 (x) −LLL0 (x)) , (17)

where x = 4δe
ru+rv

2 . It is known that for large x, III0(x) −
LLL0(x) quickly tends 3. to 2

πx , therefore the right hand side
of the equation above is approximated by

4

x
=

1

δ
e−

ru+rv
2 . (18)

Putting it back to equation (15), we get

1 +N

∫ R

rv=0

1

δ
e−

ru+rv
2

1

2π

sinh rv
coshR− 1

drv . (19)

3The asymptotic series expansion of III0(x) − LLL0(x) at x = ∞ starts
with 2

πx
, see [1] . The asymptotic series expansion in this case means that

limx→∞
III0(x)−LLL0(x)

2
πx

= 1



Using the definition of node density δ = N
2π(coshR−1) , we get

1 +

∫ R

rv=0

e−
ru+rv

2 sinh rvdrv ≈ 1 − 1 + e
R−ru

2 . (20)

Finally, we get the stunningly simple formula

k̄(ru) ≈ e
R−ru

2 . (21)

The final formula reflects the property observed in the previous
numerical examples, namely that nodes with smaller radial
coordinates tend to have much higher number of connections.
There is an interesting and easy way to perform a sanity check
on the formula. All trees with N nodes have exactly N − 1
links, that is the grand average node degree is k̄ = 2(N −
1)/N ≈ 2. This means that the result of integrating k̄(ru)
with respect to the density ru should be very close to 2:

k̄ =

∫ R

ru=0

e
R−ru

2 eru−Rdru = 2(1 − e−
R
2 ), (22)

which differs from 2 with a negligible factor when R is not
too small (for example, in case of R = 10 k̄ = 1.98652).

As a third step, the complement cumulant degree distribu-
tion is derived, i.e. the probability that an arbitrary node degree
is larger than a given value k, P (degree > k) is computed.
Here we present an approximate and more perceptible reason-
ing instead of a sophisticated but tedious one. If we accept the
approximation (21), than from its monotonicity if follows, that
nodes with higher expected degrees than a given k are exactly
inside the circle of radius ru(k), where ru(k) is the inverse
function of (21). One can also state that nodes with degrees
exactly higher than a given k are expectedly inside the circle
with radius ru(k). These two statements are approximately
equivalent, therefore P (degree > k) can be approximated by
the ratio of the area of ru(k)-disk and the R-disk

P (degree > k) ≈ 2π(cosh ru(k) − 1)

2π(coshR− 1)
≈ eru(k)

eR
. (23)

Substituting the inverse function ru(k) = R−2 log k into this
equation

P (degree > k) ≈ k−2 . (24)

is obtained, that is approximately a power law distribution with
parameter 2.

V. NUMERICAL ANALYSIS

In this section numerical results are presented in connection
with synthetic and real networks embedded on the hyperbolic
plane. First, the generative model for synthesizing complex
networks on the hyperbolic plane is considered [6] . The
network generation rule in the simplest case is as follows:
distribute N nodes uniformly on a hyperbolic disk with radius
R then connect every node pair which are closer than R. It is
analytically shown and numerically confirmed that the degree
distribution of such networks follow power law and the ccdf
is proportional to k−2 [6], [10].

Two numerical examples are presented for N = 1000,
R = 13 and for N = 3000, R = 14. In Fig. 6 the hyperbolic

tree generated and the synthetic network can be seen. It is
observable that in spite of the completely different generation
rule the structure of the synthetic network is strongly hierar-
chical and resembles to the tree network. Moreover, 860 of
the total 999 links can be found in the original network too.
In the second larger example (not shown in the figure) 2857
of the total 2999 tree links are also present in the synthetic
network.

Fig. 6. Hyperbolic tree and a synthetic complex network with N = 1000,
R = 13 for the same set of nodes.

The structural similarity is confirmed by the histograms for
the degree distributions which are shown on Fig. 7. Note that
the theoretical function k−2 well fits to the measured degree
distribution of the tree and is in accordance with the similar
decay in synthetic network for larger values of k.
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Fig. 7. Degree distributions.

The hyperbolic tree networks are also generated and tested
on two types of real networks embedded in the hyperbolic
plane. Here we do not outline the embedding process, just note
that the embedding process do not use algorithms based on
any trees inferred from the original network. For more details
of the embedding see [3], [6], [12]. Thus our hyperbolic tree
generation method does not ”know” directly anything about
any trees contained in the original real networks.

The first network embedded is the US flight network. This
network was downloaded from the Bureau of Transportation
Statistics http://transtats.bts.gov/ on 5 November 2017. It con-
sists of 283 nodes and 1973 edges. In the network the nodes
are US airports. Two nodes are linked if they are connected by



a direct flight. The hyperbolic tree and the original network
are drawn in Fig. 8. The hyperbolic tree has 282 links of
which 246 are also in the original network. It corresponds to
a 87.2% tree inclusion ratio. The degree distributions of the
hyperbolic tree and the original flight network can be seen
in Fig. 9. One can observe, that the decay of the histograms
are different, however, both of them are power law functions
which confirms our theoretical results. The flight network is
embedded into a 11.3 radius disk, which is determined by the
embedding algorithm, so the average node density on this disk
is about 0.0035. The other network is the much larger Internet

Fig. 8.
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Fig. 9. US flight network and its tree degree distribution. The tree is generated
based only on the hyperbolic coordinates.

AS level topology. The corresponding data set representing
the global Internet structure at the autonomous system (AS)
level is from [4]. In this network we use the inner core of
10000 nodes (out of the total 23748), the number of edges
is 40605 and the network is embedded into an 26.87 radius
disk. In this case the node density is much lower, 6.83x10−9.
The degree distribution can be seen in Fig. 10. Similar power
law behaviour also appears here, the difference between the
decay rates is smaller than in the previous case. The inclusion
ratio of the hyperbolic tree in the original network is also
as high as 84.7%. In both cases, the difference between the
exponents of the power functions can be attributed to the fact
that real network embeddings usually cause non-uniform node
distributions, and according to our numerical experiments this
non-uniformity results in smaller change in the tree degree
distribution than in that of the original network.
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Fig. 10. Internet AS level topology (inner core of 10000 nodes) and its tree
degree distribution.

VI. CONCLUSION

A new hyperbolic tree generation method has been pre-
sented. The generating algorithm is based on the presump-
tion that successful navigability of many real networks is
key to their evolution. Both analytically and by numerical
experiments on synthetic and real data, it is shown that the
degree distribution of the trees generated is approximately a
power function. It has also been demonstrated that the trees are
present to a large extent in real and synthetic networks. Our
results open further research on the deeper relation between
navigable hyperbolic trees and the structural evolution of
networks.
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Krioukov. Navigable networks as nash equilibria of navigation games.
Nature communications, 6:7651, 2015.
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