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1Budapest University of Technology and Economics

2MTA-BME Information Systems Modelling Research Group
Budapest, Hungary,
heszi@tmit.bme.hu

Abstract—The structural navigability of complex networks
is an important question in the function-structure perspective
of complex network analysis. This may provide hints on the
underlying mechanisms that have been forming the structure
of networks for a desirable level of navigation. It has been
already discovered that greedy navigational cores as minimalistic
networks with 100% greedy navigability considerably present in
many real networks, including the structural networks of the
human brain. Because the greedy navigational core is not unique,
the connection between the level of its presence in a network and
the structural navigability of that network is far from clear. In
this paper, we deal with a special subset of the greedy navigational
core, the so-called greedy proximity links (GPL), whose presence
is necessary for 100% greedy navigability of a network. We
show that the greedy proximity links are highly present in the
brain networks, and the presence is consistent throughout the
the individual subjects.

Index Terms—structural brain networks, greedy navigation,
proximity links

I. INTRODUCTION

Thanks to the advancement of the last decade in MRI
technologies and biomedical imaging, mammalian brains (in-
cluding the human brain) is getting more and more explored
[5]. This exploration has been relied and performed on a new
prospering discipline, the network science. Networked neuro-
science as a subdiscipline at the cross-roads of neuroscience
and network science deals with functional and structural
characteristics of brain networks using mathematical tools
and methodologies like graph theory, probability and statistics
[2], [5], [12]. One of the largest measurement projects in
this area was the Human Connectome Project, whose goal
was to build a ”network map” that would show structural
(anatomical) and functional connectivity within the healthy
human brain. This project induced many activities in scanning
and imaging brains and investigating them. The resulted data
are often networks (graphs) which show interconnections or
interrelations between different parts of the brain. In case of
structural brain networks the gray matter is divided into brain
parcels (RoI, region of interest) providing the vertices of the
network, and the neuronal pathways through the white matter
connecting these parcels form the edges of the networks.
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Navigation in complex networks has been a widely studied
function from operational and structural point of view [1], [9],
[10]. In technological networks this path exploring, finding
and coordination mechanism is often referred to as routing.
Routing protocols are set up and operate in these networks
to provide efficient information/vehicle/energy transport. In
natural networks like in the brain, communication between
the nodes seems to be important as well, hence the navigation
may also play central role in the operation of these networks
[1], [11], [13].

Greedy navigation is a widely studied concept of routing in
networks due to its simplicity and local way of operation [3],
[7]–[10]. This hop-by-hop routing can work in geometrically
embedded networks, i.e. the nodes of the networks have to
possess coordinates chosen from some kind of metric space.
Routing decisions are performed at every node based on
distance calculations in the underlying metric space. More
specifically, at a node the information parcel (packet) is
forwarded to that neighbor which is closest to the destination
node by a certain distance metric. Apparently, geometrically
embedded networks are not necessarily 100% navigable by this
mechanism. Hence, in this context, a very important question
is the following: Given a set of nodes with coordinates without
any connection (empty network). What is the minimal network
(in terms of the number of links) which can provide 100%
navigability between the nodes?

In [6] it has been shown that the minimalistic 100% greedy
navigable core (GNC) of the networks are the Nash equi-
librium of a network navigation game played by the nodes.
The GNC can be considered as a navigation skeleton of real
networks that inherits many structural properties. It was also
demonstrated in [6] that the greedy navigable cores are highly
present in a human brain structural network averaged over 5
subjects. A follow up study can be found in [4] which contains
a more detailed analysis on the precision (i.e., the level of
presence) of the greedy navigational core in human brain
structural networks. Because the GNC as the Nash equilibrium
of the network navigation game is not unique, there is no direct
connection between the level of greedy navigability and the
presence of GNC in a network. However, there exists a set of
links which shows up in all possible greedy navigational cores,
we call the Greedy Proximity Links (GPL). In this paper, we
investigate the presence of GPL in 40 subject based human
brain structural networks with five different resolutions. We



show that GPL presence is high in the brain networks and
consistent in all scales, even in case of network pruning when
anatomically weak or spurious links have been cut out from
the networks.

II. BRAIN NETWORKS

In this paper we use a high quality dataset on MRI
measurements on human subjects in five different resolutions
resulting in 200 structural brain networks. The dataset used
in our investigations contains 40 healthy human subjects who
underwent an MRI measurement procedure, where Diffusion
Spectrum Imaging (DSI) data were obtained for each subject.
The DSI data was processed according to the methods de-
scribed in [2], resulting in 40 weighted, undirected structural
connectivity maps comprising 83, 129, 233, 463, 1015 nodes
in five different scales, respectively. Each node represents
a region of cortical or sub-cortical gray matter, and the
links represent white matter streamlines connecting the brain
regions. Connection weights measure the average density of
white matter streamlines. A connection is identified only if the
density is above 10−8, resulting structural networks containing
an average of 1119, 1976, 3799, 7246 and 14254 connections
per subject. The geometric centres of the brain regions are
identified and are presented with their 3D Euclidean coordi-
nates, leading to an embedding of the brain networks in the
3D Euclidean space.
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Fig. 1. Brain parcel centres of a scale 3 brain network as drawn by their
3D Euclidean coordinates. One can easily identify the two hemispheres. The
points represent the centres of brain parcels ROI’s (region of interest). Due
to anatomical variations the 3D Euclidean coordinates of the centres of ROI’s
varies from network/subject to network/subject.

The DSI technology, as many other non-invasive imaging
methods, has limitations due to measurement errors and ar-
tifacts of data post-processing. It can happen that spurious
links appear in the brain networks by inference or existing
weak connections remain hide from imaging. One possible
way of handling this problem at some extent is to score
somehow the links in the brain network and then a sequence
of pruned networks can be generated by using the link scores.
In our data set, in every scale, 40 networks are inferred
from measurements carried out on 40 individuals. Because the

anatomical parcellations of the individuals were consistent, a
node in the brain networks represents the same brain parcel
in all subjects. Therefore, a link (connection) can have a
prevalence score, which simply means the number of networks
among the 40 ones containing that link. The link prevalence
score (LPS) can be used to prune the brain networks and then
the robustness of any results or considerations on them.

III. GREEDY PROXIMITY LINKS

As mentioned earlier, greedy navigation is not always suc-
cessful in geometrically embedded networks. Greedy routing
can get stuck at a node, when all neighbours of the node is
farther from the destination node than itself, that is, there is no
way (no route) to get closer to the destination. However, there
is always a common subset of all maximally navigable sub-
networks, which we called Greedy Proximity Links (GPL).
The presence of GPL links is necessary but still not a sufficient
condition for maximal greedy navigability. This set of links
can be identified as follows. Let us take two nodes in the
network, u and v. If v is the closest node to u then for
ensuring 100% greedy navigability the (directed) link v → u
must exist. Otherwise there would be no greedy path from v
(or through v) to u. Note that this kind of proximity is not a
symmetric property. If v is the closest node to u this does not
necessarily imply that u is the closest node to v, nevertheless
it can happen, typically when u and v are close enough to each
other and both of them are far from all the other nodes. Based
on the node coordinates, Greedy Proximity Links can also be
identified in the brain networks. Because in the structural brain
networks the connections are undirected, we have also made
the GPL links undirected. This means that if both u → v
and v → u are proximity links they are presented as a single
undirected connection u − v. Otherwise, if there is only one
proximity link between a node pair, then this directed link
is converted to an undirected link. Apparently, there are N
directed proximity links in an N -node network, from which
it follows that the number of undirected proximity links is
less than N . Here it is worth emphasizing that the Greedy
Proximity Links can be determined in the brain networks
by using purely the 3D coordinates of the parcels; no other
anatomical information or consideration is needed.

Now we turn to the detailed analysis of the GPL precision
in the brain networks. The GPL links are generated for all the
nodes of the networks in all scales and then they are tested
against the brain networks. Adjacency matrices are inferred for
GPL links in all networks and used together with the original
brain network adjacency matrices to calculate the required
parameters. First some basic properties of the GPL networks
are presented. The average number of proximity links (in
brackets the number of nodes) in the different scales are:

58.6(83), 90.2(129), 163.8(234), 324.4(463), 716.7(1015)

As mentioned earlier, in case on N nodes, the number of
undirected proximity links is between N/2 and N depending
on how many double directed proximity links are between
the node pairs. It follows that the average degree of nodes



k̄GPL with respect to the undirected proximity links should
be between 1 and 2. The average degree of GPL networks in
the five scales (from scale 1 to scale 5 respectively) are as
follows:

1.41, 1.39, 1.40, 1.40, 1.41,

which are obtained by

k̄GPL =
2 ∗ Mean(#GPL links)

N
. (1)

One can not only observe that the previous statement 1 <
k̄GPL < 2 is confirmed but also the average degree of nodes
in GPL networks are quite stable across the different scales.
In other words, it is insensitive to the resolution of the brain
parcellation. This also means that the ratio of the number of
double directed proximity links 1 and the number of single
directed proximity links is insensitive to the size of the brain
networks. Because the greedy proximity links depend only on
the 3D euclidean coordinates of the nodes this insensitivity
property may relate to the consistency of the anatomical
parcellation. The GPL precisions have been measured in all
networks and all scales and the results are as follows: The
mean values (and standard deviation) of the GPL precisions
(without pruning) in Scale 1 to Scale 5 are

0.94(0.022), 0.98(0.024), 0.95(0.026), 0.83(0.031), 0.59(0.034).

One can observe that these inclusion ratios in the first three
scales are exceptionally high and decreases significantly only
in scale 5. The low variability of the precision values are valid
within all scales. In Fig. 2 all the GPL precisions are plotted.
On the figure one can also recognize the low deviations of the
precisions within the scales.
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Fig. 2. Individual GPL precisions in all brain networks and all scales.

An illustration of the undirected proximity links of scale
5 brain parcels can be seen in the left part of Fig 3. On
the right, the proximity links are shown, which are also part
of the original brain network. One can easily identify the
two hemispheres and other major parts in both cases. In this
particular case the total number of links in the scale 5 brain

1A proximity link between a node pair (u, v) is double directed if u is
closest to v and also v is closest to u.

network is 14695, while the number of proximity links is 728.
Among these 728 proximity links there are 458 ones, which
are present in the original brain network. This corresponds to
a 0.63 precision, which is much lower than in the first four
scales, however, still amazingly high.

Fig. 3. Greedy proximity links in a scale 5 brain network. The left drawing
represents all the proximity links (728) inferred from the coordinates of the
nodes. The right part of the figure shows only those proximity links (458)
which are also present in the original brain network.

Fig. 4. Greedy proximity links in a scale 5 brain network are shown with
highlighting the ones which are also present in the original brain network.

Now, results are presented on the precision of GPL in
pruned brain networks. The pruning process is the following.
In case of pruning threshold parameter p, p = 1 . . . 40 all links
having scores less than p are cut out from all networks. In case
of p = 1 all links are kept, thus we have the original set of
networks. In case of p = 40, we have only those networks
which contain only the links with LPS = 40, all other links
are cut out. In this way, in every scale, 1600 networks have
been generated. GPL precisions are measured for every set of
pruned networks for all possible pruning threshold values. For
example, in a scale 2 brain network (with 2073 connections) 86
of 88 greedy proximity links are present. This corresponds to
a GPL precision of 97.7 % . The average values of precisions
are shown in Fig. 5, which underlines that pruning out links
up to p = 10 precisions do not change significantly in any of
the scales. In case of lower resolutions (the first three scales)
it is even true for p = 30. In the highest resolution (scale 5)
the GPL precision is remarkably lower than in others, but the
decrease is more flat between p = 20 and p = 40. Based on the



results one can deduce that precisions of the Greedy Proximity
Links in the pruned brain networks are robust against pruning.
This means that most of the proximity links contained by
the brain networks have high link prevalence scores; cutting
out the possibly non-existent low score links does not affect
significantly the GPL precisions in a wide range of LPS.
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Fig. 5. Average greedy proximity precisions against link prevalence score
thresholds.

These statements can also be supported by the distributions
of the LPS values of the greedy proximity links present
in the brain networks. The empirical probability distribution
functions (PDF) of link prevalence score values are generated
for all greedy proximity links in every scales, which can be
seen in Fig. 6. In the first three scales the greedy proximity
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Fig. 6. LPS distributions in all scales.

links have very high link prevalence scores, for example, in
the particular scale 2 network there are 70, 6, 5, 2, 1, 1, 1 links
with LPS values 40, 39, 38, 37, 36, 35, 29, respectively. The
LPS distribution of GPL is more widened in scale 4 and scale
5, i.e. they show a higher variance, however, they concentrate

around higher LPS values as well. The mean LPS values of
proximity links are 37.55, 38.32, 36.00, 30.23, 21.57 in scale
1 to 5, respectively.

Fig. 7. Array plot of a scale 5 structural brain network. In this plot a
dot at (i, j) represents the connection between nodes i and j. One can
recognize higher connectivity inside the hemispheres, and lower density for
inter-hemispheric connections.

Fig. 8. Array plot for scale 5 greedy proximity links. If we take a closer
look at the pattern, we can recognize that the morphology resembles to the
previous full brain network, however, the density is much lower because it
contains only 1015 links.

IV. CONCLUSION

Greedy Proximity Links have been identified whose ex-
istence are necessary (but not sufficient) for 100% greedy
navigability in networks. GPL precision (inclusion ratio) is
tested in a high-quality data set on structural networks of the
human brain. The precision is very high in lower resolutions



of brain parcellations, lower (but still significantly high) at
higher resolutions and consistent with low variability in all
scales. The results are remarkable in light of that Greedy
Proximity Links are inferred only from the 3D Euclidean
coordinates of brain parcels; no other information is used
from the underlying anatomy or functions of the brains. One
may speculate that the strong universal consistency of greedy
proximity link presence in structural brain networks can relate
to the navigation functionalities of the brain, nevertheless,
there is still no direct evidence for that.
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